//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This program is a utility that works like binutils "objdump", that is, it // dumps out a plethora of information about an object file depending on the // flags. // // The flags and output of this program should be near identical to those of // binutils objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/FaultMaps.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/Symbolize/Symbolize.h" #include "llvm/Demangle/Demangle.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/Archive.h" #include "llvm/Object/COFF.h" #include "llvm/Object/COFFImportFile.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/MachO.h" #include "llvm/Object/MachOUniversal.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/Host.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; using namespace object; cl::opt AdjustVMA( "adjust-vma", cl::desc("Increase the displayed address by the specified offset"), cl::value_desc("offset"), cl::init(0)); cl::opt llvm::AllHeaders("all-headers", cl::desc("Display all available header information")); static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), cl::NotHidden, cl::Grouping, cl::aliasopt(AllHeaders)); static cl::list InputFilenames(cl::Positional, cl::desc(""),cl::ZeroOrMore); cl::opt llvm::Disassemble("disassemble", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"), cl::NotHidden, cl::Grouping, cl::aliasopt(Disassemble)); cl::opt llvm::DisassembleAll("disassemble-all", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), cl::NotHidden, cl::Grouping, cl::aliasopt(DisassembleAll)); cl::opt llvm::Demangle("demangle", cl::desc("Demangle symbols names"), cl::init(false)); static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), cl::NotHidden, cl::Grouping, cl::aliasopt(llvm::Demangle)); static cl::list DisassembleFunctions("disassemble-functions", cl::CommaSeparated, cl::desc("List of functions to disassemble")); static StringSet<> DisasmFuncsSet; cl::opt llvm::Relocations("reloc", cl::desc("Display the relocation entries in the file")); static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), cl::NotHidden, cl::Grouping, cl::aliasopt(llvm::Relocations)); cl::opt llvm::DynamicRelocations("dynamic-reloc", cl::desc("Display the dynamic relocation entries in the file")); static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"), cl::NotHidden, cl::Grouping, cl::aliasopt(DynamicRelocations)); cl::opt llvm::SectionContents("full-contents", cl::desc("Display the content of each section")); static cl::alias SectionContentsShort("s", cl::desc("Alias for --full-contents"), cl::NotHidden, cl::Grouping, cl::aliasopt(SectionContents)); cl::opt llvm::SymbolTable("syms", cl::desc("Display the symbol table")); static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), cl::NotHidden, cl::Grouping, cl::aliasopt(llvm::SymbolTable)); cl::opt llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); cl::opt llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); cl::opt llvm::Bind("bind", cl::desc("Display mach-o binding info")); cl::opt llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); cl::opt llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); cl::opt llvm::RawClangAST("raw-clang-ast", cl::desc("Dump the raw binary contents of the clang AST section")); static cl::opt MachOOpt("macho", cl::desc("Use MachO specific object file parser")); static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, cl::Grouping, cl::aliasopt(MachOOpt)); cl::opt llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " "see -version for available targets")); cl::opt llvm::MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::opt llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " "see -version for available targets")); cl::opt llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " "headers for each section.")); static cl::alias SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), cl::NotHidden, cl::aliasopt(SectionHeaders)); static cl::alias SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), cl::NotHidden, cl::Grouping, cl::aliasopt(SectionHeaders)); static cl::opt ShowLMA("show-lma", cl::desc("Display LMA column when dumping ELF section headers")); cl::list llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " "With -macho dump segment,section")); cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"), cl::NotHidden, cl::aliasopt(llvm::FilterSections)); cl::list llvm::MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes"), cl::value_desc("a1,+a2,-a3,...")); cl::opt llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " "instructions, do not print " "the instruction bytes.")); cl::opt llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address")); cl::opt llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), cl::NotHidden, cl::Grouping, cl::aliasopt(UnwindInfo)); cl::opt llvm::PrivateHeaders("private-headers", cl::desc("Display format specific file headers")); cl::opt llvm::FirstPrivateHeader("private-header", cl::desc("Display only the first format specific file " "header")); static cl::alias PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), cl::NotHidden, cl::Grouping, cl::aliasopt(PrivateHeaders)); cl::opt llvm::FileHeaders( "file-headers", cl::desc("Display the contents of the overall file header")); static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), cl::NotHidden, cl::Grouping, cl::aliasopt(FileHeaders)); cl::opt llvm::ArchiveHeaders("archive-headers", cl::desc("Display archive header information")); cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"), cl::NotHidden, cl::Grouping, cl::aliasopt(ArchiveHeaders)); cl::opt llvm::PrintImmHex("print-imm-hex", cl::desc("Use hex format for immediate values")); cl::opt PrintFaultMaps("fault-map-section", cl::desc("Display contents of faultmap section")); cl::opt llvm::DwarfDumpType( "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame"))); cl::opt PrintSource( "source", cl::desc( "Display source inlined with disassembly. Implies disassemble object")); cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden, cl::Grouping, cl::aliasopt(PrintSource)); cl::opt PrintLines("line-numbers", cl::desc("Display source line numbers with " "disassembly. Implies disassemble object")); cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"), cl::NotHidden, cl::Grouping, cl::aliasopt(PrintLines)); cl::opt StartAddress("start-address", cl::desc("Disassemble beginning at address"), cl::value_desc("address"), cl::init(0)); cl::opt StopAddress("stop-address", cl::desc("Stop disassembly at address"), cl::value_desc("address"), cl::init(UINT64_MAX)); cl::opt DisassembleZeroes( "disassemble-zeroes", cl::desc("Do not skip blocks of zeroes when disassembling")); cl::alias DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), cl::NotHidden, cl::Grouping, cl::aliasopt(DisassembleZeroes)); static cl::list DisassemblerOptions("disassembler-options", cl::desc("Pass target specific disassembler options"), cl::value_desc("options"), cl::CommaSeparated); static cl::alias DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), cl::NotHidden, cl::Prefix, cl::CommaSeparated, cl::aliasopt(DisassemblerOptions)); static StringRef ToolName; typedef std::vector> SectionSymbolsTy; SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) { return SectionFilter( [](llvm::object::SectionRef const &S) { if (FilterSections.empty()) return true; llvm::StringRef String; std::error_code error = S.getName(String); if (error) return false; return is_contained(FilterSections, String); }, O); } void llvm::error(std::error_code EC) { if (!EC) return; WithColor::error(errs(), ToolName) << "reading file: " << EC.message() << ".\n"; errs().flush(); exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { WithColor::error(errs(), ToolName) << Message << ".\n"; errs().flush(); exit(1); } void llvm::warn(StringRef Message) { WithColor::warning(errs(), ToolName) << Message << ".\n"; errs().flush(); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, Twine Message) { WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << ".\n"; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, std::error_code EC) { assert(EC); WithColor::error(errs(), ToolName) << "'" << File << "': " << EC.message() << ".\n"; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, llvm::Error E) { assert(E); std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS); OS.flush(); WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, StringRef FileName, llvm::Error E, StringRef ArchitectureName) { assert(E); WithColor::error(errs(), ToolName); if (ArchiveName != "") errs() << ArchiveName << "(" << FileName << ")"; else errs() << "'" << FileName << "'"; if (!ArchitectureName.empty()) errs() << " (for architecture " << ArchitectureName << ")"; std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS); OS.flush(); errs() << ": " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, const object::Archive::Child &C, llvm::Error E, StringRef ArchitectureName) { Expected NameOrErr = C.getName(); // TODO: if we have a error getting the name then it would be nice to print // the index of which archive member this is and or its offset in the // archive instead of "???" as the name. if (!NameOrErr) { consumeError(NameOrErr.takeError()); llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); } else llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), ArchitectureName); } static const Target *getTarget(const ObjectFile *Obj = nullptr) { // Figure out the target triple. llvm::Triple TheTriple("unknown-unknown-unknown"); if (TripleName.empty()) { if (Obj) TheTriple = Obj->makeTriple(); } else { TheTriple.setTriple(Triple::normalize(TripleName)); // Use the triple, but also try to combine with ARM build attributes. if (Obj) { auto Arch = Obj->getArch(); if (Arch == Triple::arm || Arch == Triple::armeb) Obj->setARMSubArch(TheTriple); } } // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, Error); if (!TheTarget) { if (Obj) report_error(Obj->getFileName(), "can't find target: " + Error); else error("can't find target: " + Error); } // Update the triple name and return the found target. TripleName = TheTriple.getTriple(); return TheTarget; } bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) { return A.getOffset() < B.getOffset(); } static std::error_code getRelocationValueString(const RelocationRef &Rel, SmallVectorImpl &Result) { const ObjectFile *Obj = Rel.getObject(); if (auto *ELF = dyn_cast(Obj)) return getELFRelocationValueString(ELF, Rel, Result); if (auto *COFF = dyn_cast(Obj)) return getCOFFRelocationValueString(COFF, Rel, Result); if (auto *Wasm = dyn_cast(Obj)) return getWasmRelocationValueString(Wasm, Rel, Result); if (auto *MachO = dyn_cast(Obj)) return getMachORelocationValueString(MachO, Rel, Result); llvm_unreachable("unknown object file format"); } /// Indicates whether this relocation should hidden when listing /// relocations, usually because it is the trailing part of a multipart /// relocation that will be printed as part of the leading relocation. static bool getHidden(RelocationRef RelRef) { auto *MachO = dyn_cast(RelRef.getObject()); if (!MachO) return false; unsigned Arch = MachO->getArch(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); uint64_t Type = MachO->getRelocationType(Rel); // On arches that use the generic relocations, GENERIC_RELOC_PAIR // is always hidden. if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) return Type == MachO::GENERIC_RELOC_PAIR; if (Arch == Triple::x86_64) { // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows // an X86_64_RELOC_SUBTRACTOR. if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { DataRefImpl RelPrev = Rel; RelPrev.d.a--; uint64_t PrevType = MachO->getRelocationType(RelPrev); if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) return true; } } return false; } namespace { class SourcePrinter { protected: DILineInfo OldLineInfo; const ObjectFile *Obj = nullptr; std::unique_ptr Symbolizer; // File name to file contents of source std::unordered_map> SourceCache; // Mark the line endings of the cached source std::unordered_map> LineCache; private: bool cacheSource(const DILineInfo& LineInfoFile); public: SourcePrinter() = default; SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) { symbolize::LLVMSymbolizer::Options SymbolizerOpts( DILineInfoSpecifier::FunctionNameKind::None, true, false, false, DefaultArch); Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); } virtual ~SourcePrinter() = default; virtual void printSourceLine(raw_ostream &OS, uint64_t Address, StringRef Delimiter = "; "); }; bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { std::unique_ptr Buffer; if (LineInfo.Source) { Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); } else { auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); if (!BufferOrError) return false; Buffer = std::move(*BufferOrError); } // Chomp the file to get lines size_t BufferSize = Buffer->getBufferSize(); const char *BufferStart = Buffer->getBufferStart(); for (const char *Start = BufferStart, *End = BufferStart; End < BufferStart + BufferSize; End++) if (*End == '\n' || End == BufferStart + BufferSize - 1 || (*End == '\r' && *(End + 1) == '\n')) { LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start)); if (*End == '\r') End++; Start = End + 1; } SourceCache[LineInfo.FileName] = std::move(Buffer); return true; } void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address, StringRef Delimiter) { if (!Symbolizer) return; DILineInfo LineInfo = DILineInfo(); auto ExpectecLineInfo = Symbolizer->symbolizeCode(Obj->getFileName(), Address); if (!ExpectecLineInfo) consumeError(ExpectecLineInfo.takeError()); else LineInfo = *ExpectecLineInfo; if ((LineInfo.FileName == "") || OldLineInfo.Line == LineInfo.Line || LineInfo.Line == 0) return; if (PrintLines) OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; if (PrintSource) { if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) if (!cacheSource(LineInfo)) return; auto FileBuffer = SourceCache.find(LineInfo.FileName); if (FileBuffer != SourceCache.end()) { auto LineBuffer = LineCache.find(LineInfo.FileName); if (LineBuffer != LineCache.end()) { if (LineInfo.Line > LineBuffer->second.size()) return; // Vector begins at 0, line numbers are non-zero OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim() << "\n"; } } } OldLineInfo = LineInfo; } static bool isArmElf(const ObjectFile *Obj) { return (Obj->isELF() && (Obj->getArch() == Triple::aarch64 || Obj->getArch() == Triple::aarch64_be || Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb || Obj->getArch() == Triple::thumb || Obj->getArch() == Triple::thumbeb)); } static void printRelocation(const RelocationRef &Rel, uint64_t Address, uint8_t AddrSize) { StringRef Fmt = AddrSize > 4 ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; SmallString<16> Name; SmallString<32> Val; Rel.getTypeName(Name); error(getRelocationValueString(Rel, Val)); outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n"; } class PrettyPrinter { public: virtual ~PrettyPrinter() = default; virtual void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, std::vector *Rels = nullptr) { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); if (!NoLeadingAddr) OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes, OS); } if (MI) IP.printInst(MI, OS, "", STI); else OS << " "; } }; PrettyPrinter PrettyPrinterInst; class HexagonPrettyPrinter : public PrettyPrinter { public: void printLead(ArrayRef Bytes, uint64_t Address, raw_ostream &OS) { uint32_t opcode = (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; if (!NoLeadingAddr) OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes.slice(0, 4), OS); OS << format("%08" PRIx32, opcode); } } void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, std::vector *Rels) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address, ""); if (!MI) { printLead(Bytes, Address, OS); OS << " "; return; } std::string Buffer; { raw_string_ostream TempStream(Buffer); IP.printInst(MI, TempStream, "", STI); } StringRef Contents(Buffer); // Split off bundle attributes auto PacketBundle = Contents.rsplit('\n'); // Split off first instruction from the rest auto HeadTail = PacketBundle.first.split('\n'); auto Preamble = " { "; auto Separator = ""; // Hexagon's packets require relocations to be inline rather than // clustered at the end of the packet. std::vector::const_iterator RelCur = Rels->begin(); std::vector::const_iterator RelEnd = Rels->end(); auto PrintReloc = [&]() -> void { while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) { if (RelCur->getOffset() == Address) { printRelocation(*RelCur, Address, 4); return; } ++RelCur; } }; while (!HeadTail.first.empty()) { OS << Separator; Separator = "\n"; if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address, ""); printLead(Bytes, Address, OS); OS << Preamble; Preamble = " "; StringRef Inst; auto Duplex = HeadTail.first.split('\v'); if (!Duplex.second.empty()) { OS << Duplex.first; OS << "; "; Inst = Duplex.second; } else Inst = HeadTail.first; OS << Inst; HeadTail = HeadTail.second.split('\n'); if (HeadTail.first.empty()) OS << " } " << PacketBundle.second; PrintReloc(); Bytes = Bytes.slice(4); Address += 4; } } }; HexagonPrettyPrinter HexagonPrettyPrinterInst; class AMDGCNPrettyPrinter : public PrettyPrinter { public: void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, std::vector *Rels) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); typedef support::ulittle32_t U32; if (MI) { SmallString<40> InstStr; raw_svector_ostream IS(InstStr); IP.printInst(MI, IS, "", STI); OS << left_justify(IS.str(), 60); } else { // an unrecognized encoding - this is probably data so represent it // using the .long directive, or .byte directive if fewer than 4 bytes // remaining if (Bytes.size() >= 4) { OS << format("\t.long 0x%08" PRIx32 " ", static_cast(*reinterpret_cast(Bytes.data()))); OS.indent(42); } else { OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); for (unsigned int i = 1; i < Bytes.size(); i++) OS << format(", 0x%02" PRIx8, Bytes[i]); OS.indent(55 - (6 * Bytes.size())); } } OS << format("// %012" PRIX64 ": ", Address); if (Bytes.size() >=4) { for (auto D : makeArrayRef(reinterpret_cast(Bytes.data()), Bytes.size() / sizeof(U32))) // D should be explicitly casted to uint32_t here as it is passed // by format to snprintf as vararg. OS << format("%08" PRIX32 " ", static_cast(D)); } else { for (unsigned int i = 0; i < Bytes.size(); i++) OS << format("%02" PRIX8 " ", Bytes[i]); } if (!Annot.empty()) OS << "// " << Annot; } }; AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; class BPFPrettyPrinter : public PrettyPrinter { public: void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, std::vector *Rels) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); if (!NoLeadingAddr) OS << format("%8" PRId64 ":", Address / 8); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes, OS); } if (MI) IP.printInst(MI, OS, "", STI); else OS << " "; } }; BPFPrettyPrinter BPFPrettyPrinterInst; PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { switch(Triple.getArch()) { default: return PrettyPrinterInst; case Triple::hexagon: return HexagonPrettyPrinterInst; case Triple::amdgcn: return AMDGCNPrettyPrinterInst; case Triple::bpfel: case Triple::bpfeb: return BPFPrettyPrinterInst; } } } static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { assert(Obj->isELF()); if (auto *Elf32LEObj = dyn_cast(Obj)) return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf64LEObj = dyn_cast(Obj)) return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf32BEObj = dyn_cast(Obj)) return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf64BEObj = cast(Obj)) return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); llvm_unreachable("Unsupported binary format"); } template static void addDynamicElfSymbols(const ELFObjectFile *Obj, std::map &AllSymbols) { for (auto Symbol : Obj->getDynamicSymbolIterators()) { uint8_t SymbolType = Symbol.getELFType(); if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0) continue; Expected AddressOrErr = Symbol.getAddress(); if (!AddressOrErr) report_error(Obj->getFileName(), AddressOrErr.takeError()); Expected Name = Symbol.getName(); if (!Name) report_error(Obj->getFileName(), Name.takeError()); if (Name->empty()) continue; Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(Obj->getFileName(), SectionOrErr.takeError()); section_iterator SecI = *SectionOrErr; if (SecI == Obj->section_end()) continue; AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType); } } static void addDynamicElfSymbols(const ObjectFile *Obj, std::map &AllSymbols) { assert(Obj->isELF()); if (auto *Elf32LEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf32LEObj, AllSymbols); else if (auto *Elf64LEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf64LEObj, AllSymbols); else if (auto *Elf32BEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf32BEObj, AllSymbols); else if (auto *Elf64BEObj = cast(Obj)) addDynamicElfSymbols(Elf64BEObj, AllSymbols); else llvm_unreachable("Unsupported binary format"); } static void addPltEntries(const ObjectFile *Obj, std::map &AllSymbols, StringSaver &Saver) { Optional Plt = None; for (const SectionRef &Section : Obj->sections()) { StringRef Name; if (Section.getName(Name)) continue; if (Name == ".plt") Plt = Section; } if (!Plt) return; if (auto *ElfObj = dyn_cast(Obj)) { for (auto PltEntry : ElfObj->getPltAddresses()) { SymbolRef Symbol(PltEntry.first, ElfObj); uint8_t SymbolType = getElfSymbolType(Obj, Symbol); Expected NameOrErr = Symbol.getName(); if (!NameOrErr) report_error(Obj->getFileName(), NameOrErr.takeError()); if (NameOrErr->empty()) continue; StringRef Name = Saver.save((*NameOrErr + "@plt").str()); AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType); } } } // Normally the disassembly output will skip blocks of zeroes. This function // returns the number of zero bytes that can be skipped when dumping the // disassembly of the instructions in Buf. static size_t countSkippableZeroBytes(ArrayRef Buf) { // Find the number of leading zeroes. size_t N = 0; while (N < Buf.size() && !Buf[N]) ++N; // We may want to skip blocks of zero bytes, but unless we see // at least 8 of them in a row. if (N < 8) return 0; // We skip zeroes in multiples of 4 because do not want to truncate an // instruction if it starts with a zero byte. return N & ~0x3; } // Returns a map from sections to their relocations. static std::map> getRelocsMap(llvm::object::ObjectFile const &Obj) { std::map> Ret; for (const SectionRef &Section : ToolSectionFilter(Obj)) { section_iterator RelSec = Section.getRelocatedSection(); if (RelSec == Obj.section_end()) continue; std::vector &V = Ret[*RelSec]; for (const RelocationRef &R : Section.relocations()) V.push_back(R); // Sort relocations by address. llvm::sort(V, isRelocAddressLess); } return Ret; } // Used for --adjust-vma to check if address should be adjusted by the // specified value for a given section. // For ELF we do not adjust non-allocatable sections like debug ones, // because they are not loadable. // TODO: implement for other file formats. static bool shouldAdjustVA(const SectionRef &Section) { const ObjectFile *Obj = Section.getObject(); if (isa(Obj)) return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; return false; } static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, MCContext &Ctx, MCDisassembler *DisAsm, const MCInstrAnalysis *MIA, MCInstPrinter *IP, const MCSubtargetInfo *STI, PrettyPrinter &PIP, SourcePrinter &SP, bool InlineRelocs) { std::map> RelocMap; if (InlineRelocs) RelocMap = getRelocsMap(*Obj); // Create a mapping from virtual address to symbol name. This is used to // pretty print the symbols while disassembling. std::map AllSymbols; SectionSymbolsTy AbsoluteSymbols; for (const SymbolRef &Symbol : Obj->symbols()) { Expected AddressOrErr = Symbol.getAddress(); if (!AddressOrErr) report_error(Obj->getFileName(), AddressOrErr.takeError()); uint64_t Address = *AddressOrErr; Expected Name = Symbol.getName(); if (!Name) report_error(Obj->getFileName(), Name.takeError()); if (Name->empty()) continue; Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(Obj->getFileName(), SectionOrErr.takeError()); uint8_t SymbolType = ELF::STT_NOTYPE; if (Obj->isELF()) { SymbolType = getElfSymbolType(Obj, Symbol); if (SymbolType == ELF::STT_SECTION) continue; } section_iterator SecI = *SectionOrErr; if (SecI != Obj->section_end()) AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); else AbsoluteSymbols.emplace_back(Address, *Name, SymbolType); } if (AllSymbols.empty() && Obj->isELF()) addDynamicElfSymbols(Obj, AllSymbols); BumpPtrAllocator A; StringSaver Saver(A); addPltEntries(Obj, AllSymbols, Saver); // Create a mapping from virtual address to section. std::vector> SectionAddresses; for (SectionRef Sec : Obj->sections()) SectionAddresses.emplace_back(Sec.getAddress(), Sec); array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); // Linked executables (.exe and .dll files) typically don't include a real // symbol table but they might contain an export table. if (const auto *COFFObj = dyn_cast(Obj)) { for (const auto &ExportEntry : COFFObj->export_directories()) { StringRef Name; error(ExportEntry.getSymbolName(Name)); if (Name.empty()) continue; uint32_t RVA; error(ExportEntry.getExportRVA(RVA)); uint64_t VA = COFFObj->getImageBase() + RVA; auto Sec = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), VA, [](uint64_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); if (Sec != SectionAddresses.begin()) --Sec; else Sec = SectionAddresses.end(); if (Sec != SectionAddresses.end()) AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); else AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); } } // Sort all the symbols, this allows us to use a simple binary search to find // a symbol near an address. for (std::pair &SecSyms : AllSymbols) array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) continue; uint64_t SectionAddr = Section.getAddress(); uint64_t SectSize = Section.getSize(); if (!SectSize) continue; // Get the list of all the symbols in this section. SectionSymbolsTy &Symbols = AllSymbols[Section]; std::vector DataMappingSymsAddr; std::vector TextMappingSymsAddr; if (isArmElf(Obj)) { for (const auto &Symb : Symbols) { uint64_t Address = std::get<0>(Symb); StringRef Name = std::get<1>(Symb); if (Name.startswith("$d")) DataMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$x")) TextMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$a")) TextMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$t")) TextMappingSymsAddr.push_back(Address - SectionAddr); } } llvm::sort(DataMappingSymsAddr); llvm::sort(TextMappingSymsAddr); if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { // AMDGPU disassembler uses symbolizer for printing labels std::unique_ptr RelInfo( TheTarget->createMCRelocationInfo(TripleName, Ctx)); if (RelInfo) { std::unique_ptr Symbolizer( TheTarget->createMCSymbolizer( TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); DisAsm->setSymbolizer(std::move(Symbolizer)); } } StringRef SegmentName = ""; if (const MachOObjectFile *MachO = dyn_cast(Obj)) { DataRefImpl DR = Section.getRawDataRefImpl(); SegmentName = MachO->getSectionFinalSegmentName(DR); } StringRef SectionName; error(Section.getName(SectionName)); // If the section has no symbol at the start, just insert a dummy one. if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { Symbols.insert( Symbols.begin(), std::make_tuple(SectionAddr, SectionName, Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); } SmallString<40> Comments; raw_svector_ostream CommentStream(Comments); StringRef BytesStr; error(Section.getContents(BytesStr)); ArrayRef Bytes(reinterpret_cast(BytesStr.data()), BytesStr.size()); uint64_t VMAAdjustment = 0; if (shouldAdjustVA(Section)) VMAAdjustment = AdjustVMA; uint64_t Size; uint64_t Index; bool PrintedSection = false; std::vector Rels = RelocMap[Section]; std::vector::const_iterator RelCur = Rels.begin(); std::vector::const_iterator RelEnd = Rels.end(); // Disassemble symbol by symbol. for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr; // The end is either the section end or the beginning of the next // symbol. uint64_t End = (SI == SE - 1) ? SectSize : std::get<0>(Symbols[SI + 1]) - SectionAddr; // Don't try to disassemble beyond the end of section contents. if (End > SectSize) End = SectSize; // If this symbol has the same address as the next symbol, then skip it. if (Start >= End) continue; // Check if we need to skip symbol // Skip if the symbol's data is not between StartAddress and StopAddress if (End + SectionAddr < StartAddress || Start + SectionAddr > StopAddress) { continue; } /// Skip if user requested specific symbols and this is not in the list if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(std::get<1>(Symbols[SI]))) continue; if (!PrintedSection) { PrintedSection = true; outs() << "Disassembly of section "; if (!SegmentName.empty()) outs() << SegmentName << ","; outs() << SectionName << ':'; } // Stop disassembly at the stop address specified if (End + SectionAddr > StopAddress) End = StopAddress - SectionAddr; if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) { // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) Start += 256; } if (SI == SE - 1 || std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { // cut trailing zeroes at the end of kernel // cut up to 256 bytes const uint64_t EndAlign = 256; const auto Limit = End - (std::min)(EndAlign, End - Start); while (End > Limit && *reinterpret_cast(&Bytes[End - 4]) == 0) End -= 4; } } outs() << '\n'; if (!NoLeadingAddr) outs() << format("%016" PRIx64 " ", SectionAddr + Start + VMAAdjustment); StringRef SymbolName = std::get<1>(Symbols[SI]); if (Demangle) outs() << demangle(SymbolName) << ":\n"; else outs() << SymbolName << ":\n"; // Don't print raw contents of a virtual section. A virtual section // doesn't have any contents in the file. if (Section.isVirtual()) { outs() << "...\n"; continue; } #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif // Some targets (like WebAssembly) have a special prelude at the start // of each symbol. DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, DebugOut, CommentStream); Start += Size; for (Index = Start; Index < End; Index += Size) { MCInst Inst; if (Index + SectionAddr < StartAddress || Index + SectionAddr > StopAddress) { // skip byte by byte till StartAddress is reached Size = 1; continue; } // AArch64 ELF binaries can interleave data and text in the // same section. We rely on the markers introduced to // understand what we need to dump. If the data marker is within a // function, it is denoted as a word/short etc if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT && !DisassembleAll) { uint64_t Stride = 0; auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end(), Index); if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { // Switch to data. while (Index < End) { outs() << format("%8" PRIx64 ":", SectionAddr + Index); outs() << "\t"; if (Index + 4 <= End) { Stride = 4; dumpBytes(Bytes.slice(Index, 4), outs()); outs() << "\t.word\t"; uint32_t Data = 0; if (Obj->isLittleEndian()) { const auto Word = reinterpret_cast( Bytes.data() + Index); Data = *Word; } else { const auto Word = reinterpret_cast( Bytes.data() + Index); Data = *Word; } outs() << "0x" << format("%08" PRIx32, Data); } else if (Index + 2 <= End) { Stride = 2; dumpBytes(Bytes.slice(Index, 2), outs()); outs() << "\t\t.short\t"; uint16_t Data = 0; if (Obj->isLittleEndian()) { const auto Short = reinterpret_cast( Bytes.data() + Index); Data = *Short; } else { const auto Short = reinterpret_cast(Bytes.data() + Index); Data = *Short; } outs() << "0x" << format("%04" PRIx16, Data); } else { Stride = 1; dumpBytes(Bytes.slice(Index, 1), outs()); outs() << "\t\t.byte\t"; outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]); } Index += Stride; outs() << "\n"; auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end(), Index); if (TAI != TextMappingSymsAddr.end() && *TAI == Index) break; } } } // If there is a data symbol inside an ELF text section and we are only // disassembling text (applicable all architectures), // we are in a situation where we must print the data and not // disassemble it. if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT && !DisassembleAll && Section.isText()) { // print out data up to 8 bytes at a time in hex and ascii uint8_t AsciiData[9] = {'\0'}; uint8_t Byte; int NumBytes = 0; for (Index = Start; Index < End; Index += 1) { if (((SectionAddr + Index) < StartAddress) || ((SectionAddr + Index) > StopAddress)) continue; if (NumBytes == 0) { outs() << format("%8" PRIx64 ":", SectionAddr + Index); outs() << "\t"; } Byte = Bytes.slice(Index)[0]; outs() << format(" %02x", Byte); AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; uint8_t IndentOffset = 0; NumBytes++; if (Index == End - 1 || NumBytes > 8) { // Indent the space for less than 8 bytes data. // 2 spaces for byte and one for space between bytes IndentOffset = 3 * (8 - NumBytes); for (int Excess = NumBytes; Excess < 8; Excess++) AsciiData[Excess] = '\0'; NumBytes = 8; } if (NumBytes == 8) { AsciiData[8] = '\0'; outs() << std::string(IndentOffset, ' ') << " "; outs() << reinterpret_cast(AsciiData); outs() << '\n'; NumBytes = 0; } } } if (Index >= End) break; // When -z or --disassemble-zeroes are given we always dissasemble them. // Otherwise we might want to skip zero bytes we see. if (!DisassembleZeroes) { uint64_t MaxOffset = End - Index; // For -reloc: print zero blocks patched by relocations, so that // relocations can be shown in the dump. if (RelCur != RelEnd) MaxOffset = RelCur->getOffset() - Index; if (size_t N = countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { outs() << "\t\t..." << '\n'; Index += N; if (Index >= End) break; } } // Disassemble a real instruction or a data when disassemble all is // provided bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, CommentStream); if (Size == 0) Size = 1; PIP.printInst( *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), SectionAddr + Index + VMAAdjustment, outs(), "", *STI, &SP, &Rels); outs() << CommentStream.str(); Comments.clear(); // Try to resolve the target of a call, tail call, etc. to a specific // symbol. if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || MIA->isConditionalBranch(Inst))) { uint64_t Target; if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { // In a relocatable object, the target's section must reside in // the same section as the call instruction or it is accessed // through a relocation. // // In a non-relocatable object, the target may be in any section. // // N.B. We don't walk the relocations in the relocatable case yet. auto *TargetSectionSymbols = &Symbols; if (!Obj->isRelocatableObject()) { auto SectionAddress = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), Target, [](uint64_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); if (SectionAddress != SectionAddresses.begin()) { --SectionAddress; TargetSectionSymbols = &AllSymbols[SectionAddress->second]; } else { TargetSectionSymbols = &AbsoluteSymbols; } } // Find the first symbol in the section whose offset is less than // or equal to the target. If there isn't a section that contains // the target, find the nearest preceding absolute symbol. auto TargetSym = std::upper_bound( TargetSectionSymbols->begin(), TargetSectionSymbols->end(), Target, [](uint64_t LHS, const std::tuple &RHS) { return LHS < std::get<0>(RHS); }); if (TargetSym == TargetSectionSymbols->begin()) { TargetSectionSymbols = &AbsoluteSymbols; TargetSym = std::upper_bound( AbsoluteSymbols.begin(), AbsoluteSymbols.end(), Target, [](uint64_t LHS, const std::tuple &RHS) { return LHS < std::get<0>(RHS); }); } if (TargetSym != TargetSectionSymbols->begin()) { --TargetSym; uint64_t TargetAddress = std::get<0>(*TargetSym); StringRef TargetName = std::get<1>(*TargetSym); outs() << " <" << TargetName; uint64_t Disp = Target - TargetAddress; if (Disp) outs() << "+0x" << Twine::utohexstr(Disp); outs() << '>'; } } } outs() << "\n"; // Hexagon does this in pretty printer if (Obj->getArch() != Triple::hexagon) { // Print relocation for instruction. while (RelCur != RelEnd) { uint64_t Offset = RelCur->getOffset(); // If this relocation is hidden, skip it. if (getHidden(*RelCur) || ((SectionAddr + Offset) < StartAddress)) { ++RelCur; continue; } // Stop when RelCur's offset is past the current instruction. if (Offset >= Index + Size) break; // When --adjust-vma is used, update the address printed. if (RelCur->getSymbol() != Obj->symbol_end()) { Expected SymSI = RelCur->getSymbol()->getSection(); if (SymSI && *SymSI != Obj->section_end() && (shouldAdjustVA(**SymSI))) Offset += AdjustVMA; } printRelocation(*RelCur, SectionAddr + Offset, Obj->getBytesInAddress()); ++RelCur; } } } } } } static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { if (StartAddress > StopAddress) error("Start address should be less than stop address"); const Target *TheTarget = getTarget(Obj); // Package up features to be passed to target/subtarget SubtargetFeatures Features = Obj->getFeatures(); if (!MAttrs.empty()) for (unsigned I = 0; I != MAttrs.size(); ++I) Features.AddFeature(MAttrs[I]); std::unique_ptr MRI( TheTarget->createMCRegInfo(TripleName)); if (!MRI) report_error(Obj->getFileName(), "no register info for target " + TripleName); // Set up disassembler. std::unique_ptr AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!AsmInfo) report_error(Obj->getFileName(), "no assembly info for target " + TripleName); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); if (!STI) report_error(Obj->getFileName(), "no subtarget info for target " + TripleName); std::unique_ptr MII(TheTarget->createMCInstrInfo()); if (!MII) report_error(Obj->getFileName(), "no instruction info for target " + TripleName); MCObjectFileInfo MOFI; MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); // FIXME: for now initialize MCObjectFileInfo with default values MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); std::unique_ptr DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); if (!DisAsm) report_error(Obj->getFileName(), "no disassembler for target " + TripleName); std::unique_ptr MIA( TheTarget->createMCInstrAnalysis(MII.get())); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr IP(TheTarget->createMCInstPrinter( Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); if (!IP) report_error(Obj->getFileName(), "no instruction printer for target " + TripleName); IP->setPrintImmHex(PrintImmHex); PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); SourcePrinter SP(Obj, TheTarget->getName()); for (StringRef Opt : DisassemblerOptions) if (!IP->applyTargetSpecificCLOption(Opt)) error("Unrecognized disassembler option: " + Opt); disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(), STI.get(), PIP, SP, InlineRelocs); } void llvm::printRelocations(const ObjectFile *Obj) { StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; // Regular objdump doesn't print relocations in non-relocatable object // files. if (!Obj->isRelocatableObject()) return; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (Section.relocation_begin() == Section.relocation_end()) continue; StringRef SecName; error(Section.getName(SecName)); outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; for (const RelocationRef &Reloc : Section.relocations()) { uint64_t Address = Reloc.getOffset(); SmallString<32> RelocName; SmallString<32> ValueStr; if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) continue; Reloc.getTypeName(RelocName); error(getRelocationValueString(Reloc, ValueStr)); outs() << format(Fmt.data(), Address) << " " << RelocName << " " << ValueStr << "\n"; } outs() << "\n"; } } void llvm::printDynamicRelocations(const ObjectFile *Obj) { // For the moment, this option is for ELF only if (!Obj->isELF()) return; const auto *Elf = dyn_cast(Obj); if (!Elf || Elf->getEType() != ELF::ET_DYN) { error("not a dynamic object"); return; } std::vector DynRelSec = Obj->dynamic_relocation_sections(); if (DynRelSec.empty()) return; outs() << "DYNAMIC RELOCATION RECORDS\n"; StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; for (const SectionRef &Section : DynRelSec) { if (Section.relocation_begin() == Section.relocation_end()) continue; for (const RelocationRef &Reloc : Section.relocations()) { uint64_t Address = Reloc.getOffset(); SmallString<32> RelocName; SmallString<32> ValueStr; Reloc.getTypeName(RelocName); error(getRelocationValueString(Reloc, ValueStr)); outs() << format(Fmt.data(), Address) << " " << RelocName << " " << ValueStr << "\n"; } } } // Returns true if we need to show LMA column when dumping section headers. We // show it only when the platform is ELF and either we have at least one section // whose VMA and LMA are different and/or when --show-lma flag is used. static bool shouldDisplayLMA(const ObjectFile *Obj) { if (!Obj->isELF()) return false; for (const SectionRef &S : ToolSectionFilter(*Obj)) if (S.getAddress() != getELFSectionLMA(S)) return true; return ShowLMA; } void llvm::printSectionHeaders(const ObjectFile *Obj) { bool HasLMAColumn = shouldDisplayLMA(Obj); if (HasLMAColumn) outs() << "Sections:\n" "Idx Name Size VMA LMA " "Type\n"; else outs() << "Sections:\n" "Idx Name Size VMA Type\n"; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; error(Section.getName(Name)); uint64_t VMA = Section.getAddress(); if (shouldAdjustVA(Section)) VMA += AdjustVMA; uint64_t Size = Section.getSize(); bool Text = Section.isText(); bool Data = Section.isData(); bool BSS = Section.isBSS(); std::string Type = (std::string(Text ? "TEXT " : "") + (Data ? "DATA " : "") + (BSS ? "BSS" : "")); if (HasLMAColumn) outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64 " %s\n", (unsigned)Section.getIndex(), Name.str().c_str(), Size, VMA, getELFSectionLMA(Section), Type.c_str()); else outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", (unsigned)Section.getIndex(), Name.str().c_str(), Size, VMA, Type.c_str()); } outs() << "\n"; } void llvm::printSectionContents(const ObjectFile *Obj) { std::error_code EC; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; StringRef Contents; error(Section.getName(Name)); uint64_t BaseAddr = Section.getAddress(); uint64_t Size = Section.getSize(); if (!Size) continue; outs() << "Contents of section " << Name << ":\n"; if (Section.isBSS()) { outs() << format("\n", BaseAddr, BaseAddr + Size); continue; } error(Section.getContents(Contents)); // Dump out the content as hex and printable ascii characters. for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); // Dump line of hex. for (std::size_t I = 0; I < 16; ++I) { if (I != 0 && I % 4 == 0) outs() << ' '; if (Addr + I < End) outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) << hexdigit(Contents[Addr + I] & 0xF, true); else outs() << " "; } // Print ascii. outs() << " "; for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { if (isPrint(static_cast(Contents[Addr + I]) & 0xFF)) outs() << Contents[Addr + I]; else outs() << "."; } outs() << "\n"; } } } void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName, StringRef ArchitectureName) { outs() << "SYMBOL TABLE:\n"; if (const COFFObjectFile *Coff = dyn_cast(O)) { printCOFFSymbolTable(Coff); return; } for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { // Skip printing the special zero symbol when dumping an ELF file. // This makes the output consistent with the GNU objdump. if (I == O->symbol_begin() && isa(O)) continue; const SymbolRef &Symbol = *I; Expected AddressOrError = Symbol.getAddress(); if (!AddressOrError) report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(), ArchitectureName); uint64_t Address = *AddressOrError; if ((Address < StartAddress) || (Address > StopAddress)) continue; Expected TypeOrError = Symbol.getType(); if (!TypeOrError) report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(), ArchitectureName); SymbolRef::Type Type = *TypeOrError; uint32_t Flags = Symbol.getFlags(); Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(), ArchitectureName); section_iterator Section = *SectionOrErr; StringRef Name; if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { Section->getName(Name); } else { Expected NameOrErr = Symbol.getName(); if (!NameOrErr) report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(), ArchitectureName); Name = *NameOrErr; } bool Global = Flags & SymbolRef::SF_Global; bool Weak = Flags & SymbolRef::SF_Weak; bool Absolute = Flags & SymbolRef::SF_Absolute; bool Common = Flags & SymbolRef::SF_Common; bool Hidden = Flags & SymbolRef::SF_Hidden; char GlobLoc = ' '; if (Type != SymbolRef::ST_Unknown) GlobLoc = Global ? 'g' : 'l'; char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) ? 'd' : ' '; char FileFunc = ' '; if (Type == SymbolRef::ST_File) FileFunc = 'f'; else if (Type == SymbolRef::ST_Function) FileFunc = 'F'; else if (Type == SymbolRef::ST_Data) FileFunc = 'O'; const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; outs() << format(Fmt, Address) << " " << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' << (Weak ? 'w' : ' ') // Weak? << ' ' // Constructor. Not supported yet. << ' ' // Warning. Not supported yet. << ' ' // Indirect reference to another symbol. << Debug // Debugging (d) or dynamic (D) symbol. << FileFunc // Name of function (F), file (f) or object (O). << ' '; if (Absolute) { outs() << "*ABS*"; } else if (Common) { outs() << "*COM*"; } else if (Section == O->section_end()) { outs() << "*UND*"; } else { if (const MachOObjectFile *MachO = dyn_cast(O)) { DataRefImpl DR = Section->getRawDataRefImpl(); StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); outs() << SegmentName << ","; } StringRef SectionName; error(Section->getName(SectionName)); outs() << SectionName; } outs() << '\t'; if (Common || isa(O)) { uint64_t Val = Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); outs() << format("\t %08" PRIx64 " ", Val); } if (Hidden) outs() << ".hidden "; if (Demangle) outs() << demangle(Name) << '\n'; else outs() << Name << '\n'; } } static void printUnwindInfo(const ObjectFile *O) { outs() << "Unwind info:\n\n"; if (const COFFObjectFile *Coff = dyn_cast(O)) printCOFFUnwindInfo(Coff); else if (const MachOObjectFile *MachO = dyn_cast(O)) printMachOUnwindInfo(MachO); else // TODO: Extract DWARF dump tool to objdump. WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for COFF and MachO object files.\n"; } void llvm::printExportsTrie(const ObjectFile *o) { outs() << "Exports trie:\n"; if (const MachOObjectFile *MachO = dyn_cast(o)) printMachOExportsTrie(MachO); else WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for Mach-O executable files.\n"; } void llvm::printRebaseTable(ObjectFile *o) { outs() << "Rebase table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachORebaseTable(MachO); else WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for Mach-O executable files.\n"; } void llvm::printBindTable(ObjectFile *o) { outs() << "Bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOBindTable(MachO); else WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for Mach-O executable files.\n"; } void llvm::printLazyBindTable(ObjectFile *o) { outs() << "Lazy bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOLazyBindTable(MachO); else WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for Mach-O executable files.\n"; } void llvm::printWeakBindTable(ObjectFile *o) { outs() << "Weak bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOWeakBindTable(MachO); else WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for Mach-O executable files.\n"; } /// Dump the raw contents of the __clangast section so the output can be piped /// into llvm-bcanalyzer. void llvm::printRawClangAST(const ObjectFile *Obj) { if (outs().is_displayed()) { WithColor::error(errs(), ToolName) << "The -raw-clang-ast option will dump the raw binary contents of " "the clang ast section.\n" "Please redirect the output to a file or another program such as " "llvm-bcanalyzer.\n"; return; } StringRef ClangASTSectionName("__clangast"); if (isa(Obj)) { ClangASTSectionName = "clangast"; } Optional ClangASTSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == ClangASTSectionName) { ClangASTSection = Sec; break; } } if (!ClangASTSection) return; StringRef ClangASTContents; error(ClangASTSection.getValue().getContents(ClangASTContents)); outs().write(ClangASTContents.data(), ClangASTContents.size()); } static void printFaultMaps(const ObjectFile *Obj) { StringRef FaultMapSectionName; if (isa(Obj)) { FaultMapSectionName = ".llvm_faultmaps"; } else if (isa(Obj)) { FaultMapSectionName = "__llvm_faultmaps"; } else { WithColor::error(errs(), ToolName) << "This operation is only currently supported " "for ELF and Mach-O executable files.\n"; return; } Optional FaultMapSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == FaultMapSectionName) { FaultMapSection = Sec; break; } } outs() << "FaultMap table:\n"; if (!FaultMapSection.hasValue()) { outs() << "\n"; return; } StringRef FaultMapContents; error(FaultMapSection.getValue().getContents(FaultMapContents)); FaultMapParser FMP(FaultMapContents.bytes_begin(), FaultMapContents.bytes_end()); outs() << FMP; } static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { if (O->isELF()) { printELFFileHeader(O); printELFDynamicSection(O); printELFSymbolVersionInfo(O); return; } if (O->isCOFF()) return printCOFFFileHeader(O); if (O->isWasm()) return printWasmFileHeader(O); if (O->isMachO()) { printMachOFileHeader(O); if (!OnlyFirst) printMachOLoadCommands(O); return; } report_error(O->getFileName(), "Invalid/Unsupported object file format"); } static void printFileHeaders(const ObjectFile *O) { if (!O->isELF() && !O->isCOFF()) report_error(O->getFileName(), "Invalid/Unsupported object file format"); Triple::ArchType AT = O->getArch(); outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; Expected StartAddrOrErr = O->getStartAddress(); if (!StartAddrOrErr) report_error(O->getFileName(), StartAddrOrErr.takeError()); StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; uint64_t Address = StartAddrOrErr.get(); outs() << "start address: " << "0x" << format(Fmt.data(), Address) << "\n\n"; } static void printArchiveChild(StringRef Filename, const Archive::Child &C) { Expected ModeOrErr = C.getAccessMode(); if (!ModeOrErr) { WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; consumeError(ModeOrErr.takeError()); return; } sys::fs::perms Mode = ModeOrErr.get(); outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); outs() << " "; Expected UIDOrErr = C.getUID(); if (!UIDOrErr) report_error(Filename, UIDOrErr.takeError()); unsigned UID = UIDOrErr.get(); outs() << format("%d/", UID); Expected GIDOrErr = C.getGID(); if (!GIDOrErr) report_error(Filename, GIDOrErr.takeError()); unsigned GID = GIDOrErr.get(); outs() << format("%-d ", GID); Expected Size = C.getRawSize(); if (!Size) report_error(Filename, Size.takeError()); outs() << format("%6" PRId64, Size.get()) << " "; StringRef RawLastModified = C.getRawLastModified(); unsigned Seconds; if (RawLastModified.getAsInteger(10, Seconds)) outs() << "(date: \"" << RawLastModified << "\" contains non-decimal chars) "; else { // Since ctime(3) returns a 26 character string of the form: // "Sun Sep 16 01:03:52 1973\n\0" // just print 24 characters. time_t t = Seconds; outs() << format("%.24s ", ctime(&t)); } StringRef Name = ""; Expected NameOrErr = C.getName(); if (!NameOrErr) { consumeError(NameOrErr.takeError()); Expected RawNameOrErr = C.getRawName(); if (!RawNameOrErr) report_error(Filename, NameOrErr.takeError()); Name = RawNameOrErr.get(); } else { Name = NameOrErr.get(); } outs() << Name << "\n"; } static void dumpObject(ObjectFile *O, const Archive *A = nullptr, const Archive::Child *C = nullptr) { // Avoid other output when using a raw option. if (!RawClangAST) { outs() << '\n'; if (A) outs() << A->getFileName() << "(" << O->getFileName() << ")"; else outs() << O->getFileName(); outs() << ":\tfile format " << O->getFileFormatName() << "\n\n"; } StringRef ArchiveName = A ? A->getFileName() : ""; if (FileHeaders) printFileHeaders(O); if (ArchiveHeaders && !MachOOpt && C) printArchiveChild(ArchiveName, *C); if (Disassemble) disassembleObject(O, Relocations); if (Relocations && !Disassemble) printRelocations(O); if (DynamicRelocations) printDynamicRelocations(O); if (SectionHeaders) printSectionHeaders(O); if (SectionContents) printSectionContents(O); if (SymbolTable) printSymbolTable(O, ArchiveName); if (UnwindInfo) printUnwindInfo(O); if (PrivateHeaders || FirstPrivateHeader) printPrivateFileHeaders(O, FirstPrivateHeader); if (ExportsTrie) printExportsTrie(O); if (Rebase) printRebaseTable(O); if (Bind) printBindTable(O); if (LazyBind) printLazyBindTable(O); if (WeakBind) printWeakBindTable(O); if (RawClangAST) printRawClangAST(O); if (PrintFaultMaps) printFaultMaps(O); if (DwarfDumpType != DIDT_Null) { std::unique_ptr DICtx = DWARFContext::create(*O); // Dump the complete DWARF structure. DIDumpOptions DumpOpts; DumpOpts.DumpType = DwarfDumpType; DICtx->dump(outs(), DumpOpts); } } static void dumpObject(const COFFImportFile *I, const Archive *A, const Archive::Child *C = nullptr) { StringRef ArchiveName = A ? A->getFileName() : ""; // Avoid other output when using a raw option. if (!RawClangAST) outs() << '\n' << ArchiveName << "(" << I->getFileName() << ")" << ":\tfile format COFF-import-file" << "\n\n"; if (ArchiveHeaders && !MachOOpt && C) printArchiveChild(ArchiveName, *C); if (SymbolTable) printCOFFSymbolTable(I); } /// Dump each object file in \a a; static void dumpArchive(const Archive *A) { Error Err = Error::success(); for (auto &C : A->children(Err)) { Expected> ChildOrErr = C.getAsBinary(); if (!ChildOrErr) { if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) report_error(A->getFileName(), C, std::move(E)); continue; } if (ObjectFile *O = dyn_cast(&*ChildOrErr.get())) dumpObject(O, A, &C); else if (COFFImportFile *I = dyn_cast(&*ChildOrErr.get())) dumpObject(I, A, &C); else report_error(A->getFileName(), object_error::invalid_file_type); } if (Err) report_error(A->getFileName(), std::move(Err)); } /// Open file and figure out how to dump it. static void dumpInput(StringRef file) { // If we are using the Mach-O specific object file parser, then let it parse // the file and process the command line options. So the -arch flags can // be used to select specific slices, etc. if (MachOOpt) { parseInputMachO(file); return; } // Attempt to open the binary. Expected> BinaryOrErr = createBinary(file); if (!BinaryOrErr) report_error(file, BinaryOrErr.takeError()); Binary &Binary = *BinaryOrErr.get().getBinary(); if (Archive *A = dyn_cast(&Binary)) dumpArchive(A); else if (ObjectFile *O = dyn_cast(&Binary)) dumpObject(O); else if (MachOUniversalBinary *UB = dyn_cast(&Binary)) parseInputMachO(UB); else report_error(file, object_error::invalid_file_type); } int main(int argc, char **argv) { InitLLVM X(argc, argv); // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllDisassemblers(); // Register the target printer for --version. cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); ToolName = argv[0]; // Defaults to a.out if no filenames specified. if (InputFilenames.empty()) InputFilenames.push_back("a.out"); if (AllHeaders) ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true; if (DisassembleAll || PrintSource || PrintLines) Disassemble = true; if (!Disassemble && !Relocations && !DynamicRelocations && !SectionHeaders && !SectionContents && !SymbolTable && !UnwindInfo && !PrivateHeaders && !FileHeaders && !FirstPrivateHeader && !ExportsTrie && !Rebase && !Bind && !LazyBind && !WeakBind && !RawClangAST && !(UniversalHeaders && MachOOpt) && !ArchiveHeaders && !(IndirectSymbols && MachOOpt) && !(DataInCode && MachOOpt) && !(LinkOptHints && MachOOpt) && !(InfoPlist && MachOOpt) && !(DylibsUsed && MachOOpt) && !(DylibId && MachOOpt) && !(ObjcMetaData && MachOOpt) && !(!FilterSections.empty() && MachOOpt) && !PrintFaultMaps && DwarfDumpType == DIDT_Null) { cl::PrintHelpMessage(); return 2; } DisasmFuncsSet.insert(DisassembleFunctions.begin(), DisassembleFunctions.end()); llvm::for_each(InputFilenames, dumpInput); return EXIT_SUCCESS; }