//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file transforms calls of the current function (self recursion) followed // by a return instruction with a branch to the entry of the function, creating // a loop. This pass also implements the following extensions to the basic // algorithm: // // 1. Trivial instructions between the call and return do not prevent the // transformation from taking place, though currently the analysis cannot // support moving any really useful instructions (only dead ones). // 2. This pass transforms functions that are prevented from being tail // recursive by an associative and commutative expression to use an // accumulator variable, thus compiling the typical naive factorial or // 'fib' implementation into efficient code. // 3. TRE is performed if the function returns void, if the return // returns the result returned by the call, or if the function returns a // run-time constant on all exits from the function. It is possible, though // unlikely, that the return returns something else (like constant 0), and // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in // the function return the exact same value. // 4. If it can prove that callees do not access their caller stack frame, // they are marked as eligible for tail call elimination (by the code // generator). // // There are several improvements that could be made: // // 1. If the function has any alloca instructions, these instructions will be // moved out of the entry block of the function, causing them to be // evaluated each time through the tail recursion. Safely keeping allocas // in the entry block requires analysis to proves that the tail-called // function does not read or write the stack object. // 2. Tail recursion is only performed if the call immediately precedes the // return instruction. It's possible that there could be a jump between // the call and the return. // 3. There can be intervening operations between the call and the return that // prevent the TRE from occurring. For example, there could be GEP's and // stores to memory that will not be read or written by the call. This // requires some substantial analysis (such as with DSA) to prove safe to // move ahead of the call, but doing so could allow many more TREs to be // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. // 4. The algorithm we use to detect if callees access their caller stack // frames is very primitive. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/TailRecursionElimination.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "tailcallelim" STATISTIC(NumEliminated, "Number of tail calls removed"); STATISTIC(NumRetDuped, "Number of return duplicated"); STATISTIC(NumAccumAdded, "Number of accumulators introduced"); /// Scan the specified function for alloca instructions. /// If it contains any dynamic allocas, returns false. static bool canTRE(Function &F) { // FIXME: The code generator produces really bad code when an 'escaping // alloca' is changed from being a static alloca to being a dynamic alloca. // Until this is resolved, disable this transformation if that would ever // happen. This bug is PR962. return llvm::all_of(instructions(F), [](Instruction &I) { auto *AI = dyn_cast(&I); return !AI || AI->isStaticAlloca(); }); } namespace { struct AllocaDerivedValueTracker { // Start at a root value and walk its use-def chain to mark calls that use the // value or a derived value in AllocaUsers, and places where it may escape in // EscapePoints. void walk(Value *Root) { SmallVector Worklist; SmallPtrSet Visited; auto AddUsesToWorklist = [&](Value *V) { for (auto &U : V->uses()) { if (!Visited.insert(&U).second) continue; Worklist.push_back(&U); } }; AddUsesToWorklist(Root); while (!Worklist.empty()) { Use *U = Worklist.pop_back_val(); Instruction *I = cast(U->getUser()); switch (I->getOpcode()) { case Instruction::Call: case Instruction::Invoke: { auto &CB = cast(*I); // If the alloca-derived argument is passed byval it is not an escape // point, or a use of an alloca. Calling with byval copies the contents // of the alloca into argument registers or stack slots, which exist // beyond the lifetime of the current frame. if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) continue; bool IsNocapture = CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); callUsesLocalStack(CB, IsNocapture); if (IsNocapture) { // If the alloca-derived argument is passed in as nocapture, then it // can't propagate to the call's return. That would be capturing. continue; } break; } case Instruction::Load: { // The result of a load is not alloca-derived (unless an alloca has // otherwise escaped, but this is a local analysis). continue; } case Instruction::Store: { if (U->getOperandNo() == 0) EscapePoints.insert(I); continue; // Stores have no users to analyze. } case Instruction::BitCast: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Select: case Instruction::AddrSpaceCast: break; default: EscapePoints.insert(I); break; } AddUsesToWorklist(I); } } void callUsesLocalStack(CallBase &CB, bool IsNocapture) { // Add it to the list of alloca users. AllocaUsers.insert(&CB); // If it's nocapture then it can't capture this alloca. if (IsNocapture) return; // If it can write to memory, it can leak the alloca value. if (!CB.onlyReadsMemory()) EscapePoints.insert(&CB); } SmallPtrSet AllocaUsers; SmallPtrSet EscapePoints; }; } static bool markTails(Function &F, bool &AllCallsAreTailCalls, OptimizationRemarkEmitter *ORE) { if (F.callsFunctionThatReturnsTwice()) return false; AllCallsAreTailCalls = true; // The local stack holds all alloca instructions and all byval arguments. AllocaDerivedValueTracker Tracker; for (Argument &Arg : F.args()) { if (Arg.hasByValAttr()) Tracker.walk(&Arg); } for (auto &BB : F) { for (auto &I : BB) if (AllocaInst *AI = dyn_cast(&I)) Tracker.walk(AI); } bool Modified = false; // Track whether a block is reachable after an alloca has escaped. Blocks that // contain the escaping instruction will be marked as being visited without an // escaped alloca, since that is how the block began. enum VisitType { UNVISITED, UNESCAPED, ESCAPED }; DenseMap Visited; // We propagate the fact that an alloca has escaped from block to successor. // Visit the blocks that are propagating the escapedness first. To do this, we // maintain two worklists. SmallVector WorklistUnescaped, WorklistEscaped; // We may enter a block and visit it thinking that no alloca has escaped yet, // then see an escape point and go back around a loop edge and come back to // the same block twice. Because of this, we defer setting tail on calls when // we first encounter them in a block. Every entry in this list does not // statically use an alloca via use-def chain analysis, but may find an alloca // through other means if the block turns out to be reachable after an escape // point. SmallVector DeferredTails; BasicBlock *BB = &F.getEntryBlock(); VisitType Escaped = UNESCAPED; do { for (auto &I : *BB) { if (Tracker.EscapePoints.count(&I)) Escaped = ESCAPED; CallInst *CI = dyn_cast(&I); // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is // considered accessing memory and will be marked as a tail call if we // don't bail out here. if (!CI || CI->isTailCall() || isa(&I) || isa(&I)) continue; bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); if (!IsNoTail && CI->doesNotAccessMemory()) { // A call to a readnone function whose arguments are all things computed // outside this function can be marked tail. Even if you stored the // alloca address into a global, a readnone function can't load the // global anyhow. // // Note that this runs whether we know an alloca has escaped or not. If // it has, then we can't trust Tracker.AllocaUsers to be accurate. bool SafeToTail = true; for (auto &Arg : CI->arg_operands()) { if (isa(Arg.getUser())) continue; if (Argument *A = dyn_cast(Arg.getUser())) if (!A->hasByValAttr()) continue; SafeToTail = false; break; } if (SafeToTail) { using namespace ore; ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) << "marked as tail call candidate (readnone)"; }); CI->setTailCall(); Modified = true; continue; } } if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { DeferredTails.push_back(CI); } else { AllCallsAreTailCalls = false; } } for (auto *SuccBB : successors(BB)) { auto &State = Visited[SuccBB]; if (State < Escaped) { State = Escaped; if (State == ESCAPED) WorklistEscaped.push_back(SuccBB); else WorklistUnescaped.push_back(SuccBB); } } if (!WorklistEscaped.empty()) { BB = WorklistEscaped.pop_back_val(); Escaped = ESCAPED; } else { BB = nullptr; while (!WorklistUnescaped.empty()) { auto *NextBB = WorklistUnescaped.pop_back_val(); if (Visited[NextBB] == UNESCAPED) { BB = NextBB; Escaped = UNESCAPED; break; } } } } while (BB); for (CallInst *CI : DeferredTails) { if (Visited[CI->getParent()] != ESCAPED) { // If the escape point was part way through the block, calls after the // escape point wouldn't have been put into DeferredTails. LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); CI->setTailCall(); Modified = true; } else { AllCallsAreTailCalls = false; } } return Modified; } /// Return true if it is safe to move the specified /// instruction from after the call to before the call, assuming that all /// instructions between the call and this instruction are movable. /// static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { // FIXME: We can move load/store/call/free instructions above the call if the // call does not mod/ref the memory location being processed. if (I->mayHaveSideEffects()) // This also handles volatile loads. return false; if (LoadInst *L = dyn_cast(I)) { // Loads may always be moved above calls without side effects. if (CI->mayHaveSideEffects()) { // Non-volatile loads may be moved above a call with side effects if it // does not write to memory and the load provably won't trap. // Writes to memory only matter if they may alias the pointer // being loaded from. const DataLayout &DL = L->getModule()->getDataLayout(); if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), L->getAlign(), DL, L)) return false; } } // Otherwise, if this is a side-effect free instruction, check to make sure // that it does not use the return value of the call. If it doesn't use the // return value of the call, it must only use things that are defined before // the call, or movable instructions between the call and the instruction // itself. return !is_contained(I->operands(), CI); } static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { if (!I->isAssociative() || !I->isCommutative()) return false; assert(I->getNumOperands() == 2 && "Associative/commutative operations should have 2 args!"); // Exactly one operand should be the result of the call instruction. if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || (I->getOperand(0) != CI && I->getOperand(1) != CI)) return false; // The only user of this instruction we allow is a single return instruction. if (!I->hasOneUse() || !isa(I->user_back())) return false; return true; } static Instruction *firstNonDbg(BasicBlock::iterator I) { while (isa(I)) ++I; return &*I; } namespace { class TailRecursionEliminator { Function &F; const TargetTransformInfo *TTI; AliasAnalysis *AA; OptimizationRemarkEmitter *ORE; DomTreeUpdater &DTU; // The below are shared state we want to have available when eliminating any // calls in the function. There values should be populated by // createTailRecurseLoopHeader the first time we find a call we can eliminate. BasicBlock *HeaderBB = nullptr; SmallVector ArgumentPHIs; bool RemovableCallsMustBeMarkedTail = false; // PHI node to store our return value. PHINode *RetPN = nullptr; // i1 PHI node to track if we have a valid return value stored in RetPN. PHINode *RetKnownPN = nullptr; // Vector of select instructions we insereted. These selects use RetKnownPN // to either propagate RetPN or select a new return value. SmallVector RetSelects; // The below are shared state needed when performing accumulator recursion. // There values should be populated by insertAccumulator the first time we // find an elimination that requires an accumulator. // PHI node to store our current accumulated value. PHINode *AccPN = nullptr; // The instruction doing the accumulating. Instruction *AccumulatorRecursionInstr = nullptr; TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} CallInst *findTRECandidate(BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail); void createTailRecurseLoopHeader(CallInst *CI); void insertAccumulator(Instruction *AccRecInstr); bool eliminateCall(CallInst *CI); void cleanupAndFinalize(); bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail); public: static bool eliminate(Function &F, const TargetTransformInfo *TTI, AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU); }; } // namespace CallInst *TailRecursionEliminator::findTRECandidate( BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) { Instruction *TI = BB->getTerminator(); if (&BB->front() == TI) // Make sure there is something before the terminator. return nullptr; // Scan backwards from the return, checking to see if there is a tail call in // this block. If so, set CI to it. CallInst *CI = nullptr; BasicBlock::iterator BBI(TI); while (true) { CI = dyn_cast(BBI); if (CI && CI->getCalledFunction() == &F) break; if (BBI == BB->begin()) return nullptr; // Didn't find a potential tail call. --BBI; } // If this call is marked as a tail call, and if there are dynamic allocas in // the function, we cannot perform this optimization. if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) return nullptr; // As a special case, detect code like this: // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call // and disable this xform in this case, because the code generator will // lower the call to fabs into inline code. if (BB == &F.getEntryBlock() && firstNonDbg(BB->front().getIterator()) == CI && firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && !TTI->isLoweredToCall(CI->getCalledFunction())) { // A single-block function with just a call and a return. Check that // the arguments match. auto I = CI->arg_begin(), E = CI->arg_end(); Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); for (; I != E && FI != FE; ++I, ++FI) if (*I != &*FI) break; if (I == E && FI == FE) return nullptr; } return CI; } void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { HeaderBB = &F.getEntryBlock(); BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); NewEntry->takeName(HeaderBB); HeaderBB->setName("tailrecurse"); BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); BI->setDebugLoc(CI->getDebugLoc()); // If this function has self recursive calls in the tail position where some // are marked tail and some are not, only transform one flavor or another. // We have to choose whether we move allocas in the entry block to the new // entry block or not, so we can't make a good choice for both. We make this // decision here based on whether the first call we found to remove is // marked tail. // NOTE: We could do slightly better here in the case that the function has // no entry block allocas. RemovableCallsMustBeMarkedTail = CI->isTailCall(); // If this tail call is marked 'tail' and if there are any allocas in the // entry block, move them up to the new entry block. if (RemovableCallsMustBeMarkedTail) // Move all fixed sized allocas from HeaderBB to NewEntry. for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), NEBI = NewEntry->begin(); OEBI != E;) if (AllocaInst *AI = dyn_cast(OEBI++)) if (isa(AI->getArraySize())) AI->moveBefore(&*NEBI); // Now that we have created a new block, which jumps to the entry // block, insert a PHI node for each argument of the function. // For now, we initialize each PHI to only have the real arguments // which are passed in. Instruction *InsertPos = &HeaderBB->front(); for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); I->replaceAllUsesWith(PN); // Everyone use the PHI node now! PN->addIncoming(&*I, NewEntry); ArgumentPHIs.push_back(PN); } // If the function doen't return void, create the RetPN and RetKnownPN PHI // nodes to track our return value. We initialize RetPN with undef and // RetKnownPN with false since we can't know our return value at function // entry. Type *RetType = F.getReturnType(); if (!RetType->isVoidTy()) { Type *BoolType = Type::getInt1Ty(F.getContext()); RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); RetPN->addIncoming(UndefValue::get(RetType), NewEntry); RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); } // The entry block was changed from HeaderBB to NewEntry. // The forward DominatorTree needs to be recalculated when the EntryBB is // changed. In this corner-case we recalculate the entire tree. DTU.recalculate(*NewEntry->getParent()); } void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { assert(!AccPN && "Trying to insert multiple accumulators"); AccumulatorRecursionInstr = AccRecInstr; // Start by inserting a new PHI node for the accumulator. pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, "accumulator.tr", &HeaderBB->front()); // Loop over all of the predecessors of the tail recursion block. For the // real entry into the function we seed the PHI with the identity constant for // the accumulation operation. For any other existing branches to this block // (due to other tail recursions eliminated) the accumulator is not modified. // Because we haven't added the branch in the current block to HeaderBB yet, // it will not show up as a predecessor. for (pred_iterator PI = PB; PI != PE; ++PI) { BasicBlock *P = *PI; if (P == &F.getEntryBlock()) { Constant *Identity = ConstantExpr::getBinOpIdentity( AccRecInstr->getOpcode(), AccRecInstr->getType()); AccPN->addIncoming(Identity, P); } else { AccPN->addIncoming(AccPN, P); } } ++NumAccumAdded; } bool TailRecursionEliminator::eliminateCall(CallInst *CI) { ReturnInst *Ret = cast(CI->getParent()->getTerminator()); // Ok, we found a potential tail call. We can currently only transform the // tail call if all of the instructions between the call and the return are // movable to above the call itself, leaving the call next to the return. // Check that this is the case now. Instruction *AccRecInstr = nullptr; BasicBlock::iterator BBI(CI); for (++BBI; &*BBI != Ret; ++BBI) { if (canMoveAboveCall(&*BBI, CI, AA)) continue; // If we can't move the instruction above the call, it might be because it // is an associative and commutative operation that could be transformed // using accumulator recursion elimination. Check to see if this is the // case, and if so, remember which instruction accumulates for later. if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) return false; // We cannot eliminate the tail recursion! // Yes, this is accumulator recursion. Remember which instruction // accumulates. AccRecInstr = &*BBI; } BasicBlock *BB = Ret->getParent(); using namespace ore; ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) << "transforming tail recursion into loop"; }); // OK! We can transform this tail call. If this is the first one found, // create the new entry block, allowing us to branch back to the old entry. if (!HeaderBB) createTailRecurseLoopHeader(CI); if (RemovableCallsMustBeMarkedTail && !CI->isTailCall()) return false; // Ok, now that we know we have a pseudo-entry block WITH all of the // required PHI nodes, add entries into the PHI node for the actual // parameters passed into the tail-recursive call. for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); if (AccRecInstr) { insertAccumulator(AccRecInstr); // Rewrite the accumulator recursion instruction so that it does not use // the result of the call anymore, instead, use the PHI node we just // inserted. AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); } // Update our return value tracking if (RetPN) { if (Ret->getReturnValue() == CI || AccRecInstr) { // Defer selecting a return value RetPN->addIncoming(RetPN, BB); RetKnownPN->addIncoming(RetKnownPN, BB); } else { // We found a return value we want to use, insert a select instruction to // select it if we don't already know what our return value will be and // store the result in our return value PHI node. SelectInst *SI = SelectInst::Create( RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); RetSelects.push_back(SI); RetPN->addIncoming(SI, BB); RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); } if (AccPN) AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); } // Now that all of the PHI nodes are in place, remove the call and // ret instructions, replacing them with an unconditional branch. BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); NewBI->setDebugLoc(CI->getDebugLoc()); BB->getInstList().erase(Ret); // Remove return. BB->getInstList().erase(CI); // Remove call. DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); ++NumEliminated; return true; } void TailRecursionEliminator::cleanupAndFinalize() { // If we eliminated any tail recursions, it's possible that we inserted some // silly PHI nodes which just merge an initial value (the incoming operand) // with themselves. Check to see if we did and clean up our mess if so. This // occurs when a function passes an argument straight through to its tail // call. for (PHINode *PN : ArgumentPHIs) { // If the PHI Node is a dynamic constant, replace it with the value it is. if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { PN->replaceAllUsesWith(PNV); PN->eraseFromParent(); } } if (RetPN) { if (RetSelects.empty()) { // If we didn't insert any select instructions, then we know we didn't // store a return value and we can remove the PHI nodes we inserted. RetPN->dropAllReferences(); RetPN->eraseFromParent(); RetKnownPN->dropAllReferences(); RetKnownPN->eraseFromParent(); if (AccPN) { // We need to insert a copy of our accumulator instruction before any // return in the function, and return its result instead. Instruction *AccRecInstr = AccumulatorRecursionInstr; for (BasicBlock &BB : F) { ReturnInst *RI = dyn_cast(BB.getTerminator()); if (!RI) continue; Instruction *AccRecInstrNew = AccRecInstr->clone(); AccRecInstrNew->setName("accumulator.ret.tr"); AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, RI->getOperand(0)); AccRecInstrNew->insertBefore(RI); RI->setOperand(0, AccRecInstrNew); } } } else { // We need to insert a select instruction before any return left in the // function to select our stored return value if we have one. for (BasicBlock &BB : F) { ReturnInst *RI = dyn_cast(BB.getTerminator()); if (!RI) continue; SelectInst *SI = SelectInst::Create( RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); RetSelects.push_back(SI); RI->setOperand(0, SI); } if (AccPN) { // We need to insert a copy of our accumulator instruction before any // of the selects we inserted, and select its result instead. Instruction *AccRecInstr = AccumulatorRecursionInstr; for (SelectInst *SI : RetSelects) { Instruction *AccRecInstrNew = AccRecInstr->clone(); AccRecInstrNew->setName("accumulator.ret.tr"); AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, SI->getFalseValue()); AccRecInstrNew->insertBefore(SI); SI->setFalseValue(AccRecInstrNew); } } } } } bool TailRecursionEliminator::processBlock( BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) { Instruction *TI = BB.getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional()) return false; BasicBlock *Succ = BI->getSuccessor(0); ReturnInst *Ret = dyn_cast(Succ->getFirstNonPHIOrDbg(true)); if (!Ret) return false; CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); if (!CI) return false; LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ << "INTO UNCOND BRANCH PRED: " << BB); FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); ++NumRetDuped; // If all predecessors of Succ have been eliminated by // FoldReturnIntoUncondBranch, delete it. It is important to empty it, // because the ret instruction in there is still using a value which // eliminateCall will attempt to remove. This block can only contain // instructions that can't have uses, therefore it is safe to remove. if (pred_empty(Succ)) DTU.deleteBB(Succ); eliminateCall(CI); return true; } else if (isa(TI)) { CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); if (CI) return eliminateCall(CI); } return false; } bool TailRecursionEliminator::eliminate(Function &F, const TargetTransformInfo *TTI, AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") return false; bool MadeChange = false; bool AllCallsAreTailCalls = false; MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); if (!AllCallsAreTailCalls) return MadeChange; // If this function is a varargs function, we won't be able to PHI the args // right, so don't even try to convert it... if (F.getFunctionType()->isVarArg()) return MadeChange; // If false, we cannot perform TRE on tail calls marked with the 'tail' // attribute, because doing so would cause the stack size to increase (real // TRE would deallocate variable sized allocas, TRE doesn't). bool CanTRETailMarkedCall = canTRE(F); // Change any tail recursive calls to loops. TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); for (BasicBlock &BB : F) MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall); TRE.cleanupAndFinalize(); return MadeChange; } namespace { struct TailCallElim : public FunctionPass { static char ID; // Pass identification, replacement for typeid TailCallElim() : FunctionPass(ID) { initializeTailCallElimPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *DTWP = getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *PDTWP = getAnalysisIfAvailable(); auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; // There is no noticable performance difference here between Lazy and Eager // UpdateStrategy based on some test results. It is feasible to switch the // UpdateStrategy to Lazy if we find it profitable later. DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); return TailRecursionEliminator::eliminate( F, &getAnalysis().getTTI(F), &getAnalysis().getAAResults(), &getAnalysis().getORE(), DTU); } }; } char TailCallElim::ID = 0; INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", false, false) // Public interface to the TailCallElimination pass FunctionPass *llvm::createTailCallEliminationPass() { return new TailCallElim(); } PreservedAnalyses TailCallElimPass::run(Function &F, FunctionAnalysisManager &AM) { TargetTransformInfo &TTI = AM.getResult(F); AliasAnalysis &AA = AM.getResult(F); auto &ORE = AM.getResult(F); auto *DT = AM.getCachedResult(F); auto *PDT = AM.getCachedResult(F); // There is no noticable performance difference here between Lazy and Eager // UpdateStrategy based on some test results. It is feasible to switch the // UpdateStrategy to Lazy if we find it profitable later. DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); return PA; }