//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file contains the required infrastructure to support code generation /// for the standard 'V' (Vector) extension, version 0.9. This version is still /// experimental as the 'V' extension hasn't been ratified yet. /// /// This file is included from RISCVInstrInfoV.td /// //===----------------------------------------------------------------------===// def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>, SDTCisInt<1>]>>; // X0 has special meaning for vsetvl/vsetvli. // rd | rs1 | AVL value | Effect on vl //-------------------------------------------------------------- // !X0 | X0 | VLMAX | Set vl to VLMAX // X0 | X0 | Value in vl | Keep current vl, just change vtype. def NoX0 : SDNodeXForm(N); if (C && C->isNullValue()) { SDLoc DL(N); return SDValue(CurDAG->getMachineNode(RISCV::ADDI, DL, Subtarget->getXLenVT(), CurDAG->getRegister(RISCV::X0, Subtarget->getXLenVT()), CurDAG->getTargetConstant(0, DL, Subtarget->getXLenVT())), 0); } return SDValue(N, 0); }]>; //===----------------------------------------------------------------------===// // Utilities. //===----------------------------------------------------------------------===// // This class describes information associated to the LMUL. class LMULInfo { bits<3> value = lmul; // This is encoded as the vlmul field of vtype. VReg vrclass = regclass; VReg wvrclass = wregclass; string MX = mx; } // Associate LMUL with tablegen records of register classes. def V_M1 : LMULInfo<0b000, VR, VRM2, "M1">; def V_M2 : LMULInfo<0b001, VRM2, VRM4, "M2">; def V_M4 : LMULInfo<0b010, VRM4, VRM8, "M4">; def V_M8 : LMULInfo<0b011, VRM8, VR, "M8">; def V_MF8 : LMULInfo<0b101, VR, VR, "MF8">; def V_MF4 : LMULInfo<0b110, VR, VR, "MF4">; def V_MF2 : LMULInfo<0b111, VR, VR, "MF2">; // Used to iterate over all possible LMULs. def MxList { list m = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; } class shift_amount { int val = !if(!eq(num, 1), 0, !add(1, shift_amount.val)); } // Output pattern for X0 used to represent VLMAX in the pseudo instructions. def VLMax : OutPatFrag<(ops), (XLenVT X0)>; // List of EEW. defvar EEWList = [8, 16, 32, 64]; // We only model FPR32 for V instructions in RISCVInstrInfoV.td. // FP16/FP32/FP64 registers are alias each other. Convert FPR16 and FPR64 // to FPR32 for V instructions is enough. class ToFPR32 { dag ret = !cond(!eq(!cast(operand), !cast(FPR64)): (EXTRACT_SUBREG !dag(type, [FPR64], [name]), sub_32), !eq(!cast(operand), !cast(FPR16)): (SUBREG_TO_REG (i16 -1), !dag(type, [FPR16], [name]), sub_16), !eq(1, 1): !dag(type, [operand], [name])); } //===----------------------------------------------------------------------===// // Vector register and vector group type information. //===----------------------------------------------------------------------===// class VTypeInfo { ValueType Vector = Vec; ValueType Mask = Mas; int SEW = Sew; VReg RegClass = Reg; LMULInfo LMul = M; ValueType Scalar = Scal; RegisterClass ScalarRegClass = ScalarReg; } class GroupVTypeInfo : VTypeInfo { ValueType VectorM1 = VecM1; } defset list AllVectors = { defset list AllIntegerVectors = { def VI8MF8: VTypeInfo; def VI8MF4: VTypeInfo; def VI8MF2: VTypeInfo; def VI8M1: VTypeInfo; def VI16MF4: VTypeInfo; def VI16MF2: VTypeInfo; def VI16M1: VTypeInfo; def VI32MF2: VTypeInfo; def VI32M1: VTypeInfo; def VI64M1: VTypeInfo; def VI8M2: GroupVTypeInfo; def VI8M4: GroupVTypeInfo; def VI8M8: GroupVTypeInfo; def VI16M2: GroupVTypeInfo; def VI16M4: GroupVTypeInfo; def VI16M8: GroupVTypeInfo; def VI32M2: GroupVTypeInfo; def VI32M4: GroupVTypeInfo; def VI32M8: GroupVTypeInfo; def VI64M2: GroupVTypeInfo; def VI64M4: GroupVTypeInfo; def VI64M8: GroupVTypeInfo; } defset list AllFloatVectors = { defset list NoGroupFloatVectors = { def VF16MF4: VTypeInfo; def VF16MF2: VTypeInfo; def VF16M1: VTypeInfo; def VF32MF2: VTypeInfo; def VF32M1: VTypeInfo; def VF64M1: VTypeInfo; } defset list GroupFloatVectors = { def VF16M2: GroupVTypeInfo; def VF16M4: GroupVTypeInfo; def VF16M8: GroupVTypeInfo; def VF32M2: GroupVTypeInfo; def VF32M4: GroupVTypeInfo; def VF32M8: GroupVTypeInfo; def VF64M2: GroupVTypeInfo; def VF64M4: GroupVTypeInfo; def VF64M8: GroupVTypeInfo; } } } class VTypeInfoToWide { VTypeInfo Vti = vti; VTypeInfo Wti = wti; } defset list AllWidenableIntVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllWidenableFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } // This class holds the record of the RISCVVPseudoTable below. // This represents the information we need in codegen for each pseudo. // The definition should be consistent with `struct PseudoInfo` in // RISCVBaseInfo.h. class CONST8b val> { bits<8> V = val; } def InvalidIndex : CONST8b<0x80>; class RISCVVPseudo { Pseudo Pseudo = !cast(NAME); // Used as a key. Instruction BaseInstr; bits<8> VLIndex = InvalidIndex.V; bits<8> SEWIndex = InvalidIndex.V; bits<8> MergeOpIndex = InvalidIndex.V; bits<3> VLMul; bit HasDummyMask = 0; } // The actual table. def RISCVVPseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr", "VLIndex", "SEWIndex", "MergeOpIndex", "VLMul", "HasDummyMask" ]; let PrimaryKey = [ "Pseudo" ]; let PrimaryKeyName = "getPseudoInfo"; } def RISCVVIntrinsicsTable : GenericTable { let FilterClass = "RISCVVIntrinsic"; let CppTypeName = "RISCVVIntrinsicInfo"; let Fields = ["IntrinsicID", "ExtendOperand"]; let PrimaryKey = ["IntrinsicID"]; let PrimaryKeyName = "getRISCVVIntrinsicInfo"; } //===----------------------------------------------------------------------===// // Helpers to define the different pseudo instructions. //===----------------------------------------------------------------------===// class PseudoToVInst { string VInst = !subst("_M8", "", !subst("_M4", "", !subst("_M2", "", !subst("_M1", "", !subst("_MF2", "", !subst("_MF4", "", !subst("_MF8", "", !subst("_MASK", "", !subst("Pseudo", "", PseudoInst))))))))); } // The destination vector register group for a masked vector instruction cannot // overlap the source mask register (v0), unless the destination vector register // is being written with a mask value (e.g., comparisons) or the scalar result // of a reduction. class GetVRegNoV0 { VReg R = !cond(!eq(VRegClass, VR) : VRNoV0, !eq(VRegClass, VRM2) : VRM2NoV0, !eq(VRegClass, VRM4) : VRM4NoV0, !eq(VRegClass, VRM8) : VRM8NoV0, !eq(1, 1) : VRegClass); } // Join strings in list using separator and ignoring empty elements class Join strings, string separator> { string ret = !foldl(!head(strings), !tail(strings), a, b, !cond( !and(!empty(a), !empty(b)) : "", !empty(a) : b, !empty(b) : a, 1 : a#separator#b)); } class VPseudo : Pseudo, RISCVVPseudo { let BaseInstr = instr; let VLMul = m.value; } class VPseudoUSLoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 2; let SEWIndex = 3; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSLoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let VLIndex = 4; let SEWIndex = 5; let MergeOpIndex = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSLoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSLoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let VLIndex = 5; let SEWIndex = 6; let MergeOpIndex = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoILoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, IdxClass:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoILoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, IdxClass:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let VLIndex = 5; let SEWIndex = 6; let MergeOpIndex = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 2; let SEWIndex = 3; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 4; let SEWIndex = 5; let BaseInstr = !cast(PseudoToVInst.VInst); } // Unary instruction that is never masked so HasDummyMask=0. class VPseudoUnaryNoDummyMask : Pseudo<(outs RetClass:$rd), (ins Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 2; let SEWIndex = 3; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryNoMask : Pseudo<(outs RetClass:$rd), (ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Constraint; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoIStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 3; let SEWIndex = 4; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoIStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let VLIndex = 4; let SEWIndex = 5; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret; let Uses = [VL, VTYPE]; let VLIndex = 5; let SEWIndex = 6; let MergeOpIndex = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryCarryIn : Pseudo<(outs RetClass:$rd), !if(CarryIn, (ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, GPR:$vl, ixlenimm:$sew), (ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew)), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Constraint; let Uses = [VL, VTYPE]; let VLIndex = !if(CarryIn, 4, 3); let SEWIndex = !if(CarryIn, 5, 4); let MergeOpIndex = InvalidIndex.V; let BaseInstr = !cast(PseudoToVInst.VInst); let VLMul = MInfo.value; } class VPseudoTernaryNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Join<[Constraint, "$rd = $rs3"], ",">.ret; let Uses = [VL, VTYPE]; let VLIndex = 4; let SEWIndex = 5; let MergeOpIndex = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } multiclass VPseudoUSLoad { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoUSLoadNoMask; def "_V_" # LInfo # "_MASK" : VPseudoUSLoadMask; } } } multiclass VPseudoSLoad { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoSLoadNoMask; def "_V_" # LInfo # "_MASK" : VPseudoSLoadMask; } } } multiclass VPseudoILoad { foreach lmul = MxList.m in foreach idx_lmul = MxList.m in { defvar LInfo = lmul.MX; defvar Vreg = lmul.vrclass; defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; let VLMul = lmul.value in { def "_V_" # IdxLInfo # "_" # LInfo : VPseudoILoadNoMask; def "_V_" # IdxLInfo # "_" # LInfo # "_MASK" : VPseudoILoadMask; } } } multiclass VPseudoUSStore { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoUSStoreNoMask; def "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask; } } } multiclass VPseudoSStore { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoSStoreNoMask; def "_V_" # LInfo # "_MASK" : VPseudoSStoreMask; } } } multiclass VPseudoIStore { foreach lmul = MxList.m in foreach idx_lmul = MxList.m in { defvar LInfo = lmul.MX; defvar Vreg = lmul.vrclass; defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; let VLMul = lmul.value in { def "_V_" # IdxLInfo # "_" # LInfo : VPseudoIStoreNoMask; def "_V_" # IdxLInfo # "_" # LInfo # "_MASK" : VPseudoIStoreMask; } } } multiclass VPseudoBinary { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoBinaryNoMask; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask; } } multiclass VPseudoBinaryV_VV { foreach m = MxList.m in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryV_VX { foreach m = MxList.m in defm !if(IsFloat, "_VF", "_VX") : VPseudoBinary; } multiclass VPseudoBinaryV_VI { foreach m = MxList.m in defm _VI : VPseudoBinary; } // We use earlyclobber here due to // * The destination EEW is smaller than the source EEW and the overlap is // in the lowest-numbered part of the source register group is legal. // Otherwise, it is illegal. // * The destination EEW is greater than the source EEW, the source EMUL is // at least 1, and the overlap is in the highest-numbered part of the // destination register group is legal. Otherwise, it is illegal. multiclass VPseudoBinaryW_VV { foreach m = MxList.m[0-5] in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryW_VX { foreach m = MxList.m[0-5] in defm !if(IsFloat, "_VF", "_VX") : VPseudoBinary; } multiclass VPseudoBinaryW_WV { foreach m = MxList.m[0-5] in defm _WV : VPseudoBinary; } multiclass VPseudoBinaryW_WX { foreach m = MxList.m[0-5] in defm !if(IsFloat, "_WF", "_WX") : VPseudoBinary; } multiclass VPseudoBinaryV_WV { foreach m = MxList.m[0-5] in defm _WV : VPseudoBinary; } multiclass VPseudoBinaryV_WX { foreach m = MxList.m[0-5] in defm _WX : VPseudoBinary; } multiclass VPseudoBinaryV_WI { foreach m = MxList.m[0-5] in defm _WI : VPseudoBinary; } // For vadc and vsbc, the instruction encoding is reserved if the destination // vector register is v0. // For vadc and vsbc, CarryIn == 1 and CarryOut == 0 multiclass VPseudoBinaryV_VM { foreach m = MxList.m in def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, m.vrclass, m, CarryIn, Constraint>; } multiclass VPseudoBinaryV_XM { foreach m = MxList.m in def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, GPR, m, CarryIn, Constraint>; } multiclass VPseudoBinaryV_IM { foreach m = MxList.m in def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, simm5, m, CarryIn, Constraint>; } multiclass VPseudoUnaryV_V_X_I_NoDummyMask { foreach m = MxList.m in { let VLMul = m.value in { def "_V_" # m.MX : VPseudoUnaryNoDummyMask; def "_X_" # m.MX : VPseudoUnaryNoDummyMask; def "_I_" # m.MX : VPseudoUnaryNoDummyMask; } } } // The destination EEW is 1. // The source EEW is 8, 16, 32, or 64. // When the destination EEW is different from source EEW, we need to use // @earlyclobber to avoid the overlap between destination and source registers. multiclass VPseudoBinaryM_VV { foreach m = MxList.m in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryM_VX { foreach m = MxList.m in defm !if(IsFloat, "_VF", "_VX") : VPseudoBinary; } multiclass VPseudoBinaryM_VI { foreach m = MxList.m in defm _VI : VPseudoBinary; } multiclass VPseudoBinaryV_VV_VX_VI { defm "" : VPseudoBinaryV_VV; defm "" : VPseudoBinaryV_VX; defm "" : VPseudoBinaryV_VI; } multiclass VPseudoBinaryV_VV_VX { defm "" : VPseudoBinaryV_VV; defm "" : VPseudoBinaryV_VX; } multiclass VPseudoBinaryV_VX_VI { defm "" : VPseudoBinaryV_VX; defm "" : VPseudoBinaryV_VI; } multiclass VPseudoBinaryW_VV_VX { defm "" : VPseudoBinaryW_VV; defm "" : VPseudoBinaryW_VX; } multiclass VPseudoBinaryW_WV_WX { defm "" : VPseudoBinaryW_WV; defm "" : VPseudoBinaryW_WX; } multiclass VPseudoBinaryV_VM_XM_IM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryV_VM_XM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryM_VM_XM_IM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryM_VM_XM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryM_V_X_I { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryM_V_X { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryV_WV_WX_WI { defm "" : VPseudoBinaryV_WV; defm "" : VPseudoBinaryV_WX; defm "" : VPseudoBinaryV_WI; } multiclass VPseudoTernary { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoTernaryNoMask; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask; } } multiclass VPseudoTernaryV_VV { foreach m = MxList.m in defm _VV : VPseudoTernary; } multiclass VPseudoTernaryV_VX { foreach m = MxList.m in defm _VX : VPseudoTernary; } multiclass VPseudoTernaryV_VX_AAXA { foreach m = MxList.m in defm _VX : VPseudoTernary; } multiclass VPseudoTernaryV_VI { foreach m = MxList.m in defm _VI : VPseudoTernary; } multiclass VPseudoTernaryV_VV_VX_AAXA { defm "" : VPseudoTernaryV_VV; defm "" : VPseudoTernaryV_VX_AAXA; } multiclass VPseudoTernaryV_VX_VI { defm "" : VPseudoTernaryV_VX; defm "" : VPseudoTernaryV_VI; } multiclass VPseudoBinaryM_VV_VX_VI { defm "" : VPseudoBinaryM_VV; defm "" : VPseudoBinaryM_VX; defm "" : VPseudoBinaryM_VI; } multiclass VPseudoBinaryM_VV_VX { defm "" : VPseudoBinaryM_VV; defm "" : VPseudoBinaryM_VX; } multiclass VPseudoBinaryM_VX_VI { defm "" : VPseudoBinaryM_VX; defm "" : VPseudoBinaryM_VI; } //===----------------------------------------------------------------------===// // Helpers to define the SDNode patterns. //===----------------------------------------------------------------------===// multiclass VPatUSLoadStoreSDNode { defvar load_instr = !cast("PseudoVLE"#sew#"_V_"#vlmul.MX); defvar store_instr = !cast("PseudoVSE"#sew#"_V_"#vlmul.MX); // Load def : Pat<(type (load reg_rs1:$rs1)), (load_instr reg_rs1:$rs1, VLMax, sew)>; // Store def : Pat<(store type:$rs2, reg_rs1:$rs1), (store_instr reg_class:$rs2, reg_rs1:$rs1, VLMax, sew)>; } multiclass VPatUSLoadStoreSDNodes { foreach vti = AllVectors in defm "" : VPatUSLoadStoreSDNode; } class VPatBinarySDNode : Pat<(result_type (vop (op_type op_reg_class:$rs1), (op_type op_reg_class:$rs2))), (!cast(instruction_name#"_VV_"# vlmul.MX) op_reg_class:$rs1, op_reg_class:$rs2, VLMax, sew)>; multiclass VPatBinarySDNode { foreach vti = AllIntegerVectors in def : VPatBinarySDNode; } //===----------------------------------------------------------------------===// // Helpers to define the intrinsic patterns. //===----------------------------------------------------------------------===// class VPatBinaryNoMask : Pat<(result_type (!cast(intrinsic_name) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT GPR:$vl))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), ToFPR32.ret, (NoX0 GPR:$vl), sew)>; class VPatBinaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT GPR:$vl))), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), ToFPR32.ret, (mask_type V0), (NoX0 GPR:$vl), sew)>; class VPatTernaryNoMask : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT GPR:$vl))), (!cast(inst#_#kind#"_"# vlmul.MX) result_reg_class:$rs3, ToFPR32.ret, op2_kind:$rs2, (NoX0 GPR:$vl), sew)>; class VPatTernaryMask : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT GPR:$vl))), (!cast(inst#_#kind#"_"# vlmul.MX # "_MASK") result_reg_class:$rs3, ToFPR32.ret, op2_kind:$rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>; multiclass VPatUSLoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, GPR:$vl)), (Pseudo $rs1, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, (mask_type V0), GPR:$vl)), (PseudoMask $merge, $rs1, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatSLoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, GPR:$rs2, GPR:$vl)), (Pseudo $rs1, $rs2, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, GPR:$rs2, (mask_type V0), GPR:$vl)), (PseudoMask $merge, $rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatILoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, (idx_type idx_reg_class:$rs2), GPR:$vl)), (Pseudo $rs1, $rs2, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, (idx_type idx_reg_class:$rs2), (mask_type V0), GPR:$vl)), (PseudoMask $merge, $rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatUSStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, GPR:$vl), (Pseudo $rs3, $rs1, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, (mask_type V0), GPR:$vl), (PseudoMask $rs3, $rs1, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatSStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, GPR:$vl), (Pseudo $rs3, $rs1, $rs2, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, (mask_type V0), GPR:$vl), (PseudoMask $rs3, $rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatIStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, (idx_type idx_reg_class:$rs2), GPR:$vl), (Pseudo $rs3, $rs1, $rs2, (NoX0 GPR:$vl), sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, (idx_type idx_reg_class:$rs2), (mask_type V0), GPR:$vl), (PseudoMask $rs3, $rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatBinary { def : VPatBinaryNoMask; def : VPatBinaryMask; } multiclass VPatBinaryCarryIn { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT GPR:$vl))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), ToFPR32.ret, (mask_type V0), (NoX0 GPR:$vl), sew)>; } multiclass VPatBinaryMaskOut { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT GPR:$vl))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), ToFPR32.ret, (NoX0 GPR:$vl), sew)>; } multiclass VPatBinaryV_VV vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VX vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VI vtilist, Operand imm_type> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryW_VV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryW_VX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryW_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryW_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_WI vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_VM { foreach vti = AllIntegerVectors in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_XM { foreach vti = AllIntegerVectors in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_IM { foreach vti = AllIntegerVectors in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_V { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_X { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_I { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryM_VV vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryM_VX vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryM_VI vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VV_VX_VI vtilist, Operand ImmType = simm5> { defm "" : VPatBinaryV_VV; defm "" : VPatBinaryV_VX; defm "" : VPatBinaryV_VI; } multiclass VPatBinaryV_VV_VX vtilist> { defm "" : VPatBinaryV_VV; defm "" : VPatBinaryV_VX; } multiclass VPatBinaryV_VX_VI vtilist> { defm "" : VPatBinaryV_VX; defm "" : VPatBinaryV_VI; } multiclass VPatBinaryW_VV_VX vtilist> { defm "" : VPatBinaryW_VV; defm "" : VPatBinaryW_VX; } multiclass VPatBinaryW_WV_WX vtilist> { defm "" : VPatBinaryW_WV; defm "" : VPatBinaryW_WX; } multiclass VPatBinaryV_WV_WX_WI vtilist> { defm "" : VPatBinaryV_WV; defm "" : VPatBinaryV_WX; defm "" : VPatBinaryV_WI; } multiclass VPatBinaryV_VM_XM_IM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; defm "" : VPatBinaryV_IM; } multiclass VPatBinaryM_VM_XM_IM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; defm "" : VPatBinaryV_IM; } multiclass VPatBinaryM_V_X_I { defm "" : VPatBinaryV_V; defm "" : VPatBinaryV_X; defm "" : VPatBinaryV_I; } multiclass VPatBinaryV_VM_XM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; } multiclass VPatBinaryM_VM_XM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; } multiclass VPatBinaryM_V_X { defm "" : VPatBinaryV_V; defm "" : VPatBinaryV_X; } multiclass VPatTernary { def : VPatTernaryNoMask; def : VPatTernaryMask; } multiclass VPatTernaryV_VV vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VX vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VX_AAXA vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VI vtilist, Operand Imm_type> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VV_VX_AAXA vtilist> { defm "" : VPatTernaryV_VV; defm "" : VPatTernaryV_VX_AAXA; } multiclass VPatTernaryV_VX_VI vtilist, Operand Imm_type = simm5> { defm "" : VPatTernaryV_VX; defm "" : VPatTernaryV_VI; } multiclass VPatBinaryM_VV_VX_VI vtilist> { defm "" : VPatBinaryM_VV; defm "" : VPatBinaryM_VX; defm "" : VPatBinaryM_VI; } multiclass VPatBinaryM_VV_VX vtilist> { defm "" : VPatBinaryM_VV; defm "" : VPatBinaryM_VX; } multiclass VPatBinaryM_VX_VI vtilist> { defm "" : VPatBinaryM_VX; defm "" : VPatBinaryM_VI; } //===----------------------------------------------------------------------===// // Pseudo instructions and patterns. //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // Pseudo Instructions for CodeGen //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { def PseudoVMV1R_V : VPseudo; def PseudoVMV2R_V : VPseudo; def PseudoVMV4R_V : VPseudo; def PseudoVMV8R_V : VPseudo; } //===----------------------------------------------------------------------===// // 6. Configuration-Setting Instructions //===----------------------------------------------------------------------===// // Pseudos. let hasSideEffects = 1, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in { def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei), []>; } //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// // Pseudos Unit-Stride Loads and Stores foreach eew = EEWList in { defm PseudoVLE # eew : VPseudoUSLoad; defm PseudoVSE # eew : VPseudoUSStore; } //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// // Vector Strided Loads and Stores foreach eew = EEWList in { defm PseudoVLSE # eew : VPseudoSLoad; defm PseudoVSSE # eew : VPseudoSStore; } //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// // Vector Indexed Loads and Stores foreach eew = EEWList in { defm PseudoVLXEI # eew : VPseudoILoad; defm PseudoVSXEI # eew : VPseudoIStore; defm PseudoVSUXEI # eew : VPseudoIStore; } //===----------------------------------------------------------------------===// // 7.7. Unit-stride Fault-Only-First Loads //===----------------------------------------------------------------------===// // vleff may update VL register let hasSideEffects = 1, Defs = [VL] in foreach eew = EEWList in { defm PseudoVLE # eew # FF : VPseudoUSLoad; } //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVADD : VPseudoBinaryV_VV_VX_VI; defm PseudoVSUB : VPseudoBinaryV_VV_VX; defm PseudoVRSUB : VPseudoBinaryV_VX_VI; //===----------------------------------------------------------------------===// // 12.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm PseudoVWADDU : VPseudoBinaryW_VV_VX; defm PseudoVWSUBU : VPseudoBinaryW_VV_VX; defm PseudoVWADD : VPseudoBinaryW_VV_VX; defm PseudoVWSUB : VPseudoBinaryW_VV_VX; defm PseudoVWADDU : VPseudoBinaryW_WV_WX; defm PseudoVWSUBU : VPseudoBinaryW_WV_WX; defm PseudoVWADD : VPseudoBinaryW_WV_WX; defm PseudoVWSUB : VPseudoBinaryW_WV_WX; //===----------------------------------------------------------------------===// // 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm PseudoVADC : VPseudoBinaryV_VM_XM_IM; defm PseudoVMADC : VPseudoBinaryM_VM_XM_IM<"@earlyclobber $rd">; defm PseudoVMADC : VPseudoBinaryM_V_X_I<"@earlyclobber $rd">; defm PseudoVSBC : VPseudoBinaryV_VM_XM; defm PseudoVMSBC : VPseudoBinaryM_VM_XM<"@earlyclobber $rd">; defm PseudoVMSBC : VPseudoBinaryM_V_X<"@earlyclobber $rd">; //===----------------------------------------------------------------------===// // 12.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVAND : VPseudoBinaryV_VV_VX_VI; defm PseudoVOR : VPseudoBinaryV_VV_VX_VI; defm PseudoVXOR : VPseudoBinaryV_VV_VX_VI; //===----------------------------------------------------------------------===// // 12.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSLL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSRL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSRA : VPseudoBinaryV_VV_VX_VI; //===----------------------------------------------------------------------===// // 12.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVNSRL : VPseudoBinaryV_WV_WX_WI; defm PseudoVNSRA : VPseudoBinaryV_WV_WX_WI; //===----------------------------------------------------------------------===// // 12.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm PseudoVMSEQ : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSNE : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSLTU : VPseudoBinaryM_VV_VX; defm PseudoVMSLT : VPseudoBinaryM_VV_VX; defm PseudoVMSLEU : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSLE : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSGTU : VPseudoBinaryM_VX_VI; defm PseudoVMSGT : VPseudoBinaryM_VX_VI; //===----------------------------------------------------------------------===// // 12.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm PseudoVMINU : VPseudoBinaryV_VV_VX; defm PseudoVMIN : VPseudoBinaryV_VV_VX; defm PseudoVMAXU : VPseudoBinaryV_VV_VX; defm PseudoVMAX : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVMUL : VPseudoBinaryV_VV_VX; defm PseudoVMULH : VPseudoBinaryV_VV_VX; defm PseudoVMULHU : VPseudoBinaryV_VV_VX; defm PseudoVMULHSU : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVDIVU : VPseudoBinaryV_VV_VX; defm PseudoVDIV : VPseudoBinaryV_VV_VX; defm PseudoVREMU : VPseudoBinaryV_VV_VX; defm PseudoVREM : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVWMUL : VPseudoBinaryW_VV_VX; defm PseudoVWMULU : VPseudoBinaryW_VV_VX; defm PseudoVWMULSU : VPseudoBinaryW_VV_VX; //===----------------------------------------------------------------------===// // 12.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVMACC : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVNMSAC : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVMADD : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVNMSUB : VPseudoTernaryV_VV_VX_AAXA; //===----------------------------------------------------------------------===// // 12.17. Vector Integer Move Instructions //===----------------------------------------------------------------------===// defm PseudoVMV_V : VPseudoUnaryV_V_X_I_NoDummyMask; //===----------------------------------------------------------------------===// // 13.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// let Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVSADDU : VPseudoBinaryV_VV_VX_VI; defm PseudoVSADD : VPseudoBinaryV_VV_VX_VI; defm PseudoVSSUBU : VPseudoBinaryV_VV_VX; defm PseudoVSSUB : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], hasSideEffects = 1 in { defm PseudoVAADDU : VPseudoBinaryV_VV_VX; defm PseudoVAADD : VPseudoBinaryV_VV_VX; defm PseudoVASUBU : VPseudoBinaryV_VV_VX; defm PseudoVASUB : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVSMUL : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], hasSideEffects = 1 in { defm PseudoVSSRL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSSRA : VPseudoBinaryV_VV_VX_VI; } //===----------------------------------------------------------------------===// // 13.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVNCLIP : VPseudoBinaryV_WV_WX_WI; defm PseudoVNCLIPU : VPseudoBinaryV_WV_WX_WI; } } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm PseudoVFADD : VPseudoBinaryV_VV_VX; defm PseudoVFSUB : VPseudoBinaryV_VV_VX; defm PseudoVFRSUB : VPseudoBinaryV_VX; //===----------------------------------------------------------------------===// // 14.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm PseudoVFWADD : VPseudoBinaryW_VV_VX; defm PseudoVFWSUB : VPseudoBinaryW_VV_VX; defm PseudoVFWADD : VPseudoBinaryW_WV_WX; defm PseudoVFWSUB : VPseudoBinaryW_WV_WX; //===----------------------------------------------------------------------===// // 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVFMUL : VPseudoBinaryV_VV_VX; defm PseudoVFDIV : VPseudoBinaryV_VV_VX; defm PseudoVFRDIV : VPseudoBinaryV_VX; //===----------------------------------------------------------------------===// // 14.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm PseudoVFWMUL : VPseudoBinaryW_VV_VX; //===----------------------------------------------------------------------===// // 14.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm PseudoVFSGNJ : VPseudoBinaryV_VV_VX; defm PseudoVFSGNJN : VPseudoBinaryV_VV_VX; defm PseudoVFSGNJX : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 14.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm PseudoVMFEQ : VPseudoBinaryM_VV_VX; defm PseudoVMFNE : VPseudoBinaryM_VV_VX; defm PseudoVMFLT : VPseudoBinaryM_VV_VX; defm PseudoVMFLE : VPseudoBinaryM_VV_VX; defm PseudoVMFGT : VPseudoBinaryM_VX; defm PseudoVMFGE : VPseudoBinaryM_VX; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0, usesCustomInserter = 1, Uses = [VL, VTYPE] in { foreach m = MxList.m in { let VLMul = m.value in { let SEWIndex = 2, BaseInstr = VMV_X_S in def PseudoVMV_X_S # "_" # m.MX: Pseudo<(outs GPR:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, RISCVVPseudo; let VLIndex = 3, SEWIndex = 4, BaseInstr = VMV_S_X, Constraints = "$rd = $rs1" in def PseudoVMV_S_X # "_" # m.MX: Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo; } } } } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 17.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV, HasStdExtF] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0, usesCustomInserter = 1, Uses = [VL, VTYPE] in { foreach m = MxList.m in { let VLMul = m.value in { let SEWIndex = 2, BaseInstr = VFMV_F_S in def PseudoVFMV_F_S # "_" # m.MX : Pseudo<(outs FPR32:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, RISCVVPseudo; let VLIndex = 3, SEWIndex = 4, BaseInstr = VFMV_S_F, Constraints = "$rd = $rs1" in def PseudoVFMV_S_F # "_" # m.MX : Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, FPR32:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo; } } } } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm PseudoVSLIDEUP : VPseudoTernaryV_VX_VI; defm PseudoVSLIDEDOWN : VPseudoTernaryV_VX_VI; defm PseudoVSLIDE1UP : VPseudoBinaryV_VX; defm PseudoVSLIDE1DOWN : VPseudoBinaryV_VX; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm PseudoVFSLIDE1UP : VPseudoBinaryV_VX; defm PseudoVFSLIDE1DOWN : VPseudoBinaryV_VX; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // Patterns. //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { // Whole-register vector patterns. // 7.4. Vector Unit-Stride Instructions defm "" : VPatUSLoadStoreSDNodes; defm "" : VPatUSLoadStoreSDNodes; // 12.1. Vector Single-Width Integer Add and Subtract defm "" : VPatBinarySDNode; //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { defm : VPatUSLoad<"int_riscv_vle", "PseudoVLE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatUSLoad<"int_riscv_vleff", "PseudoVLE" # vti.SEW # "FF", vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatUSStore<"int_riscv_vse", "PseudoVSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; } //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { defm : VPatSLoad<"int_riscv_vlse", "PseudoVLSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatSStore<"int_riscv_vsse", "PseudoVSSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; } //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in foreach eew = EEWList in { defvar vlmul = vti.LMul; defvar octuple_lmul = !cond(!eq(vti.LMul.MX, "MF8") : 1, !eq(vti.LMul.MX, "MF4") : 2, !eq(vti.LMul.MX, "MF2") : 4, !eq(vti.LMul.MX, "M1") : 8, !eq(vti.LMul.MX, "M2") : 16, !eq(vti.LMul.MX, "M4") : 32, !eq(vti.LMul.MX, "M8") : 64); defvar log_sew = shift_amount.val; // The data vector register group has EEW=SEW, EMUL=LMUL, while the offset // vector register group has EEW encoding in the instruction and EMUL=(EEW/SEW)*LMUL. // calculate octuple elmul which is (eew * octuple_lmul) >> log_sew defvar octuple_elmul = !srl(!mul(eew, octuple_lmul), log_sew); // legal octuple elmul should be more than 0 and less than equal 64 if !gt(octuple_elmul, 0) then { if !le(octuple_elmul, 64) then { defvar log_elmul = shift_amount.val; // 0, 1, 2 -> V_MF8 ~ V_MF2 // 3, 4, 5, 6 -> V_M1 ~ V_M8 defvar elmul_str = !if(!eq(log_elmul, 0), "MF8", !if(!eq(log_elmul, 1), "MF4", !if(!eq(log_elmul, 2), "MF2", "M" # !cast(!shl(1, !add(log_elmul, -3)))))); defvar elmul =!cast("V_" # elmul_str); defvar idx_vti = !cast("VI" # eew # elmul_str); defm : VPatILoad<"int_riscv_vlxe", "PseudoVLXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; defm : VPatIStore<"int_riscv_vsxe", "PseudoVSXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; defm : VPatIStore<"int_riscv_vsuxe", "PseudoVSUXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; } } } //===----------------------------------------------------------------------===// // 12. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>; defm "" : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">; defm "" : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">; defm "" : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">; defm "" : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">; defm "" : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">; defm "" : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">; //===----------------------------------------------------------------------===// // 12.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 12.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>; defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>; defm "" : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>; defm "" : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.17. Vector Integer Move Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$rs1), GPR:$vl)), (!cast("PseudoVMV_V_V_"#vti.LMul.MX) $rs1, (NoX0 GPR:$vl), vti.SEW)>; } foreach vti = AllIntegerVectors in { def : Pat<(vti.Vector (int_riscv_vmv_v_x GPR:$rs2, GPR:$vl)), (!cast("PseudoVMV_V_X_"#vti.LMul.MX) $rs2, (NoX0 GPR:$vl), vti.SEW)>; def : Pat<(vti.Vector (int_riscv_vmv_v_x simm5:$imm5, GPR:$vl)), (!cast("PseudoVMV_V_I_"#vti.LMul.MX) simm5:$imm5, (NoX0 GPR:$vl), vti.SEW)>; } //===----------------------------------------------------------------------===// // 13.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vsmul", "PseudoVSMUL", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 13.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>; defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors>; //===----------------------------------------------------------------------===// // 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors>; //===----------------------------------------------------------------------===// // 14.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>; defm "" : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>; defm "" : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 17.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { foreach vti = AllIntegerVectors in { def : Pat<(riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2)), (!cast("PseudoVMV_X_S_" # vti.LMul.MX) $rs2, vti.SEW)>; def : Pat<(vti.Vector (int_riscv_vmv_s_x (vti.Vector vti.RegClass:$rs1), GPR:$rs2, GPR:$vl)), (!cast("PseudoVMV_S_X_" # vti.LMul.MX) (vti.Vector $rs1), $rs2, (NoX0 GPR:$vl), vti.SEW)>; } } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 17.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV, HasStdExtF] in { foreach fvti = AllFloatVectors in { defvar instr = !cast("PseudoVFMV_F_S_" # fvti.LMul.MX); def : Pat<(fvti.Scalar (int_riscv_vfmv_f_s (fvti.Vector fvti.RegClass:$rs2))), // Floating point instructions with a scalar result will always // generate the result in a register of class FPR32. When dealing // with the f64 variant of a pattern we need to promote the FPR32 // subregister generated by the instruction to the FPR64 base // register expected by the type in the pattern !cond(!eq(!cast(fvti.ScalarRegClass), !cast(FPR64)): (SUBREG_TO_REG (i32 -1), (instr $rs2, fvti.SEW), sub_32), !eq(!cast(fvti.ScalarRegClass), !cast(FPR16)): (EXTRACT_SUBREG (instr $rs2, fvti.SEW), sub_16), !eq(1, 1): (instr $rs2, fvti.SEW))>; def : Pat<(fvti.Vector (int_riscv_vfmv_s_f (fvti.Vector fvti.RegClass:$rs1), (fvti.Scalar fvti.ScalarRegClass:$rs2), GPR:$vl)), (!cast("PseudoVFMV_S_F_" # fvti.LMul.MX) (fvti.Vector $rs1), ToFPR32.ret, (NoX0 GPR:$vl), fvti.SEW)>; } } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm "" : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>; defm "" : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm "" : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>; defm "" : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>; defm "" : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>; } // Predicates = [HasStdExtV, HasStdExtF]