//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// // // This file defines the very important Value class. This is subclassed by a // bunch of other important classes, like Def, Method, Module, Type, etc... // //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H #include #include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" class User; class Type; class ConstPoolVal; class MethodArgument; class Instruction; class BasicBlock; class Method; class Module; class SymbolTable; template class ValueHolder; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// class Value : public Annotable, // Values are annotable public AbstractTypeUser { // Values use potentially abstract types public: enum ValueTy { TypeVal, // This is an instance of Type ConstantVal, // This is an instance of ConstPoolVal MethodArgumentVal, // This is an instance of MethodArgument InstructionVal, // This is an instance of Instruction BasicBlockVal, // This is an instance of BasicBlock MethodVal, // This is an instance of Method ModuleVal, // This is an instance of Module }; private: list Uses; string Name; PATypeHandle Ty; ValueTy VTy; Value(const Value &); // Do not implement protected: inline void setType(const Type *ty) { Ty = ty; } public: Value(const Type *Ty, ValueTy vty, const string &name = ""); virtual ~Value(); inline const Type *getType() const { return Ty; } // All values can potentially be named... inline bool hasName() const { return Name != ""; } inline const string &getName() const { return Name; } virtual void setName(const string &name, SymbolTable * = 0) { Name = name; } // Methods for determining the subtype of this Value. The getValueType() // method returns the type of the value directly. The cast*() methods are // equilivent to using dynamic_cast<>... if the cast is successful, this is // returned, otherwise you get a null pointer, allowing expressions like this: // // if (Instruction *I = Val->castInstruction()) { ... } // // This section also defines a family of isType, isConstant, isMethodArgument, // etc functions... // // The family of functions Val->castAsserting() is used in the same // way as the Val->cast() instructions, but they assert the expected // type instead of checking it at runtime. // inline ValueTy getValueType() const { return VTy; } // Use a macro to define the functions, otherwise these definitions are just // really long and ugly. #define CAST_FN(NAME, CLASS) \ inline bool is##NAME() const { return VTy == NAME##Val; } \ inline const CLASS *cast##NAME() const { /*const version */ \ return is##NAME() ? (const CLASS*)this : 0; \ } \ inline CLASS *cast##NAME() { /* nonconst version */ \ return is##NAME() ? (CLASS*)this : 0; \ } \ inline const CLASS *cast##NAME##Asserting() const { /*const version */ \ assert(is##NAME() && "Expected Value Type: " #NAME); \ return (const CLASS*)this; \ } \ inline CLASS *cast##NAME##Asserting() { /* nonconst version */ \ assert(is##NAME() && "Expected Value Type: " #NAME); \ return (CLASS*)this; \ } \ CAST_FN(Constant , ConstPoolVal ) CAST_FN(MethodArgument, MethodArgument) CAST_FN(Instruction , Instruction ) CAST_FN(BasicBlock , BasicBlock ) CAST_FN(Method , Method ) CAST_FN(Module , Module ) #undef CAST_FN // Type value is special, because there is no nonconst version of functions! inline bool isType() const { return VTy == TypeVal; } inline const Type *castType() const { return (VTy == TypeVal) ? (const Type*)this : 0; } inline const Type *castTypeAsserting() const { assert(isType() && "Expected Value Type: Type"); return (const Type*)this; } // replaceAllUsesWith - Go through the uses list for this definition and make // each use point to "D" instead of "this". After this completes, 'this's // use list should be empty. // void replaceAllUsesWith(Value *D); // refineAbstractType - This function is implemented because we use // potentially abstract types, and these types may be resolved to more // concrete types after we are constructed. // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); //---------------------------------------------------------------------- // Methods for handling the list of uses of this DEF. // typedef list::iterator use_iterator; typedef list::const_iterator use_const_iterator; inline unsigned use_size() const { return Uses.size(); } inline bool use_empty() const { return Uses.empty(); } inline use_iterator use_begin() { return Uses.begin(); } inline use_const_iterator use_begin() const { return Uses.begin(); } inline use_iterator use_end() { return Uses.end(); } inline use_const_iterator use_end() const { return Uses.end(); } inline void use_push_back(User *I) { Uses.push_back(I); } User *use_remove(use_iterator &I); inline void addUse(User *I) { Uses.push_back(I); } void killUse(User *I); }; // UseTy and it's friendly typedefs (Use) are here to make keeping the "use" // list of a definition node up-to-date really easy. // template class UseTy { ValueSubclass *Val; User *U; public: inline UseTy(ValueSubclass *v, User *user) { Val = v; U = user; if (Val) Val->addUse(U); } inline ~UseTy() { if (Val) Val->killUse(U); } inline operator ValueSubclass *() const { return Val; } inline UseTy(const UseTy &user) { Val = 0; U = user.U; operator=(user.Val); } inline ValueSubclass *operator=(ValueSubclass *V) { if (Val) Val->killUse(U); Val = V; if (V) V->addUse(U); return V; } inline ValueSubclass *operator->() { return Val; } inline const ValueSubclass *operator->() const { return Val; } inline UseTy &operator=(const UseTy &user) { if (Val) Val->killUse(U); Val = user.Val; Val->addUse(U); return *this; } }; typedef UseTy Use; #endif