//===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the (beginning) of an implementation of a loop dependence analysis // framework, which is used to detect dependences in memory accesses in loops. // // Please note that this is work in progress and the interface is subject to // change. // // TODO: adapt as implementation progresses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lda" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopDependenceAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Instructions.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" using namespace llvm; LoopPass *llvm::createLoopDependenceAnalysisPass() { return new LoopDependenceAnalysis(); } static RegisterPass R("lda", "Loop Dependence Analysis", false, true); char LoopDependenceAnalysis::ID = 0; //===----------------------------------------------------------------------===// // Utility Functions //===----------------------------------------------------------------------===// static inline bool IsMemRefInstr(const Value *V) { const Instruction *I = dyn_cast(V); return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); } static void GetMemRefInstrs(const Loop *L, SmallVectorImpl &Memrefs) { for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); b != be; ++b) for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); i != ie; ++i) if (IsMemRefInstr(i)) Memrefs.push_back(i); } static bool IsLoadOrStoreInst(Value *I) { return isa(I) || isa(I); } static Value *GetPointerOperand(Value *I) { if (LoadInst *i = dyn_cast(I)) return i->getPointerOperand(); if (StoreInst *i = dyn_cast(I)) return i->getPointerOperand(); llvm_unreachable("Value is no load or store instruction!"); // Never reached. return 0; } //===----------------------------------------------------------------------===// // Dependence Testing //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::isDependencePair(const Value *A, const Value *B) const { return IsMemRefInstr(A) && IsMemRefInstr(B) && (cast(A)->mayWriteToMemory() || cast(B)->mayWriteToMemory()); } bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *X, Value *Y, DependencePair *&P) { void *insertPos = 0; FoldingSetNodeID id; id.AddPointer(X); id.AddPointer(Y); P = Pairs.FindNodeOrInsertPos(id, insertPos); if (P) return true; P = PairAllocator.Allocate(); new (P) DependencePair(id, X, Y); Pairs.InsertNode(P, insertPos); return false; } void LoopDependenceAnalysis::analysePair(DependencePair *P) const { DEBUG(errs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n"); // Our default answer: we don't know anything, i.e. we failed to analyse this // pair to get a more specific answer (dependent, independent). P->Result = Unknown; // We only analyse loads and stores but no possible memory accesses by e.g. // free, call, or invoke instructions. if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) { DEBUG(errs() << "--> [?] no load/store\n"); return; } Value *aptr = GetPointerOperand(P->A); Value *bptr = GetPointerOperand(P->B); const Value *aobj = aptr->getUnderlyingObject(); const Value *bobj = bptr->getUnderlyingObject(); AliasAnalysis::AliasResult alias = AA->alias( aobj, AA->getTypeStoreSize(aobj->getType()), bobj, AA->getTypeStoreSize(bobj->getType())); // We can not analyse objects if we do not know about their aliasing. if (alias == AliasAnalysis::MayAlias) { DEBUG(errs() << "---> [?] may alias\n"); return; } // If the objects noalias, they are distinct, accesses are independent. if (alias == AliasAnalysis::NoAlias) { DEBUG(errs() << "---> [I] no alias\n"); P->Result = Independent; return; } // TODO: the underlying objects MustAlias, test for dependence DEBUG(errs() << "---> [?] cannot analyse\n"); return; } bool LoopDependenceAnalysis::depends(Value *A, Value *B) { assert(isDependencePair(A, B) && "Values form no dependence pair!"); DependencePair *p; if (!findOrInsertDependencePair(A, B, p)) { // The pair is not cached, so analyse it. analysePair(p); } return p->Result != Independent; } //===----------------------------------------------------------------------===// // LoopDependenceAnalysis Implementation //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { this->L = L; AA = &getAnalysis(); SE = &getAnalysis(); return false; } void LoopDependenceAnalysis::releaseMemory() { Pairs.clear(); PairAllocator.Reset(); } void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } static void PrintLoopInfo(raw_ostream &OS, LoopDependenceAnalysis *LDA, const Loop *L) { if (!L->empty()) return; // ignore non-innermost loops SmallVector memrefs; GetMemRefInstrs(L, memrefs); OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; WriteAsOperand(OS, L->getHeader(), false); OS << "\n"; OS << " Load/store instructions: " << memrefs.size() << "\n"; for (SmallVector::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n"; OS << " Pairwise dependence results:\n"; for (SmallVector::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) for (SmallVector::const_iterator y = x + 1; y != end; ++y) if (LDA->isDependencePair(*x, *y)) OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") << "\n"; } void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { // TODO: doc why const_cast is safe PrintLoopInfo(OS, const_cast(this), this->L); } void LoopDependenceAnalysis::print(std::ostream &OS, const Module *M) const { raw_os_ostream os(OS); print(os, M); }