//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based // register allocator for LLVM. This allocator works by constructing a PBQP // problem representing the register allocation problem under consideration, // solving this using a PBQP solver, and mapping the solution back to a // register assignment. If any variables are selected for spilling then spill // code is inserted and the process repeated. // // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned // for register allocation. For more information on PBQP for register // allocation, see the following papers: // // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with // PBQP. In Proceedings of the 7th Joint Modular Languages Conference // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. // // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular // architectures. In Proceedings of the Joint Conference on Languages, // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, // NY, USA, 139-148. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegAllocPBQP.h" #include "RegisterCoalescer.h" #include "Spiller.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" static RegisterRegAlloc RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", createDefaultPBQPRegisterAllocator); static cl::opt PBQPCoalescing("pbqp-coalescing", cl::desc("Attempt coalescing during PBQP register allocation."), cl::init(false), cl::Hidden); #ifndef NDEBUG static cl::opt PBQPDumpGraphs("pbqp-dump-graphs", cl::desc("Dump graphs for each function/round in the compilation unit."), cl::init(false), cl::Hidden); #endif namespace { /// /// PBQP based allocators solve the register allocation problem by mapping /// register allocation problems to Partitioned Boolean Quadratic /// Programming problems. class RegAllocPBQP : public MachineFunctionPass { public: static char ID; /// Construct a PBQP register allocator. RegAllocPBQP(char *cPassID = nullptr) : MachineFunctionPass(ID), customPassID(cPassID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); } /// Return the pass name. const char* getPassName() const override { return "PBQP Register Allocator"; } /// PBQP analysis usage. void getAnalysisUsage(AnalysisUsage &au) const override; /// Perform register allocation bool runOnMachineFunction(MachineFunction &MF) override; private: typedef std::map LI2NodeMap; typedef std::vector Node2LIMap; typedef std::vector AllowedSet; typedef std::vector AllowedSetMap; typedef std::pair RegPair; typedef std::map CoalesceMap; typedef std::set RegSet; char *customPassID; RegSet VRegsToAlloc, EmptyIntervalVRegs; /// \brief Finds the initial set of vreg intervals to allocate. void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); /// \brief Constructs an initial graph. void initializeGraph(PBQPRAGraph &G); /// \brief Given a solved PBQP problem maps this solution back to a register /// assignment. bool mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller); /// \brief Postprocessing before final spilling. Sets basic block "live in" /// variables. void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const; }; char RegAllocPBQP::ID = 0; /// @brief Set spill costs for each node in the PBQP reg-alloc graph. class SpillCosts : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { LiveIntervals &LIS = G.getMetadata().LIS; for (auto NId : G.nodeIds()) { PBQP::PBQPNum SpillCost = LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; if (SpillCost == 0.0) SpillCost = std::numeric_limits::min(); PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; G.setNodeCosts(NId, std::move(NodeCosts)); } } }; /// @brief Add interference edges between overlapping vregs. class Interference : public PBQPRAConstraint { private: // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required // for the fast interference graph construction algorithm. The last is there // to save us from looking up node ids via the VRegToNode map in the graph // metadata. typedef std::tuple IntervalInfo; static SlotIndex getStartPoint(const IntervalInfo &I) { return std::get<0>(I)->segments[std::get<1>(I)].start; } static SlotIndex getEndPoint(const IntervalInfo &I) { return std::get<0>(I)->segments[std::get<1>(I)].end; } static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { return std::get<2>(I); } static bool lowestStartPoint(const IntervalInfo &I1, const IntervalInfo &I2) { // Condition reversed because priority queue has the *highest* element at // the front, rather than the lowest. return getStartPoint(I1) > getStartPoint(I2); } static bool lowestEndPoint(const IntervalInfo &I1, const IntervalInfo &I2) { SlotIndex E1 = getEndPoint(I1); SlotIndex E2 = getEndPoint(I2); if (E1 < E2) return true; if (E1 > E2) return false; // If two intervals end at the same point, we need a way to break the tie or // the set will assume they're actually equal and refuse to insert a // "duplicate". Just compare the vregs - fast and guaranteed unique. return std::get<0>(I1)->reg < std::get<0>(I2)->reg; } static bool isAtLastSegment(const IntervalInfo &I) { return std::get<1>(I) == std::get<0>(I)->size() - 1; } static IntervalInfo nextSegment(const IntervalInfo &I) { return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); } public: void apply(PBQPRAGraph &G) override { // The following is loosely based on the linear scan algorithm introduced in // "Linear Scan Register Allocation" by Poletto and Sarkar. This version // isn't linear, because the size of the active set isn't bound by the // number of registers, but rather the size of the largest clique in the // graph. Still, we expect this to be better than N^2. LiveIntervals &LIS = G.getMetadata().LIS; const TargetRegisterInfo &TRI = *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); typedef std::set IntervalSet; typedef std::priority_queue, decltype(&lowestStartPoint)> IntervalQueue; IntervalSet Active(lowestEndPoint); IntervalQueue Inactive(lowestStartPoint); // Start by building the inactive set. for (auto NId : G.nodeIds()) { unsigned VReg = G.getNodeMetadata(NId).getVReg(); LiveInterval &LI = LIS.getInterval(VReg); assert(!LI.empty() && "PBQP graph contains node for empty interval"); Inactive.push(std::make_tuple(&LI, 0, NId)); } while (!Inactive.empty()) { // Tentatively grab the "next" interval - this choice may be overriden // below. IntervalInfo Cur = Inactive.top(); // Retire any active intervals that end before Cur starts. IntervalSet::iterator RetireItr = Active.begin(); while (RetireItr != Active.end() && (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { // If this interval has subsequent segments, add the next one to the // inactive list. if (!isAtLastSegment(*RetireItr)) Inactive.push(nextSegment(*RetireItr)); ++RetireItr; } Active.erase(Active.begin(), RetireItr); // One of the newly retired segments may actually start before the // Cur segment, so re-grab the front of the inactive list. Cur = Inactive.top(); Inactive.pop(); // At this point we know that Cur overlaps all active intervals. Add the // interference edges. PBQP::GraphBase::NodeId NId = getNodeId(Cur); for (const auto &A : Active) { PBQP::GraphBase::NodeId MId = getNodeId(A); // Check that we haven't already added this edge // FIXME: findEdge is expensive in the worst case (O(max_clique(G))). // It might be better to replace this with a local bit-matrix. if (G.findEdge(NId, MId) != PBQP::GraphBase::invalidEdgeId()) continue; // This is a new edge - add it to the graph. const auto &NOpts = G.getNodeMetadata(NId).getOptionRegs(); const auto &MOpts = G.getNodeMetadata(MId).getOptionRegs(); G.addEdge(NId, MId, createInterferenceMatrix(TRI, NOpts, MOpts)); } // Finally, add Cur to the Active set. Active.insert(Cur); } } private: PBQPRAGraph::RawMatrix createInterferenceMatrix( const TargetRegisterInfo &TRI, const PBQPRAGraph::NodeMetadata::OptionToRegMap &NOpts, const PBQPRAGraph::NodeMetadata::OptionToRegMap &MOpts) { PBQPRAGraph::RawMatrix M(NOpts.size() + 1, MOpts.size() + 1, 0); for (unsigned I = 0; I != NOpts.size(); ++I) { unsigned PRegN = NOpts[I]; for (unsigned J = 0; J != MOpts.size(); ++J) { unsigned PRegM = MOpts[J]; if (TRI.regsOverlap(PRegN, PRegM)) M[I + 1][J + 1] = std::numeric_limits::infinity(); } } return M; } }; class Coalescing : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { MachineFunction &MF = G.getMetadata().MF; MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; CoalescerPair CP(*MF.getTarget().getSubtargetImpl()->getRegisterInfo()); // Scan the machine function and add a coalescing cost whenever CoalescerPair // gives the Ok. for (const auto &MBB : MF) { for (const auto &MI : MBB) { // Skip not-coalescable or already coalesced copies. if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) continue; unsigned DstReg = CP.getDstReg(); unsigned SrcReg = CP.getSrcReg(); const float CopyFactor = 0.5; // Cost of copy relative to load. Current // value plucked randomly out of the air. PBQP::PBQPNum CBenefit = CopyFactor * LiveIntervals::getSpillWeight(false, true, &MBFI, &MI); if (CP.isPhys()) { if (!MF.getRegInfo().isAllocatable(DstReg)) continue; PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed = G.getNodeMetadata(NId).getOptionRegs(); unsigned PRegOpt = 0; while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) ++PRegOpt; if (PRegOpt < Allowed.size()) { PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); NewCosts[PRegOpt + 1] -= CBenefit; G.setNodeCosts(NId, std::move(NewCosts)); } } else { PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed1 = &G.getNodeMetadata(N1Id).getOptionRegs(); const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed2 = &G.getNodeMetadata(N2Id).getOptionRegs(); PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); if (EId == G.invalidEdgeId()) { PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, Allowed2->size() + 1, 0); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.addEdge(N1Id, N2Id, std::move(Costs)); } else { if (G.getEdgeNode1Id(EId) == N2Id) { std::swap(N1Id, N2Id); std::swap(Allowed1, Allowed2); } PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.setEdgeCosts(EId, std::move(Costs)); } } } } } private: void addVirtRegCoalesce( PBQPRAGraph::RawMatrix &CostMat, const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed1, const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed2, PBQP::PBQPNum Benefit) { assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); for (unsigned I = 0; I != Allowed1.size(); ++I) { unsigned PReg1 = Allowed1[I]; for (unsigned J = 0; J != Allowed2.size(); ++J) { unsigned PReg2 = Allowed2[J]; if (PReg1 == PReg2) CostMat[I + 1][J + 1] -= Benefit; } } } }; } // End anonymous namespace. // Out-of-line destructor/anchor for PBQPRAConstraint. PBQPRAConstraint::~PBQPRAConstraint() {} void PBQPRAConstraint::anchor() {} void PBQPRAConstraintList::anchor() {} void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { au.setPreservesCFG(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); //au.addRequiredID(SplitCriticalEdgesID); if (customPassID) au.addRequiredID(*customPassID); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); MachineFunctionPass::getAnalysisUsage(au); } void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS) { const MachineRegisterInfo &MRI = MF.getRegInfo(); // Iterate over all live ranges. for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { unsigned Reg = TargetRegisterInfo::index2VirtReg(I); if (MRI.reg_nodbg_empty(Reg)) continue; LiveInterval &LI = LIS.getInterval(Reg); // If this live interval is non-empty we will use pbqp to allocate it. // Empty intervals we allocate in a simple post-processing stage in // finalizeAlloc. if (!LI.empty()) { VRegsToAlloc.insert(LI.reg); } else { EmptyIntervalVRegs.insert(LI.reg); } } } void RegAllocPBQP::initializeGraph(PBQPRAGraph &G) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); const TargetRegisterInfo &TRI = *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); for (auto VReg : VRegsToAlloc) { const TargetRegisterClass *TRC = MRI.getRegClass(VReg); LiveInterval &VRegLI = LIS.getInterval(VReg); // Record any overlaps with regmask operands. BitVector RegMaskOverlaps; LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); // Compute an initial allowed set for the current vreg. std::vector VRegAllowed; ArrayRef RawPRegOrder = TRC->getRawAllocationOrder(MF); for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { unsigned PReg = RawPRegOrder[I]; if (MRI.isReserved(PReg)) continue; // vregLI crosses a regmask operand that clobbers preg. if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) continue; // vregLI overlaps fixed regunit interference. bool Interference = false; for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { Interference = true; break; } } if (Interference) continue; // preg is usable for this virtual register. VRegAllowed.push_back(PReg); } PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); G.getNodeMetadata(NId).setVReg(VReg); G.getNodeMetadata(NId).setOptionRegs(std::move(VRegAllowed)); G.getMetadata().setNodeIdForVReg(VReg, NId); } } bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const TargetRegisterInfo &TRI = *MF.getTarget().getSubtargetImpl()->getRegisterInfo(); (void)TRI; // Set to true if we have any spills bool AnotherRoundNeeded = false; // Clear the existing allocation. VRM.clearAllVirt(); // Iterate over the nodes mapping the PBQP solution to a register // assignment. for (auto NId : G.nodeIds()) { unsigned VReg = G.getNodeMetadata(NId).getVReg(); unsigned AllocOption = Solution.getSelection(NId); if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { unsigned PReg = G.getNodeMetadata(NId).getOptionRegs()[AllocOption - 1]; DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " << TRI.getName(PReg) << "\n"); assert(PReg != 0 && "Invalid preg selected."); VRM.assignVirt2Phys(VReg, PReg); } else { VRegsToAlloc.erase(VReg); SmallVector NewSpills; LiveRangeEdit LRE(&LIS.getInterval(VReg), NewSpills, MF, LIS, &VRM); VRegSpiller.spill(LRE); DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " << LRE.getParent().weight << ", New vregs: "); // Copy any newly inserted live intervals into the list of regs to // allocate. for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); I != E; ++I) { LiveInterval &LI = LIS.getInterval(*I); assert(!LI.empty() && "Empty spill range."); DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); VRegsToAlloc.insert(LI.reg); } DEBUG(dbgs() << ")\n"); // We need another round if spill intervals were added. AnotherRoundNeeded |= !LRE.empty(); } } return !AnotherRoundNeeded; } void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const { MachineRegisterInfo &MRI = MF.getRegInfo(); // First allocate registers for the empty intervals. for (RegSet::const_iterator I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); I != E; ++I) { LiveInterval &LI = LIS.getInterval(*I); unsigned PReg = MRI.getSimpleHint(LI.reg); if (PReg == 0) { const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); PReg = RC.getRawAllocationOrder(MF).front(); } VRM.assignVirt2Phys(LI.reg, PReg); } } bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { LiveIntervals &LIS = getAnalysis(); MachineBlockFrequencyInfo &MBFI = getAnalysis(); calculateSpillWeightsAndHints(LIS, MF, getAnalysis(), MBFI); VirtRegMap &VRM = getAnalysis(); std::unique_ptr VRegSpiller(createInlineSpiller(*this, MF, VRM)); MF.getRegInfo().freezeReservedRegs(MF); DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); // Allocator main loop: // // * Map current regalloc problem to a PBQP problem // * Solve the PBQP problem // * Map the solution back to a register allocation // * Spill if necessary // // This process is continued till no more spills are generated. // Find the vreg intervals in need of allocation. findVRegIntervalsToAlloc(MF, LIS); #ifndef NDEBUG const Function &F = *MF.getFunction(); std::string FullyQualifiedName = F.getParent()->getModuleIdentifier() + "." + F.getName().str(); #endif // If there are non-empty intervals allocate them using pbqp. if (!VRegsToAlloc.empty()) { const TargetSubtargetInfo &Subtarget = *MF.getTarget().getSubtargetImpl(); std::unique_ptr ConstraintsRoot = llvm::make_unique(); ConstraintsRoot->addConstraint(llvm::make_unique()); ConstraintsRoot->addConstraint(llvm::make_unique()); if (PBQPCoalescing) ConstraintsRoot->addConstraint(llvm::make_unique()); ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); bool PBQPAllocComplete = false; unsigned Round = 0; while (!PBQPAllocComplete) { DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); initializeGraph(G); ConstraintsRoot->apply(G); #ifndef NDEBUG if (PBQPDumpGraphs) { std::ostringstream RS; RS << Round; std::string GraphFileName = FullyQualifiedName + "." + RS.str() + ".pbqpgraph"; std::error_code EC; raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" << GraphFileName << "\"\n"); G.dumpToStream(OS); } #endif PBQP::Solution Solution = PBQP::RegAlloc::solve(G); PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); ++Round; } } // Finalise allocation, allocate empty ranges. finalizeAlloc(MF, LIS, VRM); VRegsToAlloc.clear(); EmptyIntervalVRegs.clear(); DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); return true; } FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { return new RegAllocPBQP(customPassID); } FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { return createPBQPRegisterAllocator(); } #undef DEBUG_TYPE