//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the Value class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_VALUE_H #define LLVM_IR_VALUE_H #include "llvm-c/Types.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Use.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include #include #include namespace llvm { class APInt; class Argument; class BasicBlock; class Constant; class ConstantData; class ConstantAggregate; class DataLayout; class Function; class GlobalAlias; class GlobalIFunc; class GlobalIndirectSymbol; class GlobalObject; class GlobalValue; class GlobalVariable; class InlineAsm; class Instruction; class LLVMContext; class Module; class ModuleSlotTracker; class raw_ostream; template class StringMapEntry; class StringRef; class Twine; class Type; class User; using ValueName = StringMapEntry; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// /// \brief LLVM Value Representation /// /// This is a very important LLVM class. It is the base class of all values /// computed by a program that may be used as operands to other values. Value is /// the super class of other important classes such as Instruction and Function. /// All Values have a Type. Type is not a subclass of Value. Some values can /// have a name and they belong to some Module. Setting the name on the Value /// automatically updates the module's symbol table. /// /// Every value has a "use list" that keeps track of which other Values are /// using this Value. A Value can also have an arbitrary number of ValueHandle /// objects that watch it and listen to RAUW and Destroy events. See /// llvm/IR/ValueHandle.h for details. class Value { // The least-significant bit of the first word of Value *must* be zero: // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm Type *VTy; Use *UseList; friend class ValueAsMetadata; // Allow access to IsUsedByMD. friend class ValueHandleBase; const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? protected: /// \brief Hold subclass data that can be dropped. /// /// This member is similar to SubclassData, however it is for holding /// information which may be used to aid optimization, but which may be /// cleared to zero without affecting conservative interpretation. unsigned char SubclassOptionalData : 7; private: /// \brief Hold arbitrary subclass data. /// /// This member is defined by this class, but is not used for anything. /// Subclasses can use it to hold whatever state they find useful. This /// field is initialized to zero by the ctor. unsigned short SubclassData; protected: /// \brief The number of operands in the subclass. /// /// This member is defined by this class, but not used for anything. /// Subclasses can use it to store their number of operands, if they have /// any. /// /// This is stored here to save space in User on 64-bit hosts. Since most /// instances of Value have operands, 32-bit hosts aren't significantly /// affected. /// /// Note, this should *NOT* be used directly by any class other than User. /// User uses this value to find the Use list. enum : unsigned { NumUserOperandsBits = 28 }; unsigned NumUserOperands : NumUserOperandsBits; // Use the same type as the bitfield above so that MSVC will pack them. unsigned IsUsedByMD : 1; unsigned HasName : 1; unsigned HasHungOffUses : 1; unsigned HasDescriptor : 1; private: template // UseT == 'Use' or 'const Use' class use_iterator_impl : public std::iterator { friend class Value; UseT *U; explicit use_iterator_impl(UseT *u) : U(u) {} public: use_iterator_impl() : U() {} bool operator==(const use_iterator_impl &x) const { return U == x.U; } bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } use_iterator_impl &operator++() { // Preincrement assert(U && "Cannot increment end iterator!"); U = U->getNext(); return *this; } use_iterator_impl operator++(int) { // Postincrement auto tmp = *this; ++*this; return tmp; } UseT &operator*() const { assert(U && "Cannot dereference end iterator!"); return *U; } UseT *operator->() const { return &operator*(); } operator use_iterator_impl() const { return use_iterator_impl(U); } }; template // UserTy == 'User' or 'const User' class user_iterator_impl : public std::iterator { use_iterator_impl UI; explicit user_iterator_impl(Use *U) : UI(U) {} friend class Value; public: user_iterator_impl() = default; bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } /// \brief Returns true if this iterator is equal to user_end() on the value. bool atEnd() const { return *this == user_iterator_impl(); } user_iterator_impl &operator++() { // Preincrement ++UI; return *this; } user_iterator_impl operator++(int) { // Postincrement auto tmp = *this; ++*this; return tmp; } // Retrieve a pointer to the current User. UserTy *operator*() const { return UI->getUser(); } UserTy *operator->() const { return operator*(); } operator user_iterator_impl() const { return user_iterator_impl(*UI); } Use &getUse() const { return *UI; } }; protected: Value(Type *Ty, unsigned scid); /// Value's destructor should be virtual by design, but that would require /// that Value and all of its subclasses have a vtable that effectively /// duplicates the information in the value ID. As a size optimization, the /// destructor has been protected, and the caller should manually call /// deleteValue. ~Value(); // Use deleteValue() to delete a generic Value. public: Value(const Value &) = delete; Value &operator=(const Value &) = delete; /// Delete a pointer to a generic Value. void deleteValue(); /// \brief Support for debugging, callable in GDB: V->dump() void dump() const; /// \brief Implement operator<< on Value. /// @{ void print(raw_ostream &O, bool IsForDebug = false) const; void print(raw_ostream &O, ModuleSlotTracker &MST, bool IsForDebug = false) const; /// @} /// \brief Print the name of this Value out to the specified raw_ostream. /// /// This is useful when you just want to print 'int %reg126', not the /// instruction that generated it. If you specify a Module for context, then /// even constanst get pretty-printed; for example, the type of a null /// pointer is printed symbolically. /// @{ void printAsOperand(raw_ostream &O, bool PrintType = true, const Module *M = nullptr) const; void printAsOperand(raw_ostream &O, bool PrintType, ModuleSlotTracker &MST) const; /// @} /// \brief All values are typed, get the type of this value. Type *getType() const { return VTy; } /// \brief All values hold a context through their type. LLVMContext &getContext() const; // \brief All values can potentially be named. bool hasName() const { return HasName; } ValueName *getValueName() const; void setValueName(ValueName *VN); private: void destroyValueName(); void doRAUW(Value *New, bool NoMetadata); void setNameImpl(const Twine &Name); public: /// \brief Return a constant reference to the value's name. /// /// This guaranteed to return the same reference as long as the value is not /// modified. If the value has a name, this does a hashtable lookup, so it's /// not free. StringRef getName() const; /// \brief Change the name of the value. /// /// Choose a new unique name if the provided name is taken. /// /// \param Name The new name; or "" if the value's name should be removed. void setName(const Twine &Name); /// \brief Transfer the name from V to this value. /// /// After taking V's name, sets V's name to empty. /// /// \note It is an error to call V->takeName(V). void takeName(Value *V); /// \brief Change all uses of this to point to a new Value. /// /// Go through the uses list for this definition and make each use point to /// "V" instead of "this". After this completes, 'this's use list is /// guaranteed to be empty. void replaceAllUsesWith(Value *V); /// \brief Change non-metadata uses of this to point to a new Value. /// /// Go through the uses list for this definition and make each use point to /// "V" instead of "this". This function skips metadata entries in the list. void replaceNonMetadataUsesWith(Value *V); /// replaceUsesOutsideBlock - Go through the uses list for this definition and /// make each use point to "V" instead of "this" when the use is outside the /// block. 'This's use list is expected to have at least one element. /// Unlike replaceAllUsesWith this function does not support basic block /// values or constant users. void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); /// replaceUsesExceptBlockAddr - Go through the uses list for this definition /// and make each use point to "V" instead of "this" when the use is outside /// the block. 'This's use list is expected to have at least one element. /// Unlike replaceAllUsesWith this function skips blockaddr uses. void replaceUsesExceptBlockAddr(Value *New); //---------------------------------------------------------------------- // Methods for handling the chain of uses of this Value. // // Materializing a function can introduce new uses, so these methods come in // two variants: // The methods that start with materialized_ check the uses that are // currently known given which functions are materialized. Be very careful // when using them since you might not get all uses. // The methods that don't start with materialized_ assert that modules is // fully materialized. void assertModuleIsMaterializedImpl() const; // This indirection exists so we can keep assertModuleIsMaterializedImpl() // around in release builds of Value.cpp to be linked with other code built // in debug mode. But this avoids calling it in any of the release built code. void assertModuleIsMaterialized() const { #ifndef NDEBUG assertModuleIsMaterializedImpl(); #endif } bool use_empty() const { assertModuleIsMaterialized(); return UseList == nullptr; } bool materialized_use_empty() const { return UseList == nullptr; } using use_iterator = use_iterator_impl; using const_use_iterator = use_iterator_impl; use_iterator materialized_use_begin() { return use_iterator(UseList); } const_use_iterator materialized_use_begin() const { return const_use_iterator(UseList); } use_iterator use_begin() { assertModuleIsMaterialized(); return materialized_use_begin(); } const_use_iterator use_begin() const { assertModuleIsMaterialized(); return materialized_use_begin(); } use_iterator use_end() { return use_iterator(); } const_use_iterator use_end() const { return const_use_iterator(); } iterator_range materialized_uses() { return make_range(materialized_use_begin(), use_end()); } iterator_range materialized_uses() const { return make_range(materialized_use_begin(), use_end()); } iterator_range uses() { assertModuleIsMaterialized(); return materialized_uses(); } iterator_range uses() const { assertModuleIsMaterialized(); return materialized_uses(); } bool user_empty() const { assertModuleIsMaterialized(); return UseList == nullptr; } using user_iterator = user_iterator_impl; using const_user_iterator = user_iterator_impl; user_iterator materialized_user_begin() { return user_iterator(UseList); } const_user_iterator materialized_user_begin() const { return const_user_iterator(UseList); } user_iterator user_begin() { assertModuleIsMaterialized(); return materialized_user_begin(); } const_user_iterator user_begin() const { assertModuleIsMaterialized(); return materialized_user_begin(); } user_iterator user_end() { return user_iterator(); } const_user_iterator user_end() const { return const_user_iterator(); } User *user_back() { assertModuleIsMaterialized(); return *materialized_user_begin(); } const User *user_back() const { assertModuleIsMaterialized(); return *materialized_user_begin(); } iterator_range materialized_users() { return make_range(materialized_user_begin(), user_end()); } iterator_range materialized_users() const { return make_range(materialized_user_begin(), user_end()); } iterator_range users() { assertModuleIsMaterialized(); return materialized_users(); } iterator_range users() const { assertModuleIsMaterialized(); return materialized_users(); } /// \brief Return true if there is exactly one user of this value. /// /// This is specialized because it is a common request and does not require /// traversing the whole use list. bool hasOneUse() const { const_use_iterator I = use_begin(), E = use_end(); if (I == E) return false; return ++I == E; } /// \brief Return true if this Value has exactly N users. bool hasNUses(unsigned N) const; /// \brief Return true if this value has N users or more. /// /// This is logically equivalent to getNumUses() >= N. bool hasNUsesOrMore(unsigned N) const; /// \brief Check if this value is used in the specified basic block. bool isUsedInBasicBlock(const BasicBlock *BB) const; /// \brief This method computes the number of uses of this Value. /// /// This is a linear time operation. Use hasOneUse, hasNUses, or /// hasNUsesOrMore to check for specific values. unsigned getNumUses() const; /// \brief This method should only be used by the Use class. void addUse(Use &U) { U.addToList(&UseList); } /// \brief Concrete subclass of this. /// /// An enumeration for keeping track of the concrete subclass of Value that /// is actually instantiated. Values of this enumeration are kept in the /// Value classes SubclassID field. They are used for concrete type /// identification. enum ValueTy { #define HANDLE_VALUE(Name) Name##Val, #include "llvm/IR/Value.def" // Markers: #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, #include "llvm/IR/Value.def" }; /// \brief Return an ID for the concrete type of this object. /// /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. Also, /// note that for instructions, the Instruction's opcode is added to /// InstructionVal. So this means three things: /// # there is no value with code InstructionVal (no opcode==0). /// # there are more possible values for the value type than in ValueTy enum. /// # the InstructionVal enumerator must be the highest valued enumerator in /// the ValueTy enum. unsigned getValueID() const { return SubclassID; } /// \brief Return the raw optional flags value contained in this value. /// /// This should only be used when testing two Values for equivalence. unsigned getRawSubclassOptionalData() const { return SubclassOptionalData; } /// \brief Clear the optional flags contained in this value. void clearSubclassOptionalData() { SubclassOptionalData = 0; } /// \brief Check the optional flags for equality. bool hasSameSubclassOptionalData(const Value *V) const { return SubclassOptionalData == V->SubclassOptionalData; } /// \brief Return true if there is a value handle associated with this value. bool hasValueHandle() const { return HasValueHandle; } /// \brief Return true if there is metadata referencing this value. bool isUsedByMetadata() const { return IsUsedByMD; } /// \brief Return true if this value is a swifterror value. /// /// swifterror values can be either a function argument or an alloca with a /// swifterror attribute. bool isSwiftError() const; /// \brief Strip off pointer casts, all-zero GEPs, and aliases. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripPointerCasts() const; Value *stripPointerCasts() { return const_cast( static_cast(this)->stripPointerCasts()); } /// \brief Strip off pointer casts, all-zero GEPs, aliases and barriers. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. This function should be used only in /// Alias analysis. const Value *stripPointerCastsAndBarriers() const; Value *stripPointerCastsAndBarriers() { return const_cast( static_cast(this)->stripPointerCastsAndBarriers()); } /// \brief Strip off pointer casts and all-zero GEPs. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripPointerCastsNoFollowAliases() const; Value *stripPointerCastsNoFollowAliases() { return const_cast( static_cast(this)->stripPointerCastsNoFollowAliases()); } /// \brief Strip off pointer casts and all-constant inbounds GEPs. /// /// Returns the original pointer value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripInBoundsConstantOffsets() const; Value *stripInBoundsConstantOffsets() { return const_cast( static_cast(this)->stripInBoundsConstantOffsets()); } /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets(). /// /// Stores the resulting constant offset stripped into the APInt provided. /// The provided APInt will be extended or truncated as needed to be the /// correct bitwidth for an offset of this pointer type. /// /// If this is called on a non-pointer value, it returns 'this'. const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const; Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) { return const_cast(static_cast(this) ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset)); } /// \brief Strip off pointer casts and inbounds GEPs. /// /// Returns the original pointer value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripInBoundsOffsets() const; Value *stripInBoundsOffsets() { return const_cast( static_cast(this)->stripInBoundsOffsets()); } /// \brief Returns the number of bytes known to be dereferenceable for the /// pointer value. /// /// If CanBeNull is set by this function the pointer can either be null or be /// dereferenceable up to the returned number of bytes. uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull) const; /// \brief Returns an alignment of the pointer value. /// /// Returns an alignment which is either specified explicitly, e.g. via /// align attribute of a function argument, or guaranteed by DataLayout. unsigned getPointerAlignment(const DataLayout &DL) const; /// \brief Translate PHI node to its predecessor from the given basic block. /// /// If this value is a PHI node with CurBB as its parent, return the value in /// the PHI node corresponding to PredBB. If not, return ourself. This is /// useful if you want to know the value something has in a predecessor /// block. const Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const; Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { return const_cast( static_cast(this)->DoPHITranslation(CurBB, PredBB)); } /// \brief The maximum alignment for instructions. /// /// This is the greatest alignment value supported by load, store, and alloca /// instructions, and global values. static const unsigned MaxAlignmentExponent = 29; static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; /// \brief Mutate the type of this Value to be of the specified type. /// /// Note that this is an extremely dangerous operation which can create /// completely invalid IR very easily. It is strongly recommended that you /// recreate IR objects with the right types instead of mutating them in /// place. void mutateType(Type *Ty) { VTy = Ty; } /// \brief Sort the use-list. /// /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is /// expected to compare two \a Use references. template void sortUseList(Compare Cmp); /// \brief Reverse the use-list. void reverseUseList(); private: /// \brief Merge two lists together. /// /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes /// "equal" items from L before items from R. /// /// \return the first element in the list. /// /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). template static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { Use *Merged; Use **Next = &Merged; while (true) { if (!L) { *Next = R; break; } if (!R) { *Next = L; break; } if (Cmp(*R, *L)) { *Next = R; Next = &R->Next; R = R->Next; } else { *Next = L; Next = &L->Next; L = L->Next; } } return Merged; } protected: unsigned short getSubclassDataFromValue() const { return SubclassData; } void setValueSubclassData(unsigned short D) { SubclassData = D; } }; struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; /// Use this instead of std::unique_ptr or std::unique_ptr. /// Those don't work because Value and Instruction's destructors are protected, /// aren't virtual, and won't destroy the complete object. using unique_value = std::unique_ptr; inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { V.print(OS); return OS; } void Use::set(Value *V) { if (Val) removeFromList(); Val = V; if (V) V->addUse(*this); } Value *Use::operator=(Value *RHS) { set(RHS); return RHS; } const Use &Use::operator=(const Use &RHS) { set(RHS.Val); return *this; } template void Value::sortUseList(Compare Cmp) { if (!UseList || !UseList->Next) // No need to sort 0 or 1 uses. return; // Note: this function completely ignores Prev pointers until the end when // they're fixed en masse. // Create a binomial vector of sorted lists, visiting uses one at a time and // merging lists as necessary. const unsigned MaxSlots = 32; Use *Slots[MaxSlots]; // Collect the first use, turning it into a single-item list. Use *Next = UseList->Next; UseList->Next = nullptr; unsigned NumSlots = 1; Slots[0] = UseList; // Collect all but the last use. while (Next->Next) { Use *Current = Next; Next = Current->Next; // Turn Current into a single-item list. Current->Next = nullptr; // Save Current in the first available slot, merging on collisions. unsigned I; for (I = 0; I < NumSlots; ++I) { if (!Slots[I]) break; // Merge two lists, doubling the size of Current and emptying slot I. // // Since the uses in Slots[I] originally preceded those in Current, send // Slots[I] in as the left parameter to maintain a stable sort. Current = mergeUseLists(Slots[I], Current, Cmp); Slots[I] = nullptr; } // Check if this is a new slot. if (I == NumSlots) { ++NumSlots; assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); } // Found an open slot. Slots[I] = Current; } // Merge all the lists together. assert(Next && "Expected one more Use"); assert(!Next->Next && "Expected only one Use"); UseList = Next; for (unsigned I = 0; I < NumSlots; ++I) if (Slots[I]) // Since the uses in Slots[I] originally preceded those in UseList, send // Slots[I] in as the left parameter to maintain a stable sort. UseList = mergeUseLists(Slots[I], UseList, Cmp); // Fix the Prev pointers. for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { I->setPrev(Prev); Prev = &I->Next; } } // isa - Provide some specializations of isa so that we don't have to include // the subtype header files to test to see if the value is a subclass... // template <> struct isa_impl { static inline bool doit(const Value &Val) { static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); return Val.getValueID() <= Value::ConstantLastVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::ConstantDataFirstVal && Val.getValueID() <= Value::ConstantDataLastVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::ConstantAggregateFirstVal && Val.getValueID() <= Value::ConstantAggregateLastVal; } }; template <> struct isa_impl { static inline bool doit (const Value &Val) { return Val.getValueID() == Value::ArgumentVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::InlineAsmVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::InstructionVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::BasicBlockVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::FunctionVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalVariableVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalAliasVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalIFuncVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return isa(Val) || isa(Val); } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return isa(Val) || isa(Val); } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return isa(Val) || isa(Val); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) // Specialized opaque value conversions. inline Value **unwrap(LLVMValueRef *Vals) { return reinterpret_cast(Vals); } template inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { #ifndef NDEBUG for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) unwrap(*I); // For side effect of calling assert on invalid usage. #endif (void)Length; return reinterpret_cast(Vals); } inline LLVMValueRef *wrap(const Value **Vals) { return reinterpret_cast(const_cast(Vals)); } } // end namespace llvm #endif // LLVM_IR_VALUE_H