//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Utils/TFUtils.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Path.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Testing/Support/SupportHelpers.h" #include "gtest/gtest.h" using namespace llvm; extern const char *TestMainArgv0; // NOTE! This test model is currently also used by test/Transforms/Inline/ML tests //- relevant if updating this model. static std::string getModelPath() { SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0); llvm::sys::path::append(InputsDir, "ir2native_x86_64_model"); return std::string(InputsDir); } // Test observable behavior when no model is provided. TEST(TFUtilsTest, NoModel) { TFModelEvaluator Evaluator("", {}, {}); EXPECT_FALSE(Evaluator.isValid()); } // Test we can correctly load a savedmodel and evaluate it. TEST(TFUtilsTest, LoadAndExecuteTest) { // We use the ir2native model for test. We know it has one feature of // dimension (1, 214) const static int64_t KnownSize = 214; std::vector InputSpecs{TensorSpec::createSpec( "serving_default_input_1", {1, KnownSize})}; std::vector OutputSpecs{ TensorSpec::createSpec("StatefulPartitionedCall", {1})}; TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); EXPECT_TRUE(Evaluator.isValid()); int32_t *V = Evaluator.getInput(0); // Fill it up with 1's, we know the output. for (auto I = 0; I < KnownSize; ++I) { V[I] = 1; } { auto ER = Evaluator.evaluate(); EXPECT_TRUE(ER.hasValue()); float Ret = *ER->getTensorValue(0); EXPECT_EQ(static_cast(Ret), 80); EXPECT_EQ(ER->getUntypedTensorValue(0), reinterpret_cast(ER->getTensorValue(0))); } // The input vector should be unchanged for (auto I = 0; I < KnownSize; ++I) { EXPECT_EQ(V[I], 1); } // Zero-out the unused position '0' of the instruction histogram, which is // after the first 9 calculated values. Should the the same result. V[9] = 0; { auto ER = Evaluator.evaluate(); EXPECT_TRUE(ER.hasValue()); float Ret = *ER->getTensorValue(0); EXPECT_EQ(static_cast(Ret), 80); } } // Test incorrect input setup TEST(TFUtilsTest, EvalError) { // We use the ir2native model for test. We know it has one feature of // dimension (1, 214) const static int64_t KnownSize = 213; std::vector InputSpecs{TensorSpec::createSpec( "serving_default_input_1", {1, KnownSize})}; std::vector OutputSpecs{ TensorSpec::createSpec("StatefulPartitionedCall", {1})}; TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); EXPECT_TRUE(Evaluator.isValid()); int32_t *V = Evaluator.getInput(0); // Fill it up with 1's, we know the output. for (auto I = 0; I < KnownSize; ++I) { V[I] = 1; } auto ER = Evaluator.evaluate(); EXPECT_FALSE(ER.hasValue()); EXPECT_FALSE(Evaluator.isValid()); } TEST(TFUtilsTest, JSONParsing) { auto Value = json::parse( R"({"name": "tensor_name", "port": 2, "type": "int32_t", "shape":[1,4] })"); EXPECT_TRUE(!!Value); LLVMContext Ctx; Optional Spec = getTensorSpecFromJSON(Ctx, *Value); EXPECT_TRUE(Spec.hasValue()); EXPECT_EQ(*Spec, TensorSpec::createSpec("tensor_name", {1, 4}, 2)); } TEST(TFUtilsTest, JSONParsingInvalidTensorType) { auto Value = json::parse( R"( {"name": "tensor_name", "port": 2, "type": "no such type", "shape":[1,4] } )"); EXPECT_TRUE(!!Value); LLVMContext Ctx; auto Spec = getTensorSpecFromJSON(Ctx, *Value); EXPECT_FALSE(Spec.hasValue()); } TEST(TFUtilsTest, TensorSpecSizesAndTypes) { auto Spec1D = TensorSpec::createSpec("Hi1", {1}); auto Spec2D = TensorSpec::createSpec("Hi2", {1, 1}); auto Spec1DLarge = TensorSpec::createSpec("Hi3", {10}); auto Spec3DLarge = TensorSpec::createSpec("Hi3", {2, 4, 10}); EXPECT_TRUE(Spec1D.isElementType()); EXPECT_FALSE(Spec3DLarge.isElementType()); EXPECT_EQ(Spec1D.getElementCount(), 1U); EXPECT_EQ(Spec2D.getElementCount(), 1U); EXPECT_EQ(Spec1DLarge.getElementCount(), 10U); EXPECT_EQ(Spec3DLarge.getElementCount(), 80U); EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float)); EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t)); } TEST(TFUtilsTest, Logger) { std::vector Features; Features.push_back( {TensorSpec::createSpec("the_float", {2, 3}), None}); Features.push_back({TensorSpec::createSpec("the_int", {2}), std::string("alternate_name")}); auto Rewards = TensorSpec::createSpec("reward", {1}); Logger L(Features, Rewards, true); float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; int64_t F01[]{2, 3}; L.logTensorValue(0, F00, 6); L.logTensorValue(1, F01, 2); L.logReward(3.4); float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; int64_t F11[]{-2, -3}; L.logTensorValue(0, F10, 6); L.logTensorValue(1, F11, 2); L.logReward(-3.0); const auto *Expected = R"(feature_lists: { feature_list: { key: "the_float" value: { feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } } feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } } } } feature_list: { key: "alternate_name" value: { feature: { int64_list: { value: [2, 3] } } feature: { int64_list: { value: [-2, -3] } } } } feature_list: { key: "reward" value: { feature: { float_list: { value: [3.400000e+00] } } feature: { float_list: { value: [-3.000000e+00] } } } } } )"; std::string Result; raw_string_ostream OS(Result); L.print(OS); EXPECT_EQ(Result, Expected); } TEST(TFUtilsTest, LoggerNoReward) { std::vector Features; Features.push_back( {TensorSpec::createSpec("the_float", {2, 3}), None}); Features.push_back({TensorSpec::createSpec("the_int", {2}), std::string("alternate_name")}); auto Rewards = TensorSpec::createSpec("reward", {1}); Logger L(Features, Rewards, false); float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; int64_t F01[]{2, 3}; L.logTensorValue(0, F00, 6); L.logTensorValue(1, F01, 2); float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; int64_t F11[]{-2, -3}; L.logTensorValue(0, F10, 6); L.logTensorValue(1, F11, 2); const auto *Expected = R"(feature_lists: { feature_list: { key: "the_float" value: { feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } } feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } } } } feature_list: { key: "alternate_name" value: { feature: { int64_list: { value: [2, 3] } } feature: { int64_list: { value: [-2, -3] } } } } } )"; std::string Result; raw_string_ostream OS(Result); L.print(OS); EXPECT_EQ(Result, Expected); } TEST(TFUtilsTest, LoggerFinalReward) { std::vector Features; Features.push_back({TensorSpec::createSpec("the_float", {1}), None}); Features.push_back({TensorSpec::createSpec("the_int", {1}), None}); auto Rewards = TensorSpec::createSpec("reward", {1}); Logger L(Features, Rewards, true); for (size_t I = 0; I < 3; ++I) { float F = static_cast(I); L.logTensorValue(0, &F); L.logTensorValue(1, &I); } L.logFinalReward(3.14); const auto *Expected = R"(feature_lists: { feature_list: { key: "the_float" value: { feature: { float_list: { value: [0.000000e+00] } } feature: { float_list: { value: [1.000000e+00] } } feature: { float_list: { value: [2.000000e+00] } } } } feature_list: { key: "the_int" value: { feature: { int64_list: { value: [0] } } feature: { int64_list: { value: [1] } } feature: { int64_list: { value: [2] } } } } feature_list: { key: "reward" value: { feature: { float_list: { value: [0.000000e+00] } } feature: { float_list: { value: [0.000000e+00] } } feature: { float_list: { value: [3.140000e+00] } } } } } )"; std::string Result; raw_string_ostream OS(Result); L.print(OS); EXPECT_EQ(Result, Expected); }