//===- Reader.cpp - Code to read bytecode files ---------------------------===// // // This library implements the functionality defined in llvm/Bytecode/Reader.h // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // // TODO: Make error message outputs be configurable depending on an option? // TODO: Allow passing in an option to ignore the symbol table // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Bytecode/Format.h" #include "llvm/GlobalVariable.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include #include #include #include #include #include #include using std::cerr; using std::make_pair; bool BytecodeParser::getTypeSlot(const Type *Ty, unsigned &Slot) { if (Ty->isPrimitiveType()) { Slot = Ty->getPrimitiveID(); } else { // Check the method level types first... TypeValuesListTy::iterator I = find(MethodTypeValues.begin(), MethodTypeValues.end(), Ty); if (I != MethodTypeValues.end()) { Slot = FirstDerivedTyID+ModuleTypeValues.size()+ (&*I - &MethodTypeValues[0]); } else { I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty); if (I == ModuleTypeValues.end()) return true; // Didn't find type! Slot = FirstDerivedTyID + (&*I - &ModuleTypeValues[0]); } } //cerr << "getTypeSlot '" << Ty->getName() << "' = " << Slot << "\n"; return false; } const Type *BytecodeParser::getType(unsigned ID) { const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID); if (T) return T; //cerr << "Looking up Type ID: " << ID << "\n"; const Value *D = getValue(Type::TypeTy, ID, false); if (D == 0) return failure(0); return cast(D); } int BytecodeParser::insertValue(Value *Val, std::vector &ValueTab) { unsigned type; if (getTypeSlot(Val->getType(), type)) return failure(-1); assert(type != Type::TypeTyID && "Types should never be insertValue'd!"); if (ValueTab.size() <= type) ValueTab.resize(type+1, ValueList()); //cerr << "insertValue Values[" << type << "][" << ValueTab[type].size() // << "] = " << Val << "\n"; ValueTab[type].push_back(Val); return ValueTab[type].size()-1; } Value *BytecodeParser::getValue(const Type *Ty, unsigned oNum, bool Create) { unsigned Num = oNum; unsigned type; // The type plane it lives in... if (getTypeSlot(Ty, type)) return failure(0); // TODO: true if (type == Type::TypeTyID) { // The 'type' plane has implicit values assert(Create == false); const Type *T = Type::getPrimitiveType((Type::PrimitiveID)Num); if (T) return (Value*)T; // Asked for a primitive type... // Otherwise, derived types need offset... Num -= FirstDerivedTyID; // Is it a module level type? if (Num < ModuleTypeValues.size()) return (Value*)ModuleTypeValues[Num].get(); // Nope, is it a method level type? Num -= ModuleTypeValues.size(); if (Num < MethodTypeValues.size()) return (Value*)MethodTypeValues[Num].get(); return 0; } if (type < ModuleValues.size()) { if (Num < ModuleValues[type].size()) return ModuleValues[type][Num]; Num -= ModuleValues[type].size(); } if (Values.size() > type && Values[type].size() > Num) return Values[type][Num]; if (!Create) return failure(0); // Do not create a placeholder? Value *d = 0; switch (Ty->getPrimitiveID()) { case Type::LabelTyID: d = new BBPHolder(Ty, oNum); break; case Type::FunctionTyID: cerr << "Creating method pholder! : " << type << ":" << oNum << " " << Ty->getName() << "\n"; d = new MethPHolder(Ty, oNum); if (insertValue(d, LateResolveModuleValues) ==-1) return failure(0); return d; default: d = new DefPHolder(Ty, oNum); break; } assert(d != 0 && "How did we not make something?"); if (insertValue(d, LateResolveValues) == -1) return failure(0); return d; } bool BytecodeParser::postResolveValues(ValueTable &ValTab) { bool Error = false; for (unsigned ty = 0; ty < ValTab.size(); ++ty) { ValueList &DL = ValTab[ty]; unsigned Size; while ((Size = DL.size())) { unsigned IDNumber = getValueIDNumberFromPlaceHolder(DL[Size-1]); Value *D = DL[Size-1]; DL.pop_back(); Value *NewDef = getValue(D->getType(), IDNumber, false); if (NewDef == 0) { Error = true; // Unresolved thinger cerr << "Unresolvable reference found: <" << D->getType()->getDescription() << ">:" << IDNumber << "!\n"; } else { // Fixup all of the uses of this placeholder def... D->replaceAllUsesWith(NewDef); // Now that all the uses are gone, delete the placeholder... // If we couldn't find a def (error case), then leak a little delete D; // memory, 'cause otherwise we can't remove all uses! } } } return Error; } bool BytecodeParser::ParseBasicBlock(const uchar *&Buf, const uchar *EndBuf, BasicBlock *&BB) { BB = new BasicBlock(); while (Buf < EndBuf) { Instruction *Inst; if (ParseInstruction(Buf, EndBuf, Inst)) { delete BB; return failure(true); } if (Inst == 0) { delete BB; return failure(true); } if (insertValue(Inst, Values) == -1) { delete BB; return failure(true); } BB->getInstList().push_back(Inst); BCR_TRACE(4, Inst); } return false; } bool BytecodeParser::ParseSymbolTable(const uchar *&Buf, const uchar *EndBuf, SymbolTable *ST) { while (Buf < EndBuf) { // Symtab block header: [num entries][type id number] unsigned NumEntries, Typ; if (read_vbr(Buf, EndBuf, NumEntries) || read_vbr(Buf, EndBuf, Typ)) return failure(true); const Type *Ty = getType(Typ); if (Ty == 0) return failure(true); BCR_TRACE(3, "Plane Type: '" << Ty << "' with " << NumEntries << " entries\n"); for (unsigned i = 0; i < NumEntries; ++i) { // Symtab entry: [def slot #][name] unsigned slot; if (read_vbr(Buf, EndBuf, slot)) return failure(true); std::string Name; if (read(Buf, EndBuf, Name, false)) // Not aligned... return failure(true); Value *D = getValue(Ty, slot, false); // Find mapping... if (D == 0) { BCR_TRACE(3, "FAILED LOOKUP: Slot #" << slot << "\n"); return failure(true); } BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << D; if (!isa(D)) cerr << "\n"); D->setName(Name, ST); } } if (Buf > EndBuf) return failure(true); return false; } Value* ConstantFwdRefs::find(const Type* Ty, unsigned Slot) { GlobalRefsType::iterator I = GlobalRefs.find(make_pair(Ty, Slot)); if (I != GlobalRefs.end()) { return I->second; } else { return failure(0); } } void ConstantFwdRefs::insert(const Type* Ty, unsigned Slot, Value* V) { // Keep track of the fact that we have a forward ref to recycle it const pair& result = GlobalRefs.insert(make_pair(make_pair(Ty, Slot), V)); assert(result.second == true && "Entry already exists for this slot?"); } void ConstantFwdRefs::erase(const Type* Ty, unsigned Slot) { GlobalRefsType::iterator I = GlobalRefs.find(make_pair(Ty, Slot)); if (I != GlobalRefs.end()) GlobalRefs.erase(I); } // GetFwdRefToConstant - Get a forward reference to a constant value. // Create a unique one if it does not exist already. // Constant* ConstantFwdRefs::GetFwdRefToConstant(const Type* Ty, unsigned Slot) { Constant* C = cast_or_null(find(Ty, Slot)); if (C) { BCR_TRACE(5, "Previous forward ref found!\n"); } else { // Create a placeholder for the constant reference and // keep track of the fact that we have a forward ref to recycle it BCR_TRACE(5, "Creating new forward ref to a constant!\n"); C = new ConstPHolder(Ty, Slot); insert(Ty, Slot, C); } return C; } // GetFwdRefToGlobal - Get a forward reference to a global value. // Create a unique one if it does not exist already. // GlobalValue* ConstantFwdRefs::GetFwdRefToGlobal(const PointerType* PT, unsigned Slot) { GlobalValue* GV = cast_or_null(find(PT, Slot)); if (GV) { BCR_TRACE(5, "Previous forward ref found!\n"); } else { BCR_TRACE(5, "Creating new forward ref to a global variable!\n"); // Create a placeholder for the global variable reference... GlobalVariable *GVar = new GlobalVariable(PT->getElementType(), false, true); // Keep track of the fact that we have a forward ref to recycle it insert(PT, Slot, GVar); // Must temporarily push this value into the module table... TheModule->getGlobalList().push_back(GVar); GV = GVar; } return GV; } void ConstantFwdRefs::ResolveRefsToValue(Value* NewV, unsigned Slot) { if (Value* vph = find(NewV->getType(), Slot)) { BCR_TRACE(3, "Mutating forward refs!\n"); // Loop over all of the uses of the Value. What they are depends // on what NewV is. Replacing a use of the old reference takes the // use off the use list, so loop with !use_empty(), not the use_iterator. while (!vph->use_empty()) { Constant *C = cast(vph->use_back()); unsigned numReplaced = C->mutateReferences(vph, NewV); assert(numReplaced > 0 && "Supposed user wasn't really a user?"); if (GlobalValue* GVal = dyn_cast(NewV)) { // Remove the placeholder GlobalValue from the module... GVal->getParent()->getGlobalList().remove(cast(vph)); } } delete vph; // Delete the old placeholder erase(NewV->getType(), Slot); // Remove the map entry for it } } // resolveRefsToGlobal - Patch up forward references to global values in the // form of ConstantPointerRef. // void BytecodeParser::resolveRefsToGlobal(GlobalValue *GV, unsigned Slot) { fwdRefs.ResolveRefsToValue(GV, Slot); } // resolveRefsToConstant - Patch up forward references to constants // void BytecodeParser::resolveRefsToConstant(Constant *C, unsigned Slot) { fwdRefs.ResolveRefsToValue(C, Slot); } bool BytecodeParser::ParseMethod(const uchar *&Buf, const uchar *EndBuf, Module *C) { // Clear out the local values table... Values.clear(); if (MethodSignatureList.empty()) { Error = "Function found, but FunctionSignatureList empty!"; return failure(true); // Unexpected method! } const PointerType *PMTy = MethodSignatureList.front().first; // PtrMeth const FunctionType *MTy = dyn_cast(PMTy->getElementType()); if (MTy == 0) return failure(true); // Not ptr to method! unsigned isInternal; if (read_vbr(Buf, EndBuf, isInternal)) return failure(true); unsigned MethSlot = MethodSignatureList.front().second; MethodSignatureList.pop_front(); Function *M = new Function(MTy, isInternal != 0); BCR_TRACE(2, "METHOD TYPE: " << MTy << "\n"); const FunctionType::ParamTypes &Params = MTy->getParamTypes(); for (FunctionType::ParamTypes::const_iterator It = Params.begin(); It != Params.end(); ++It) { Argument *FA = new Argument(*It); if (insertValue(FA, Values) == -1) { Error = "Error reading method arguments!\n"; delete M; return failure(true); } M->getArgumentList().push_back(FA); } while (Buf < EndBuf) { unsigned Type, Size; const uchar *OldBuf = Buf; if (readBlock(Buf, EndBuf, Type, Size)) { Error = "Error reading Function level block!"; delete M; return failure(true); } switch (Type) { case BytecodeFormat::ConstantPool: BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n"); if (ParseConstantPool(Buf, Buf+Size, Values, MethodTypeValues)) { delete M; return failure(true); } break; case BytecodeFormat::BasicBlock: { BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n"); BasicBlock *BB; if (ParseBasicBlock(Buf, Buf+Size, BB) || insertValue(BB, Values) == -1) { delete M; return failure(true); // Parse error... :( } M->getBasicBlockList().push_back(BB); break; } case BytecodeFormat::SymbolTable: BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n"); if (ParseSymbolTable(Buf, Buf+Size, M->getSymbolTableSure())) { delete M; return failure(true); } break; default: BCR_TRACE(2, "BLOCK :ignored! {\n"); Buf += Size; if (OldBuf > Buf) return failure(true); // Wrap around! break; } BCR_TRACE(2, "} end block\n"); if (align32(Buf, EndBuf)) { Error = "Error aligning Function level block!"; delete M; // Malformed bc file, read past end of block. return failure(true); } } if (postResolveValues(LateResolveValues) || postResolveValues(LateResolveModuleValues)) { Error = "Error resolving method values!"; delete M; return failure(true); // Unresolvable references! } Value *MethPHolder = getValue(PMTy, MethSlot, false); assert(MethPHolder && "Something is broken no placeholder found!"); assert(isa(MethPHolder) && "Not a function?"); unsigned type; // Type slot assert(!getTypeSlot(MTy, type) && "How can meth type not exist?"); getTypeSlot(PMTy, type); C->getFunctionList().push_back(M); // Replace placeholder with the real method pointer... ModuleValues[type][MethSlot] = M; // Clear out method level types... MethodTypeValues.clear(); // If anyone is using the placeholder make them use the real method instead MethPHolder->replaceAllUsesWith(M); // We don't need the placeholder anymore! delete MethPHolder; // If the method is empty, we don't need the method argument entries... if (M->isExternal()) M->getArgumentList().clear(); resolveRefsToGlobal(M, MethSlot); return false; } bool BytecodeParser::ParseModuleGlobalInfo(const uchar *&Buf, const uchar *End, Module *Mod) { if (!MethodSignatureList.empty()) { Error = "Two ModuleGlobalInfo packets found!"; return failure(true); // Two ModuleGlobal blocks? } // Read global variables... unsigned VarType; if (read_vbr(Buf, End, VarType)) return failure(true); while (VarType != Type::VoidTyID) { // List is terminated by Void // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, // bit2 = isInternal, bit3+ = slot# const Type *Ty = getType(VarType >> 3); if (!Ty || !isa(Ty)) { Error = "Global not pointer type! Ty = " + Ty->getDescription(); return failure(true); } const PointerType *PTy = cast(Ty); const Type *ElTy = PTy->getElementType(); Constant *Initializer = 0; if (VarType & 2) { // Does it have an initalizer? // Do not improvise... values must have been stored in the constant pool, // which should have been read before now. // unsigned InitSlot; if (read_vbr(Buf, End, InitSlot)) return failure(true); Value *V = getValue(ElTy, InitSlot, false); if (V == 0) return failure(true); Initializer = cast(V); } // Create the global variable... GlobalVariable *GV = new GlobalVariable(ElTy, VarType & 1, VarType & 4, Initializer); int DestSlot = insertValue(GV, ModuleValues); if (DestSlot == -1) return failure(true); Mod->getGlobalList().push_back(GV); resolveRefsToGlobal(GV, unsigned(DestSlot)); BCR_TRACE(2, "Global Variable of type: " << PTy->getDescription() << " into slot #" << DestSlot << "\n"); if (read_vbr(Buf, End, VarType)) return failure(true); } // Read the method signatures for all of the methods that are coming, and // create fillers in the Value tables. unsigned MethSignature; if (read_vbr(Buf, End, MethSignature)) return failure(true); while (MethSignature != Type::VoidTyID) { // List is terminated by Void const Type *Ty = getType(MethSignature); if (!Ty || !isa(Ty) || !isa(cast(Ty)->getElementType())) { Error = "Function not ptr to func type! Ty = " + Ty->getDescription(); return failure(true); } // We create methods by passing the underlying FunctionType to create... Ty = cast(Ty)->getElementType(); // When the ModuleGlobalInfo section is read, we load the type of each // method and the 'ModuleValues' slot that it lands in. We then load a // placeholder into its slot to reserve it. When the method is loaded, this // placeholder is replaced. // Insert the placeholder... Value *Val = new MethPHolder(Ty, 0); if (insertValue(Val, ModuleValues) == -1) return failure(true); // Figure out which entry of its typeslot it went into... unsigned TypeSlot; if (getTypeSlot(Val->getType(), TypeSlot)) return failure(true); unsigned SlotNo = ModuleValues[TypeSlot].size()-1; // Keep track of this information in a linked list that is emptied as // methods are loaded... // MethodSignatureList.push_back( make_pair(cast(Val->getType()), SlotNo)); if (read_vbr(Buf, End, MethSignature)) return failure(true); BCR_TRACE(2, "Function of type: " << Ty << "\n"); } if (align32(Buf, End)) return failure(true); // This is for future proofing... in the future extra fields may be added that // we don't understand, so we transparently ignore them. // Buf = End; return false; } bool BytecodeParser::ParseModule(const uchar *Buf, const uchar *EndBuf, Module *&C) { unsigned Type, Size; if (readBlock(Buf, EndBuf, Type, Size)) return failure(true); if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) { Error = "Expected Module packet!"; return failure(true); // Hrm, not a class? } BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n"); MethodSignatureList.clear(); // Just in case... // Read into instance variables... if (read_vbr(Buf, EndBuf, FirstDerivedTyID)) return failure(true); if (align32(Buf, EndBuf)) return failure(true); BCR_TRACE(1, "FirstDerivedTyID = " << FirstDerivedTyID << "\n"); TheModule = C = new Module(); fwdRefs.VisitingModule(TheModule); while (Buf < EndBuf) { const uchar *OldBuf = Buf; if (readBlock(Buf, EndBuf, Type, Size)) { delete C; return failure(true); } switch (Type) { case BytecodeFormat::ConstantPool: BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n"); if (ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues)) { delete C; return failure(true); } break; case BytecodeFormat::ModuleGlobalInfo: BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n"); if (ParseModuleGlobalInfo(Buf, Buf+Size, C)) { delete C; return failure(true); } break; case BytecodeFormat::Function: { BCR_TRACE(1, "BLOCK BytecodeFormat::Function: {\n"); if (ParseMethod(Buf, Buf+Size, C)) { delete C; return failure(true); // Error parsing method } break; } case BytecodeFormat::SymbolTable: BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n"); if (ParseSymbolTable(Buf, Buf+Size, C->getSymbolTableSure())) { delete C; return failure(true); } break; default: Error = "Expected Module Block!"; Buf += Size; if (OldBuf > Buf) return failure(true); // Wrap around! break; } BCR_TRACE(1, "} end block\n"); if (align32(Buf, EndBuf)) { delete C; return failure(true); } } if (!MethodSignatureList.empty()) { // Expected more methods! Error = "Function expected, but bytecode stream at end!"; return failure(true); } BCR_TRACE(0, "} end block\n\n"); return false; } Module *BytecodeParser::ParseBytecode(const uchar *Buf, const uchar *EndBuf) { LateResolveValues.clear(); unsigned Sig; // Read and check signature... if (read(Buf, EndBuf, Sig) || Sig != ('l' | ('l' << 8) | ('v' << 16) | 'm' << 24)) { Error = "Invalid bytecode signature!"; return failure(0); // Invalid signature! } Module *Result; if (ParseModule(Buf, EndBuf, Result)) return 0; return Result; } Module *ParseBytecodeBuffer(const uchar *Buffer, unsigned Length) { BytecodeParser Parser; return Parser.ParseBytecode(Buffer, Buffer+Length); } // Parse and return a class file... // Module *ParseBytecodeFile(const std::string &Filename, std::string *ErrorStr) { struct stat StatBuf; Module *Result = 0; if (Filename != std::string("-")) { // Read from a file... int FD = open(Filename.c_str(), O_RDONLY); if (FD == -1) { if (ErrorStr) *ErrorStr = "Error opening file!"; return failure(0); } if (fstat(FD, &StatBuf) == -1) { close(FD); return failure(0); } int Length = StatBuf.st_size; if (Length == 0) { if (ErrorStr) *ErrorStr = "Error stat'ing file!"; close(FD); return failure(0); } uchar *Buffer = (uchar*)mmap(0, Length, PROT_READ, MAP_PRIVATE, FD, 0); if (Buffer == (uchar*)-1) { if (ErrorStr) *ErrorStr = "Error mmapping file!"; close(FD); return failure(0); } BytecodeParser Parser; Result = Parser.ParseBytecode(Buffer, Buffer+Length); munmap((char*)Buffer, Length); close(FD); if (ErrorStr) *ErrorStr = Parser.getError(); } else { // Read from stdin size_t FileSize = 0; int BlockSize; uchar Buffer[4096], *FileData = 0; while ((BlockSize = read(0, Buffer, 4))) { if (BlockSize == -1) { free(FileData); return failure(0); } FileData = (uchar*)realloc(FileData, FileSize+BlockSize); memcpy(FileData+FileSize, Buffer, BlockSize); FileSize += BlockSize; } if (FileSize == 0) { if (ErrorStr) *ErrorStr = "Standard Input empty!"; free(FileData); return failure(0); } #define ALIGN_PTRS 1 #if ALIGN_PTRS uchar *Buf = (uchar*)mmap(0, FileSize, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); assert((Buf != (uchar*)-1) && "mmap returned error!"); memcpy(Buf, FileData, FileSize); free(FileData); #else uchar *Buf = FileData; #endif BytecodeParser Parser; Result = Parser.ParseBytecode(Buf, Buf+FileSize); #if ALIGN_PTRS munmap((char*)Buf, FileSize); // Free mmap'd data area #else free(FileData); // Free realloc'd block of memory #endif if (ErrorStr) *ErrorStr = Parser.getError(); } return Result; }