//===- FuzzerUtil.cpp - Misc utils ----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Misc utils. //===----------------------------------------------------------------------===// #include "FuzzerInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fuzzer { void PrintHexArray(const uint8_t *Data, size_t Size, const char *PrintAfter) { for (size_t i = 0; i < Size; i++) Printf("0x%x,", (unsigned)Data[i]); Printf("%s", PrintAfter); } void Print(const Unit &v, const char *PrintAfter) { PrintHexArray(v.data(), v.size(), PrintAfter); } void PrintASCIIByte(uint8_t Byte) { if (Byte == '\\') Printf("\\\\"); else if (Byte == '"') Printf("\\\""); else if (Byte >= 32 && Byte < 127) Printf("%c", Byte); else Printf("\\x%02x", Byte); } void PrintASCII(const uint8_t *Data, size_t Size, const char *PrintAfter) { for (size_t i = 0; i < Size; i++) PrintASCIIByte(Data[i]); Printf("%s", PrintAfter); } void PrintASCII(const Unit &U, const char *PrintAfter) { PrintASCII(U.data(), U.size(), PrintAfter); } std::string Sha1ToString(const uint8_t Sha1[kSHA1NumBytes]) { std::stringstream SS; for (int i = 0; i < kSHA1NumBytes; i++) SS << std::hex << std::setfill('0') << std::setw(2) << (unsigned)Sha1[i]; return SS.str(); } std::string Hash(const Unit &U) { uint8_t Hash[kSHA1NumBytes]; ComputeSHA1(U.data(), U.size(), Hash); return Sha1ToString(Hash); } static void AlarmHandler(int, siginfo_t *, void *) { Fuzzer::StaticAlarmCallback(); } static void CrashHandler(int, siginfo_t *, void *) { Fuzzer::StaticCrashSignalCallback(); } static void InterruptHandler(int, siginfo_t *, void *) { Fuzzer::StaticInterruptCallback(); } static void SetSigaction(int signum, void (*callback)(int, siginfo_t *, void *)) { struct sigaction sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_sigaction = callback; if (sigaction(signum, &sigact, 0)) { Printf("libFuzzer: sigaction failed with %d\n", errno); exit(1); } } void SetTimer(int Seconds) { struct itimerval T {{Seconds, 0}, {Seconds, 0}}; if (setitimer(ITIMER_REAL, &T, nullptr)) { Printf("libFuzzer: setitimer failed with %d\n", errno); exit(1); } SetSigaction(SIGALRM, AlarmHandler); } void SetSigSegvHandler() { SetSigaction(SIGSEGV, CrashHandler); } void SetSigBusHandler() { SetSigaction(SIGBUS, CrashHandler); } void SetSigAbrtHandler() { SetSigaction(SIGABRT, CrashHandler); } void SetSigIllHandler() { SetSigaction(SIGILL, CrashHandler); } void SetSigFpeHandler() { SetSigaction(SIGFPE, CrashHandler); } void SetSigIntHandler() { SetSigaction(SIGINT, InterruptHandler); } void SetSigTermHandler() { SetSigaction(SIGTERM, InterruptHandler); } int NumberOfCpuCores() { const char *CmdLine = nullptr; if (LIBFUZZER_LINUX) { CmdLine = "nproc"; } else if (LIBFUZZER_APPLE) { CmdLine = "sysctl -n hw.ncpu"; } else { assert(0 && "NumberOfCpuCores() is not implemented for your platform"); } FILE *F = popen(CmdLine, "r"); int N = 1; if (!F || fscanf(F, "%d", &N) != 1) { Printf("WARNING: Failed to parse output of command \"%s\" in %s(). " "Assuming CPU count of 1.\n", CmdLine, __func__); N = 1; } if (pclose(F)) { Printf("WARNING: Executing command \"%s\" failed in %s(). " "Assuming CPU count of 1.\n", CmdLine, __func__); N = 1; } if (N < 1) { Printf("WARNING: Reported CPU count (%d) from command \"%s\" was invalid " "in %s(). Assuming CPU count of 1.\n", N, CmdLine, __func__); N = 1; } return N; } bool ToASCII(uint8_t *Data, size_t Size) { bool Changed = false; for (size_t i = 0; i < Size; i++) { uint8_t &X = Data[i]; auto NewX = X; NewX &= 127; if (!isspace(NewX) && !isprint(NewX)) NewX = ' '; Changed |= NewX != X; X = NewX; } return Changed; } bool IsASCII(const Unit &U) { return IsASCII(U.data(), U.size()); } bool IsASCII(const uint8_t *Data, size_t Size) { for (size_t i = 0; i < Size; i++) if (!(isprint(Data[i]) || isspace(Data[i]))) return false; return true; } bool ParseOneDictionaryEntry(const std::string &Str, Unit *U) { U->clear(); if (Str.empty()) return false; size_t L = 0, R = Str.size() - 1; // We are parsing the range [L,R]. // Skip spaces from both sides. while (L < R && isspace(Str[L])) L++; while (R > L && isspace(Str[R])) R--; if (R - L < 2) return false; // Check the closing " if (Str[R] != '"') return false; R--; // Find the opening " while (L < R && Str[L] != '"') L++; if (L >= R) return false; assert(Str[L] == '\"'); L++; assert(L <= R); for (size_t Pos = L; Pos <= R; Pos++) { uint8_t V = (uint8_t)Str[Pos]; if (!isprint(V) && !isspace(V)) return false; if (V =='\\') { // Handle '\\' if (Pos + 1 <= R && (Str[Pos + 1] == '\\' || Str[Pos + 1] == '"')) { U->push_back(Str[Pos + 1]); Pos++; continue; } // Handle '\xAB' if (Pos + 3 <= R && Str[Pos + 1] == 'x' && isxdigit(Str[Pos + 2]) && isxdigit(Str[Pos + 3])) { char Hex[] = "0xAA"; Hex[2] = Str[Pos + 2]; Hex[3] = Str[Pos + 3]; U->push_back(strtol(Hex, nullptr, 16)); Pos += 3; continue; } return false; // Invalid escape. } else { // Any other character. U->push_back(V); } } return true; } bool ParseDictionaryFile(const std::string &Text, std::vector *Units) { if (Text.empty()) { Printf("ParseDictionaryFile: file does not exist or is empty\n"); return false; } std::istringstream ISS(Text); Units->clear(); Unit U; int LineNo = 0; std::string S; while (std::getline(ISS, S, '\n')) { LineNo++; size_t Pos = 0; while (Pos < S.size() && isspace(S[Pos])) Pos++; // Skip spaces. if (Pos == S.size()) continue; // Empty line. if (S[Pos] == '#') continue; // Comment line. if (ParseOneDictionaryEntry(S, &U)) { Units->push_back(U); } else { Printf("ParseDictionaryFile: error in line %d\n\t\t%s\n", LineNo, S.c_str()); return false; } } return true; } void SleepSeconds(int Seconds) { sleep(Seconds); // Use C API to avoid coverage from instrumented libc++. } int GetPid() { return getpid(); } std::string Base64(const Unit &U) { static const char Table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; std::string Res; size_t i; for (i = 0; i + 2 < U.size(); i += 3) { uint32_t x = (U[i] << 16) + (U[i + 1] << 8) + U[i + 2]; Res += Table[(x >> 18) & 63]; Res += Table[(x >> 12) & 63]; Res += Table[(x >> 6) & 63]; Res += Table[x & 63]; } if (i + 1 == U.size()) { uint32_t x = (U[i] << 16); Res += Table[(x >> 18) & 63]; Res += Table[(x >> 12) & 63]; Res += "=="; } else if (i + 2 == U.size()) { uint32_t x = (U[i] << 16) + (U[i + 1] << 8); Res += Table[(x >> 18) & 63]; Res += Table[(x >> 12) & 63]; Res += Table[(x >> 6) & 63]; Res += "="; } return Res; } size_t GetPeakRSSMb() { struct rusage usage; if (getrusage(RUSAGE_SELF, &usage)) return 0; if (LIBFUZZER_LINUX) { // ru_maxrss is in KiB return usage.ru_maxrss >> 10; } else if (LIBFUZZER_APPLE) { // ru_maxrss is in bytes return usage.ru_maxrss >> 20; } assert(0 && "GetPeakRSSMb() is not implemented for your platform"); return 0; } std::string DescribePC(const char *SymbolizedFMT, uintptr_t PC) { if (!EF->__sanitizer_symbolize_pc) return ""; char PcDescr[1024]; EF->__sanitizer_symbolize_pc(reinterpret_cast(PC), SymbolizedFMT, PcDescr, sizeof(PcDescr)); PcDescr[sizeof(PcDescr) - 1] = 0; // Just in case. return PcDescr; } void PrintPC(const char *SymbolizedFMT, const char *FallbackFMT, uintptr_t PC) { if (EF->__sanitizer_symbolize_pc) Printf("%s", DescribePC(SymbolizedFMT, PC).c_str()); else Printf(FallbackFMT, PC); } } // namespace fuzzer