//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEVARIABLES_H #define LLVM_CODEGEN_LIVEVARIABLES_H #include "llvm/CodeGen/MachineFunctionPass.h" #include namespace llvm { class MRegisterInfo; class LiveVariables : public MachineFunctionPass { public: /// VarInfo - This represents the regions where a virtual register is live in /// the program. We represent this with three different pieces of /// information: the instruction that uniquely defines the value, the set of /// blocks the instruction is live into and live out of, and the set of /// non-phi instructions that are the last users of the value. /// /// In the common case where a value is defined and killed in the same block, /// DefInst is the defining inst, there is one killing instruction, and /// AliveBlocks is empty. /// /// Otherwise, the value is live out of the block. If the value is live /// across any blocks, these blocks are listed in AliveBlocks. Blocks where /// the liveness range ends are not included in AliveBlocks, instead being /// captured by the Kills set. In these blocks, the value is live into the /// block (unless the value is defined and killed in the same block) and lives /// until the specified instruction. Note that there cannot ever be a value /// whose Kills set contains two instructions from the same basic block. /// /// PHI nodes complicate things a bit. If a PHI node is the last user of a /// value in one of its predecessor blocks, it is not listed in the kills set, /// but does include the predecessor block in the AliveBlocks set (unless that /// block also defines the value). This leads to the (perfectly sensical) /// situation where a value is defined in a block, and the last use is a phi /// node in the successor. In this case, DefInst will be the defining /// instruction, AliveBlocks is empty (the value is not live across any /// blocks) and Kills is empty (phi nodes are not included). This is sensical /// because the value must be live to the end of the block, but is not live in /// any successor blocks. struct VarInfo { /// DefInst - The machine instruction that defines this register. /// MachineInstr *DefInst; /// AliveBlocks - Set of blocks of which this value is alive completely /// through. This is a bit set which uses the basic block number as an /// index. /// std::vector AliveBlocks; /// Kills - List of MachineInstruction's which are the last use of this /// virtual register (kill it) in their basic block. /// std::vector Kills; VarInfo() : DefInst(0) {} /// removeKill - Delete a kill corresponding to the specified /// machine instruction. Returns true if there was a kill /// corresponding to this instruction, false otherwise. bool removeKill(MachineInstr *MI) { for (std::vector::iterator i = Kills.begin(), e = Kills.end(); i != e; ++i) if (*i == MI) { Kills.erase(i); return true; } return false; } void dump() const; }; private: /// VirtRegInfo - This list is a mapping from virtual register number to /// variable information. FirstVirtualRegister is subtracted from the virtual /// register number before indexing into this list. /// std::vector VirtRegInfo; /// RegistersKilled - This map keeps track of all of the registers that /// are dead immediately after an instruction reads its operands. If an /// instruction does not have an entry in this map, it kills no registers. /// std::map > RegistersKilled; /// RegistersDead - This map keeps track of all of the registers that are /// dead immediately after an instruction executes, which are not dead after /// the operands are evaluated. In practice, this only contains registers /// which are defined by an instruction, but never used. /// std::map > RegistersDead; /// Dummy - An always empty vector used for instructions without dead or /// killed operands. std::vector Dummy; /// AllocatablePhysicalRegisters - This vector keeps track of which registers /// are actually register allocatable by the target machine. We can not track /// liveness for values that are not in this set. /// std::vector AllocatablePhysicalRegisters; private: // Intermediate data structures const MRegisterInfo *RegInfo; MachineInstr **PhysRegInfo; bool *PhysRegUsed; typedef std::map > PHIVarInfoMap; PHIVarInfoMap PHIVarInfo; void HandlePhysRegUse(unsigned Reg, MachineInstr *MI); void HandlePhysRegDef(unsigned Reg, MachineInstr *MI); /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual /// register which is used in a PHI node. We map that to the BB the vreg /// is coming from. void analyzePHINodes(const MachineFunction& Fn); public: virtual bool runOnMachineFunction(MachineFunction &MF); /// killed_iterator - Iterate over registers killed by a machine instruction /// typedef std::vector::iterator killed_iterator; std::vector &getKillsVector(MachineInstr *MI) { std::map >::iterator I = RegistersKilled.find(MI); return I != RegistersKilled.end() ? I->second : Dummy; } std::vector &getDeadDefsVector(MachineInstr *MI) { std::map >::iterator I = RegistersDead.find(MI); return I != RegistersDead.end() ? I->second : Dummy; } /// killed_begin/end - Get access to the range of registers killed by a /// machine instruction. killed_iterator killed_begin(MachineInstr *MI) { return getKillsVector(MI).begin(); } killed_iterator killed_end(MachineInstr *MI) { return getKillsVector(MI).end(); } std::pair killed_range(MachineInstr *MI) { std::vector &V = getKillsVector(MI); return std::make_pair(V.begin(), V.end()); } /// KillsRegister - Return true if the specified instruction kills the /// specified register. bool KillsRegister(MachineInstr *MI, unsigned Reg) const; killed_iterator dead_begin(MachineInstr *MI) { return getDeadDefsVector(MI).begin(); } killed_iterator dead_end(MachineInstr *MI) { return getDeadDefsVector(MI).end(); } std::pair dead_range(MachineInstr *MI) { std::vector &V = getDeadDefsVector(MI); return std::make_pair(V.begin(), V.end()); } /// RegisterDefIsDead - Return true if the specified instruction defines the /// specified register, but that definition is dead. bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const; //===--------------------------------------------------------------------===// // API to update live variable information /// instructionChanged - When the address of an instruction changes, this /// method should be called so that live variables can update its internal /// data structures. This removes the records for OldMI, transfering them to /// the records for NewMI. void instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI); /// addVirtualRegisterKilled - Add information about the fact that the /// specified register is killed after being used by the specified /// instruction. /// void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI) { std::vector &V = RegistersKilled[MI]; // Insert in a sorted order. if (V.empty() || IncomingReg > V.back()) { V.push_back(IncomingReg); } else { std::vector::iterator I = V.begin(); for (; *I < IncomingReg; ++I) /*empty*/; if (*I != IncomingReg) // Don't insert duplicates. V.insert(I, IncomingReg); } getVarInfo(IncomingReg).Kills.push_back(MI); } /// removeVirtualRegisterKilled - Remove the specified virtual /// register from the live variable information. Returns true if the /// variable was marked as killed by the specified instruction, /// false otherwise. bool removeVirtualRegisterKilled(unsigned reg, MachineBasicBlock *MBB, MachineInstr *MI) { if (!getVarInfo(reg).removeKill(MI)) return false; std::vector &V = getKillsVector(MI); for (unsigned i = 0, e = V.size(); i != e; ++i) if (V[i] == reg) { V.erase(V.begin()+i); return true; } return true; } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void removeVirtualRegistersKilled(MachineInstr *MI); /// addVirtualRegisterDead - Add information about the fact that the specified /// register is dead after being used by the specified instruction. /// void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI) { std::vector &V = RegistersDead[MI]; // Insert in a sorted order. if (V.empty() || IncomingReg > V.back()) { V.push_back(IncomingReg); } else { std::vector::iterator I = V.begin(); for (; *I < IncomingReg; ++I) /*empty*/; if (*I != IncomingReg) // Don't insert duplicates. V.insert(I, IncomingReg); } getVarInfo(IncomingReg).Kills.push_back(MI); } /// removeVirtualRegisterDead - Remove the specified virtual /// register from the live variable information. Returns true if the /// variable was marked dead at the specified instruction, false /// otherwise. bool removeVirtualRegisterDead(unsigned reg, MachineBasicBlock *MBB, MachineInstr *MI) { if (!getVarInfo(reg).removeKill(MI)) return false; std::vector &V = getDeadDefsVector(MI); for (unsigned i = 0, e = V.size(); i != e; ++i) if (V[i] == reg) { V.erase(V.begin()+i); return true; } return true; } /// removeVirtualRegistersDead - Remove all of the dead registers for the /// specified instruction from the live variable information. void removeVirtualRegistersDead(MachineInstr *MI); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } virtual void releaseMemory() { VirtRegInfo.clear(); RegistersKilled.clear(); RegistersDead.clear(); } /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL /// register. VarInfo &getVarInfo(unsigned RegIdx); void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *BB); void HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, MachineInstr *MI); }; } // End llvm namespace #endif