//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Mutate a test input. //===----------------------------------------------------------------------===// #include #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerExtFunctions.h" #include "FuzzerMutate.h" #include "FuzzerOptions.h" namespace fuzzer { const size_t Dictionary::kMaxDictSize; static void PrintASCII(const Word &W, const char *PrintAfter) { PrintASCII(W.data(), W.size(), PrintAfter); } MutationDispatcher::MutationDispatcher(Random &Rand, const FuzzingOptions &Options) : Rand(Rand), Options(Options) { DefaultMutators.insert( DefaultMutators.begin(), { {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"}, {&MutationDispatcher::Mutate_InsertByte, "InsertByte"}, {&MutationDispatcher::Mutate_InsertRepeatedBytes, "InsertRepeatedBytes"}, {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"}, {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"}, {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"}, {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"}, {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"}, {&MutationDispatcher::Mutate_CopyPart, "CopyPart"}, {&MutationDispatcher::Mutate_CrossOver, "CrossOver"}, {&MutationDispatcher::Mutate_AddWordFromManualDictionary, "AddFromManualDict"}, {&MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary, "AddFromTempAutoDict"}, {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary, "AddFromPersAutoDict"}, }); if (EF->LLVMFuzzerCustomMutator) Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"}); else Mutators = DefaultMutators; if (EF->LLVMFuzzerCustomCrossOver) Mutators.push_back( {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"}); } static char RandCh(Random &Rand) { if (Rand.RandBool()) return Rand(256); const char *Special = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00"; return Special[Rand(sizeof(Special) - 1)]; } size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size, size_t MaxSize) { return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand()); } size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size, size_t MaxSize) { if (!Corpus || Corpus->size() < 2 || Size == 0) return 0; size_t Idx = Rand(Corpus->size()); const Unit &Other = (*Corpus)[Idx]; if (Other.empty()) return 0; MutateInPlaceHere.resize(MaxSize); auto &U = MutateInPlaceHere; size_t NewSize = EF->LLVMFuzzerCustomCrossOver( Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand()); if (!NewSize) return 0; assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit"); memcpy(Data, U.data(), NewSize); return NewSize; } size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; assert(Size); size_t ShuffleAmount = Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size. size_t ShuffleStart = Rand(Size - ShuffleAmount); assert(ShuffleStart + ShuffleAmount <= Size); std::random_shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand); return Size; } size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size, size_t MaxSize) { assert(Size); if (Size == 1) return 0; size_t N = Rand(Size / 2) + 1; assert(N < Size); size_t Idx = Rand(Size - N + 1); // Erase Data[Idx:Idx+N]. memmove(Data + Idx, Data + Idx + N, Size - Idx - N); // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx); return Size - N; } size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size >= MaxSize) return 0; size_t Idx = Rand(Size + 1); // Insert new value at Data[Idx]. memmove(Data + Idx + 1, Data + Idx, Size - Idx); Data[Idx] = RandCh(Rand); return Size + 1; } size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data, size_t Size, size_t MaxSize) { const size_t kMinBytesToInsert = 3; if (Size + kMinBytesToInsert >= MaxSize) return 0; size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128); size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert; assert(Size + N <= MaxSize && N); size_t Idx = Rand(Size + 1); // Insert new values at Data[Idx]. memmove(Data + Idx + N, Data + Idx, Size - Idx); // Give preference to 0x00 and 0xff. uint8_t Byte = Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255); for (size_t i = 0; i < N; i++) Data[Idx + i] = Byte; return Size + N; } size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; size_t Idx = Rand(Size); Data[Idx] = RandCh(Rand); return Size; } size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; size_t Idx = Rand(Size); Data[Idx] ^= 1 << Rand(8); return Size; } size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(TempAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; if (D.empty()) return 0; DictionaryEntry &DE = D[Rand(D.size())]; const Word &W = DE.GetW(); bool UsePositionHint = DE.HasPositionHint() && DE.GetPositionHint() + W.size() < Size && Rand.RandBool(); if (Rand.RandBool()) { // Insert W. if (Size + W.size() > MaxSize) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1); memmove(Data + Idx + W.size(), Data + Idx, Size - Idx); memcpy(Data + Idx, W.data(), W.size()); Size += W.size(); } else { // Overwrite some bytes with W. if (W.size() > Size) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size()); memcpy(Data + Idx, W.data(), W.size()); } DE.IncUseCount(); CurrentDictionaryEntrySequence.push_back(&DE); return Size; } // Overwrites part of To[0,ToSize) with a part of From[0,FromSize). // Returns ToSize. size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize, uint8_t *To, size_t ToSize) { // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize). size_t ToBeg = Rand(ToSize); size_t CopySize = Rand(ToSize - ToBeg) + 1; assert(ToBeg + CopySize <= ToSize); CopySize = std::min(CopySize, FromSize); size_t FromBeg = Rand(FromSize - CopySize + 1); assert(FromBeg + CopySize <= FromSize); memmove(To + ToBeg, From + FromBeg, CopySize); return ToSize; } // Inserts part of From[0,ToSize) into To. // Returns new size of To on success or 0 on failure. size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize, uint8_t *To, size_t ToSize, size_t MaxToSize) { if (ToSize >= MaxToSize) return 0; size_t AvailableSpace = MaxToSize - ToSize; size_t MaxCopySize = std::min(AvailableSpace, FromSize); size_t CopySize = Rand(MaxCopySize) + 1; size_t FromBeg = Rand(FromSize - CopySize + 1); assert(FromBeg + CopySize <= FromSize); size_t ToInsertPos = Rand(ToSize + 1); assert(ToInsertPos + CopySize <= MaxToSize); size_t TailSize = ToSize - ToInsertPos; if (To == From) { MutateInPlaceHere.resize(MaxToSize); memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize); memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize); memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize); } else { memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize); memmove(To + ToInsertPos, From + FromBeg, CopySize); } return ToSize + CopySize; } size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; if (Rand.RandBool()) return CopyPartOf(Data, Size, Data, Size); else return InsertPartOf(Data, Size, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; size_t B = Rand(Size); while (B < Size && !isdigit(Data[B])) B++; if (B == Size) return 0; size_t E = B; while (E < Size && isdigit(Data[E])) E++; assert(B < E); // now we have digits in [B, E). // strtol and friends don't accept non-zero-teminated data, parse it manually. uint64_t Val = Data[B] - '0'; for (size_t i = B + 1; i < E; i++) Val = Val * 10 + Data[i] - '0'; // Mutate the integer value. switch(Rand(5)) { case 0: Val++; break; case 1: Val--; break; case 2: Val /= 2; break; case 3: Val *= 2; break; case 4: Val = Rand(Val * Val); break; default: assert(0); } // Just replace the bytes with the new ones, don't bother moving bytes. for (size_t i = B; i < E; i++) { size_t Idx = E + B - i - 1; assert(Idx >= B && Idx < E); Data[Idx] = (Val % 10) + '0'; Val /= 10; } return Size; } uint8_t Bswap(uint8_t x) { return x; } uint16_t Bswap(uint16_t x) { return __builtin_bswap16(x); } uint32_t Bswap(uint32_t x) { return __builtin_bswap32(x); } uint64_t Bswap(uint64_t x) { return __builtin_bswap64(x); } template size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) { if (Size < sizeof(T)) return 0; size_t Off = Rand(Size - sizeof(T) + 1); assert(Off + sizeof(T) <= Size); T Val; memcpy(&Val, Data + Off, sizeof(Val)); T Add = Rand(21); Add -= 10; if (Rand.RandBool()) Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes. else Val = Val + Add; // Add assuming current endiannes. if (Add == 0 || Rand.RandBool()) // Maybe negate. Val = -Val; memcpy(Data + Off, &Val, sizeof(Val)); return Size; } size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; switch (Rand(4)) { case 3: return ChangeBinaryInteger(Data, Size, Rand); case 2: return ChangeBinaryInteger(Data, Size, Rand); case 1: return ChangeBinaryInteger(Data, Size, Rand); case 0: return ChangeBinaryInteger(Data, Size, Rand); default: assert(0); } return 0; } size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size > MaxSize) return 0; if (!Corpus || Corpus->size() < 2 || Size == 0) return 0; size_t Idx = Rand(Corpus->size()); const Unit &O = (*Corpus)[Idx]; if (O.empty()) return 0; MutateInPlaceHere.resize(MaxSize); auto &U = MutateInPlaceHere; size_t NewSize = 0; switch(Rand(3)) { case 0: NewSize = CrossOver(Data, Size, O.data(), O.size(), U.data(), U.size()); break; case 1: NewSize = InsertPartOf(O.data(), O.size(), U.data(), U.size(), MaxSize); if (NewSize) break; // LLVM_FALLTHROUGH; case 2: NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size()); break; default: assert(0); } assert(NewSize > 0 && "CrossOver returned empty unit"); assert(NewSize <= MaxSize && "CrossOver returned overisized unit"); memcpy(Data, U.data(), NewSize); return NewSize; } void MutationDispatcher::StartMutationSequence() { CurrentMutatorSequence.clear(); CurrentDictionaryEntrySequence.clear(); } // Copy successful dictionary entries to PersistentAutoDictionary. void MutationDispatcher::RecordSuccessfulMutationSequence() { for (auto DE : CurrentDictionaryEntrySequence) { // PersistentAutoDictionary.AddWithSuccessCountOne(DE); DE->IncSuccessCount(); // Linear search is fine here as this happens seldom. if (!PersistentAutoDictionary.ContainsWord(DE->GetW())) PersistentAutoDictionary.push_back({DE->GetW(), 1}); } } void MutationDispatcher::PrintRecommendedDictionary() { std::vector V; for (auto &DE : PersistentAutoDictionary) if (!ManualDictionary.ContainsWord(DE.GetW())) V.push_back(DE); if (V.empty()) return; Printf("###### Recommended dictionary. ######\n"); for (auto &DE: V) { Printf("\""); PrintASCII(DE.GetW(), "\""); Printf(" # Uses: %zd\n", DE.GetUseCount()); } Printf("###### End of recommended dictionary. ######\n"); } void MutationDispatcher::PrintMutationSequence() { Printf("MS: %zd ", CurrentMutatorSequence.size()); for (auto M : CurrentMutatorSequence) Printf("%s-", M.Name); if (!CurrentDictionaryEntrySequence.empty()) { Printf(" DE: "); for (auto DE : CurrentDictionaryEntrySequence) { Printf("\""); PrintASCII(DE->GetW(), "\"-"); } } } size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) { return MutateImpl(Data, Size, MaxSize, Mutators); } size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size, size_t MaxSize) { return MutateImpl(Data, Size, MaxSize, DefaultMutators); } // Mutates Data in place, returns new size. size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size, size_t MaxSize, const std::vector &Mutators) { assert(MaxSize > 0); if (Size == 0) { for (size_t i = 0; i < MaxSize; i++) Data[i] = RandCh(Rand); if (Options.OnlyASCII) ToASCII(Data, MaxSize); return MaxSize; } assert(Size > 0); // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize), // in which case they will return 0. // Try several times before returning un-mutated data. for (int Iter = 0; Iter < 100; Iter++) { auto M = Mutators[Rand(Mutators.size())]; size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize); if (NewSize && NewSize <= MaxSize) { if (Options.OnlyASCII) ToASCII(Data, NewSize); CurrentMutatorSequence.push_back(M); return NewSize; } } return std::min(Size, MaxSize); } void MutationDispatcher::AddWordToManualDictionary(const Word &W) { ManualDictionary.push_back( {W, std::numeric_limits::max()}); } void MutationDispatcher::AddWordToAutoDictionary(DictionaryEntry DE) { static const size_t kMaxAutoDictSize = 1 << 14; if (TempAutoDictionary.size() >= kMaxAutoDictSize) return; TempAutoDictionary.push_back(DE); } void MutationDispatcher::ClearAutoDictionary() { TempAutoDictionary.clear(); } } // namespace fuzzer