//===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a class for representing known zeros and ones used by // computeKnownBits. // //===----------------------------------------------------------------------===// #include "llvm/Support/KnownBits.h" #include using namespace llvm; static KnownBits computeForAddCarry( const KnownBits &LHS, const KnownBits &RHS, bool CarryZero, bool CarryOne) { assert(!(CarryZero && CarryOne) && "Carry can't be zero and one at the same time"); APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; // Compute known bits of the carry. APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; // Compute set of known bits (where all three relevant bits are known). APInt LHSKnownUnion = LHS.Zero | LHS.One; APInt RHSKnownUnion = RHS.Zero | RHS.One; APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && "known bits of sum differ"); // Compute known bits of the result. KnownBits KnownOut; KnownOut.Zero = ~std::move(PossibleSumZero) & Known; KnownOut.One = std::move(PossibleSumOne) & Known; return KnownOut; } KnownBits KnownBits::computeForAddCarry( const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); return ::computeForAddCarry( LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); } KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, KnownBits RHS) { KnownBits KnownOut; if (Add) { // Sum = LHS + RHS + 0 KnownOut = ::computeForAddCarry( LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); } else { // Sum = LHS + ~RHS + 1 std::swap(RHS.Zero, RHS.One); KnownOut = ::computeForAddCarry( LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); } // Are we still trying to solve for the sign bit? if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { if (NSW) { // Adding two non-negative numbers, or subtracting a negative number from // a non-negative one, can't wrap into negative. if (LHS.isNonNegative() && RHS.isNonNegative()) KnownOut.makeNonNegative(); // Adding two negative numbers, or subtracting a non-negative number from // a negative one, can't wrap into non-negative. else if (LHS.isNegative() && RHS.isNegative()) KnownOut.makeNegative(); } } return KnownOut; } KnownBits KnownBits::makeGE(const APInt &Val) const { // Count the number of leading bit positions where our underlying value is // known to be less than or equal to Val. unsigned N = (Zero | Val).countLeadingOnes(); // For each of those bit positions, if Val has a 1 in that bit then our // underlying value must also have a 1. APInt MaskedVal(Val); MaskedVal.clearLowBits(getBitWidth() - N); return KnownBits(Zero, One | MaskedVal); } KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { // If we can prove that LHS >= RHS then use LHS as the result. Likewise for // RHS. Ideally our caller would already have spotted these cases and // optimized away the umax operation, but we handle them here for // completeness. if (LHS.getMinValue().uge(RHS.getMaxValue())) return LHS; if (RHS.getMinValue().uge(LHS.getMaxValue())) return RHS; // If the result of the umax is LHS then it must be greater than or equal to // the minimum possible value of RHS. Likewise for RHS. Any known bits that // are common to these two values are also known in the result. KnownBits L = LHS.makeGE(RHS.getMinValue()); KnownBits R = RHS.makeGE(LHS.getMinValue()); return KnownBits(L.Zero & R.Zero, L.One & R.One); } KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; return Flip(umax(Flip(LHS), Flip(RHS))); } KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] auto Flip = [](const KnownBits &Val) { unsigned SignBitPosition = Val.getBitWidth() - 1; APInt Zero = Val.Zero; APInt One = Val.One; Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); return KnownBits(Zero, One); }; return Flip(umax(Flip(LHS), Flip(RHS))); } KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] auto Flip = [](const KnownBits &Val) { unsigned SignBitPosition = Val.getBitWidth() - 1; APInt Zero = Val.One; APInt One = Val.Zero; Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); return KnownBits(Zero, One); }; return Flip(umax(Flip(LHS), Flip(RHS))); } KnownBits KnownBits::abs() const { // If the source's MSB is zero then we know the rest of the bits already. if (isNonNegative()) return *this; // Assume we know nothing. KnownBits KnownAbs(getBitWidth()); // We only know that the absolute values's MSB will be zero iff there is // a set bit that isn't the sign bit (otherwise it could be INT_MIN). APInt Val = One; Val.clearSignBit(); if (!Val.isNullValue()) KnownAbs.Zero.setSignBit(); return KnownAbs; } KnownBits KnownBits::computeForMul(const KnownBits &LHS, const KnownBits &RHS) { unsigned BitWidth = LHS.getBitWidth(); assert(!LHS.hasConflict() && !RHS.hasConflict()); // Compute a conservative estimate for high known-0 bits. unsigned LeadZ = std::max(LHS.countMinLeadingZeros() + RHS.countMinLeadingZeros(), BitWidth) - BitWidth; LeadZ = std::min(LeadZ, BitWidth); // The result of the bottom bits of an integer multiply can be // inferred by looking at the bottom bits of both operands and // multiplying them together. // We can infer at least the minimum number of known trailing bits // of both operands. Depending on number of trailing zeros, we can // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming // a and b are divisible by m and n respectively. // We then calculate how many of those bits are inferrable and set // the output. For example, the i8 mul: // a = XXXX1100 (12) // b = XXXX1110 (14) // We know the bottom 3 bits are zero since the first can be divided by // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). // Applying the multiplication to the trimmed arguments gets: // XX11 (3) // X111 (7) // ------- // XX11 // XX11 // XX11 // XX11 // ------- // XXXXX01 // Which allows us to infer the 2 LSBs. Since we're multiplying the result // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. // The proof for this can be described as: // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + // umin(countTrailingZeros(C2), C6) + // umin(C5 - umin(countTrailingZeros(C1), C5), // C6 - umin(countTrailingZeros(C2), C6)))) - 1) // %aa = shl i8 %a, C5 // %bb = shl i8 %b, C6 // %aaa = or i8 %aa, C1 // %bbb = or i8 %bb, C2 // %mul = mul i8 %aaa, %bbb // %mask = and i8 %mul, C7 // => // %mask = i8 ((C1*C2)&C7) // Where C5, C6 describe the known bits of %a, %b // C1, C2 describe the known bottom bits of %a, %b. // C7 describes the mask of the known bits of the result. APInt Bottom0 = LHS.One; APInt Bottom1 = RHS.One; // How many times we'd be able to divide each argument by 2 (shr by 1). // This gives us the number of trailing zeros on the multiplication result. unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes(); unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes(); unsigned TrailZero0 = LHS.countMinTrailingZeros(); unsigned TrailZero1 = RHS.countMinTrailingZeros(); unsigned TrailZ = TrailZero0 + TrailZero1; // Figure out the fewest known-bits operand. unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); KnownBits Res(BitWidth); Res.Zero.setHighBits(LeadZ); Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); Res.One = BottomKnown.getLoBits(ResultBitsKnown); return Res; } KnownBits &KnownBits::operator&=(const KnownBits &RHS) { // Result bit is 0 if either operand bit is 0. Zero |= RHS.Zero; // Result bit is 1 if both operand bits are 1. One &= RHS.One; return *this; } KnownBits &KnownBits::operator|=(const KnownBits &RHS) { // Result bit is 0 if both operand bits are 0. Zero &= RHS.Zero; // Result bit is 1 if either operand bit is 1. One |= RHS.One; return *this; } KnownBits &KnownBits::operator^=(const KnownBits &RHS) { // Result bit is 0 if both operand bits are 0 or both are 1. APInt Z = (Zero & RHS.Zero) | (One & RHS.One); // Result bit is 1 if one operand bit is 0 and the other is 1. One = (Zero & RHS.One) | (One & RHS.Zero); Zero = std::move(Z); return *this; }