//=-- InstrProfReader.cpp - Instrumented profiling reader -------------------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for reading profiling data for clang's // instrumentation based PGO and coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProfReader.h" #include "InstrProfIndexed.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; static ErrorOr> setupMemoryBuffer(std::string Path) { ErrorOr> BufferOrErr = MemoryBuffer::getFileOrSTDIN(Path); if (std::error_code EC = BufferOrErr.getError()) return EC; return std::move(BufferOrErr.get()); } static std::error_code initializeReader(InstrProfReader &Reader) { return Reader.readHeader(); } ErrorOr> InstrProfReader::create(std::string Path) { // Set up the buffer to read. auto BufferOrError = setupMemoryBuffer(Path); if (std::error_code EC = BufferOrError.getError()) return EC; return InstrProfReader::create(std::move(BufferOrError.get())); } ErrorOr> InstrProfReader::create(std::unique_ptr Buffer) { // Sanity check the buffer. if (Buffer->getBufferSize() > std::numeric_limits::max()) return instrprof_error::too_large; std::unique_ptr Result; // Create the reader. if (IndexedInstrProfReader::hasFormat(*Buffer)) Result.reset(new IndexedInstrProfReader(std::move(Buffer))); else if (RawInstrProfReader64::hasFormat(*Buffer)) Result.reset(new RawInstrProfReader64(std::move(Buffer))); else if (RawInstrProfReader32::hasFormat(*Buffer)) Result.reset(new RawInstrProfReader32(std::move(Buffer))); else Result.reset(new TextInstrProfReader(std::move(Buffer))); // Initialize the reader and return the result. if (std::error_code EC = initializeReader(*Result)) return EC; return std::move(Result); } ErrorOr> IndexedInstrProfReader::create(std::string Path) { // Set up the buffer to read. auto BufferOrError = setupMemoryBuffer(Path); if (std::error_code EC = BufferOrError.getError()) return EC; return IndexedInstrProfReader::create(std::move(BufferOrError.get())); } ErrorOr> IndexedInstrProfReader::create(std::unique_ptr Buffer) { // Sanity check the buffer. if (Buffer->getBufferSize() > std::numeric_limits::max()) return instrprof_error::too_large; // Create the reader. if (!IndexedInstrProfReader::hasFormat(*Buffer)) return instrprof_error::bad_magic; auto Result = llvm::make_unique(std::move(Buffer)); // Initialize the reader and return the result. if (std::error_code EC = initializeReader(*Result)) return EC; return std::move(Result); } void InstrProfIterator::Increment() { if (Reader->readNextRecord(Record)) *this = InstrProfIterator(); } std::error_code TextInstrProfReader::readNextRecord(InstrProfRecord &Record) { // Skip empty lines and comments. while (!Line.is_at_end() && (Line->empty() || Line->startswith("#"))) ++Line; // If we hit EOF while looking for a name, we're done. if (Line.is_at_end()) return error(instrprof_error::eof); // Read the function name. Record.Name = *Line++; // Read the function hash. if (Line.is_at_end()) return error(instrprof_error::truncated); if ((Line++)->getAsInteger(0, Record.Hash)) return error(instrprof_error::malformed); // Read the number of counters. uint64_t NumCounters; if (Line.is_at_end()) return error(instrprof_error::truncated); if ((Line++)->getAsInteger(10, NumCounters)) return error(instrprof_error::malformed); if (NumCounters == 0) return error(instrprof_error::malformed); // Read each counter and fill our internal storage with the values. Record.Counts.clear(); Record.Counts.reserve(NumCounters); for (uint64_t I = 0; I < NumCounters; ++I) { if (Line.is_at_end()) return error(instrprof_error::truncated); uint64_t Count; if ((Line++)->getAsInteger(10, Count)) return error(instrprof_error::malformed); Record.Counts.push_back(Count); } return success(); } template static uint64_t getRawMagic(); template <> uint64_t getRawMagic() { return uint64_t(255) << 56 | uint64_t('l') << 48 | uint64_t('p') << 40 | uint64_t('r') << 32 | uint64_t('o') << 24 | uint64_t('f') << 16 | uint64_t('r') << 8 | uint64_t(129); } template <> uint64_t getRawMagic() { return uint64_t(255) << 56 | uint64_t('l') << 48 | uint64_t('p') << 40 | uint64_t('r') << 32 | uint64_t('o') << 24 | uint64_t('f') << 16 | uint64_t('R') << 8 | uint64_t(129); } template bool RawInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) { if (DataBuffer.getBufferSize() < sizeof(uint64_t)) return false; uint64_t Magic = *reinterpret_cast(DataBuffer.getBufferStart()); return getRawMagic() == Magic || sys::getSwappedBytes(getRawMagic()) == Magic; } template std::error_code RawInstrProfReader::readHeader() { if (!hasFormat(*DataBuffer)) return error(instrprof_error::bad_magic); if (DataBuffer->getBufferSize() < sizeof(RawHeader)) return error(instrprof_error::bad_header); auto *Header = reinterpret_cast(DataBuffer->getBufferStart()); ShouldSwapBytes = Header->Magic != getRawMagic(); return readHeader(*Header); } template std::error_code RawInstrProfReader::readNextHeader(const char *CurrentPos) { const char *End = DataBuffer->getBufferEnd(); // Skip zero padding between profiles. while (CurrentPos != End && *CurrentPos == 0) ++CurrentPos; // If there's nothing left, we're done. if (CurrentPos == End) return instrprof_error::eof; // If there isn't enough space for another header, this is probably just // garbage at the end of the file. if (CurrentPos + sizeof(RawHeader) > End) return instrprof_error::malformed; // The writer ensures each profile is padded to start at an aligned address. if (reinterpret_cast(CurrentPos) % alignOf()) return instrprof_error::malformed; // The magic should have the same byte order as in the previous header. uint64_t Magic = *reinterpret_cast(CurrentPos); if (Magic != swap(getRawMagic())) return instrprof_error::bad_magic; // There's another profile to read, so we need to process the header. auto *Header = reinterpret_cast(CurrentPos); return readHeader(*Header); } static uint64_t getRawVersion() { return 1; } template std::error_code RawInstrProfReader::readHeader(const RawHeader &Header) { if (swap(Header.Version) != getRawVersion()) return error(instrprof_error::unsupported_version); CountersDelta = swap(Header.CountersDelta); NamesDelta = swap(Header.NamesDelta); auto DataSize = swap(Header.DataSize); auto CountersSize = swap(Header.CountersSize); auto NamesSize = swap(Header.NamesSize); ptrdiff_t DataOffset = sizeof(RawHeader); ptrdiff_t CountersOffset = DataOffset + sizeof(ProfileData) * DataSize; ptrdiff_t NamesOffset = CountersOffset + sizeof(uint64_t) * CountersSize; size_t ProfileSize = NamesOffset + sizeof(char) * NamesSize; auto *Start = reinterpret_cast(&Header); if (Start + ProfileSize > DataBuffer->getBufferEnd()) return error(instrprof_error::bad_header); Data = reinterpret_cast(Start + DataOffset); DataEnd = Data + DataSize; CountersStart = reinterpret_cast(Start + CountersOffset); NamesStart = Start + NamesOffset; ProfileEnd = Start + ProfileSize; return success(); } template std::error_code RawInstrProfReader::readNextRecord(InstrProfRecord &Record) { if (Data == DataEnd) if (std::error_code EC = readNextHeader(ProfileEnd)) return EC; // Get the raw data. StringRef RawName(getName(Data->NamePtr), swap(Data->NameSize)); uint32_t NumCounters = swap(Data->NumCounters); if (NumCounters == 0) return error(instrprof_error::malformed); auto RawCounts = makeArrayRef(getCounter(Data->CounterPtr), NumCounters); // Check bounds. auto *NamesStartAsCounter = reinterpret_cast(NamesStart); if (RawName.data() < NamesStart || RawName.data() + RawName.size() > DataBuffer->getBufferEnd() || RawCounts.data() < CountersStart || RawCounts.data() + RawCounts.size() > NamesStartAsCounter) return error(instrprof_error::malformed); // Store the data in Record, byte-swapping as necessary. Record.Hash = swap(Data->FuncHash); Record.Name = RawName; if (ShouldSwapBytes) { Record.Counts.clear(); Record.Counts.reserve(RawCounts.size()); for (uint64_t Count : RawCounts) Record.Counts.push_back(swap(Count)); } else Record.Counts = RawCounts; // Iterate. ++Data; return success(); } namespace llvm { template class RawInstrProfReader; template class RawInstrProfReader; } InstrProfLookupTrait::hash_value_type InstrProfLookupTrait::ComputeHash(StringRef K) { return IndexedInstrProf::ComputeHash(HashType, K); } typedef InstrProfLookupTrait::data_type data_type; typedef InstrProfLookupTrait::offset_type offset_type; bool InstrProfLookupTrait::ReadValueProfilingData( const unsigned char *&D, const unsigned char *const End) { using namespace support; // Read number of value kinds with value sites. if (D + sizeof(uint64_t) > End) return false; uint64_t ValueKindCount = endian::readNext(D); for (uint32_t Kind = 0; Kind < ValueKindCount; ++Kind) { // Read value kind and number of value sites for kind. if (D + 2 * sizeof(uint64_t) > End) return false; uint64_t ValueKind = endian::readNext(D); uint64_t ValueSiteCount = endian::readNext(D); std::vector &ValueSites = DataBuffer.back().getValueSitesForKind(ValueKind); ValueSites.reserve(ValueSiteCount); for (uint64_t VSite = 0; VSite < ValueSiteCount; ++VSite) { // Read number of value data pairs at value site. if (D + sizeof(uint64_t) > End) return false; uint64_t ValueDataCount = endian::readNext(D); // Check if there are as many ValueDataPairs as ValueDataCount in memory. if (D + (ValueDataCount << 1) * sizeof(uint64_t) > End) return false; InstrProfValueSiteRecord VSiteRecord; for (uint64_t VCount = 0; VCount < ValueDataCount; ++VCount) { uint64_t Value = endian::readNext(D); uint64_t NumTaken = endian::readNext(D); switch (ValueKind) { case IPVK_IndirectCallTarget: { auto Result = std::lower_bound(HashKeys.begin(), HashKeys.end(), Value, [](const std::pair &LHS, uint64_t RHS) { return LHS.first < RHS; }); assert(Result != HashKeys.end() && "Hash does not match any known keys\n"); Value = (uint64_t)Result->second; break; } } VSiteRecord.ValueData.push_back(std::make_pair(Value, NumTaken)); } ValueSites.push_back(std::move(VSiteRecord)); } } return true; } data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D, offset_type N) { // Check if the data is corrupt. If so, don't try to read it. if (N % sizeof(uint64_t)) return data_type(); DataBuffer.clear(); std::vector CounterBuffer; using namespace support; const unsigned char *End = D + N; while (D < End) { // Read hash if (D + sizeof(uint64_t) >= End) return data_type(); uint64_t Hash = endian::readNext(D); // Initialize number of counters for FormatVersion == 1 uint64_t CountsSize = N / sizeof(uint64_t) - 1; // If format version is different then read number of counters if (FormatVersion != 1) { if (D + sizeof(uint64_t) > End) return data_type(); CountsSize = endian::readNext(D); } // Read counter values if (D + CountsSize * sizeof(uint64_t) > End) return data_type(); CounterBuffer.clear(); CounterBuffer.reserve(CountsSize); for (uint64_t J = 0; J < CountsSize; ++J) CounterBuffer.push_back(endian::readNext(D)); DataBuffer.push_back(InstrProfRecord(K, Hash, std::move(CounterBuffer))); // Read value profiling data if (FormatVersion > 2 && !ReadValueProfilingData(D, End)) { DataBuffer.clear(); return data_type(); } } return DataBuffer; } bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) { if (DataBuffer.getBufferSize() < 8) return false; using namespace support; uint64_t Magic = endian::read(DataBuffer.getBufferStart()); return Magic == IndexedInstrProf::Magic; } std::error_code IndexedInstrProfReader::readHeader() { const unsigned char *Start = (const unsigned char *)DataBuffer->getBufferStart(); const unsigned char *Cur = Start; if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24) return error(instrprof_error::truncated); using namespace support; // Check the magic number. uint64_t Magic = endian::readNext(Cur); if (Magic != IndexedInstrProf::Magic) return error(instrprof_error::bad_magic); // Read the version. FormatVersion = endian::readNext(Cur); if (FormatVersion > IndexedInstrProf::Version) return error(instrprof_error::unsupported_version); // Read the maximal function count. MaxFunctionCount = endian::readNext(Cur); // Read the hash type and start offset. IndexedInstrProf::HashT HashType = static_cast( endian::readNext(Cur)); if (HashType > IndexedInstrProf::HashT::Last) return error(instrprof_error::unsupported_hash_type); uint64_t HashOffset = endian::readNext(Cur); // The rest of the file is an on disk hash table. Index.reset(InstrProfReaderIndex::Create( Start + HashOffset, Cur, Start, InstrProfLookupTrait(HashType, FormatVersion))); // Form the map of hash values to const char* keys in profiling data. std::vector> HashKeys; for (auto Key : Index->keys()) { const char *KeyTableRef = StringTable.insertString(Key); HashKeys.push_back(std::make_pair(ComputeHash(HashType, Key), KeyTableRef)); } std::sort(HashKeys.begin(), HashKeys.end(), less_first()); HashKeys.erase(std::unique(HashKeys.begin(), HashKeys.end()), HashKeys.end()); // Set the hash key map for the InstrLookupTrait Index->getInfoObj().setHashKeys(std::move(HashKeys)); // Set up our iterator for readNextRecord. RecordIterator = Index->data_begin(); return success(); } std::error_code IndexedInstrProfReader::getFunctionCounts( StringRef FuncName, uint64_t FuncHash, std::vector &Counts) { auto Iter = Index->find(FuncName); if (Iter == Index->end()) return error(instrprof_error::unknown_function); // Found it. Look for counters with the right hash. ArrayRef Data = (*Iter); if (Data.empty()) return error(instrprof_error::malformed); for (unsigned I = 0, E = Data.size(); I < E; ++I) { // Check for a match and fill the vector if there is one. if (Data[I].Hash == FuncHash) { Counts = Data[I].Counts; return success(); } } return error(instrprof_error::hash_mismatch); } std::error_code IndexedInstrProfReader::readNextRecord(InstrProfRecord &Record) { // Are we out of records? if (RecordIterator == Index->data_end()) return error(instrprof_error::eof); if ((*RecordIterator).empty()) return error(instrprof_error::malformed); static unsigned RecordIndex = 0; ArrayRef Data = (*RecordIterator); Record = Data[RecordIndex++]; if (RecordIndex >= Data.size()) { ++RecordIterator; RecordIndex = 0; } return success(); }