//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion on machine instructions. We // attempt to remove as much code from the body of a loop as possible. // // This pass does not attempt to throttle itself to limit register pressure. // The register allocation phases are expected to perform rematerialization // to recover when register pressure is high. // // This pass is not intended to be a replacement or a complete alternative // for the LLVM-IR-level LICM pass. It is only designed to hoist simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-licm" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); namespace { class VISIBILITY_HIDDEN MachineLICM : public MachineFunctionPass { const TargetMachine *TM; const TargetInstrInfo *TII; // Various analyses that we use... MachineLoopInfo *LI; // Current MachineLoopInfo MachineDominatorTree *DT; // Machine dominator tree for the cur loop MachineRegisterInfo *RegInfo; // Machine register information // State that is updated as we process loops bool Changed; // True if a loop is changed. MachineLoop *CurLoop; // The current loop we are working on. MachineBasicBlock *CurPreheader; // The preheader for CurLoop. // For each BB and opcode pair, keep a list of hoisted instructions. DenseMap, std::vector > CSEMap; public: static char ID; // Pass identification, replacement for typeid MachineLICM() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "Machine Instruction LICM"; } // FIXME: Loop preheaders? virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { CSEMap.clear(); } private: /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of /// the loop, physical registers aren't accessed (explicitly or implicitly), /// and the instruction is hoistable. /// bool IsLoopInvariantInst(MachineInstr &I); /// IsProfitableToHoist - Return true if it is potentially profitable to /// hoist the given loop invariant. bool IsProfitableToHoist(MachineInstr &MI); /// HoistRegion - Walk the specified region of the CFG (defined by all /// blocks dominated by the specified block, and that are in the current /// loop) in depth first order w.r.t the DominatorTree. This allows us to /// visit definitions before uses, allowing us to hoist a loop body in one /// pass without iteration. /// void HoistRegion(MachineDomTreeNode *N); /// Hoist - When an instruction is found to only use loop invariant operands /// that is safe to hoist, this instruction is called to do the dirty work. /// void Hoist(MachineInstr &MI); }; } // end anonymous namespace char MachineLICM::ID = 0; static RegisterPass X("machinelicm", "Machine Loop Invariant Code Motion"); FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); } /// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most /// loop that has a preheader. static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) { for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) if (L->getLoopPreheader()) return false; return true; } /// Hoist expressions out of the specified loop. Note, alias info for inner loop /// is not preserved so it is not a good idea to run LICM multiple times on one /// loop. /// bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { const Function *F = MF.getFunction(); if (F->hasFnAttr(Attribute::OptimizeForSize)) return false; DOUT << "******** Machine LICM ********\n"; Changed = false; TM = &MF.getTarget(); TII = TM->getInstrInfo(); RegInfo = &MF.getRegInfo(); // Get our Loop information... LI = &getAnalysis(); DT = &getAnalysis(); for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { CurLoop = *I; // Only visit outer-most preheader-sporting loops. if (!LoopIsOuterMostWithPreheader(CurLoop)) continue; // Determine the block to which to hoist instructions. If we can't find a // suitable loop preheader, we can't do any hoisting. // // FIXME: We are only hoisting if the basic block coming into this loop // has only one successor. This isn't the case in general because we haven't // broken critical edges or added preheaders. CurPreheader = CurLoop->getLoopPreheader(); if (!CurPreheader) continue; HoistRegion(DT->getNode(CurLoop->getHeader())); } return Changed; } /// HoistRegion - Walk the specified region of the CFG (defined by all blocks /// dominated by the specified block, and that are in the current loop) in depth /// first order w.r.t the DominatorTree. This allows us to visit definitions /// before uses, allowing us to hoist a loop body in one pass without iteration. /// void MachineLICM::HoistRegion(MachineDomTreeNode *N) { assert(N != 0 && "Null dominator tree node?"); MachineBasicBlock *BB = N->getBlock(); // If this subregion is not in the top level loop at all, exit. if (!CurLoop->contains(BB)) return; for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ) { MachineBasicBlock::iterator NextMII = MII; ++NextMII; MachineInstr &MI = *MII; Hoist(MI); MII = NextMII; } const std::vector &Children = N->getChildren(); for (unsigned I = 0, E = Children.size(); I != E; ++I) HoistRegion(Children[I]); } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of the /// loop, physical registers aren't accessed explicitly, and there are no side /// effects that aren't captured by the operands or other flags. /// bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { const TargetInstrDesc &TID = I.getDesc(); // Ignore stuff that we obviously can't hoist. if (TID.mayStore() || TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) return false; if (TID.mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!TII->isInvariantLoad(&I)) // FIXME: we should be able to sink loads with no other side effects if // there is nothing that can change memory from here until the end of // block. This is a trivial form of alias analysis. return false; } DEBUG({ DOUT << "--- Checking if we can hoist " << I; if (I.getDesc().getImplicitUses()) { DOUT << " * Instruction has implicit uses:\n"; const TargetRegisterInfo *TRI = TM->getRegisterInfo(); for (const unsigned *ImpUses = I.getDesc().getImplicitUses(); *ImpUses; ++ImpUses) DOUT << " -> " << TRI->getName(*ImpUses) << "\n"; } if (I.getDesc().getImplicitDefs()) { DOUT << " * Instruction has implicit defines:\n"; const TargetRegisterInfo *TRI = TM->getRegisterInfo(); for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs(); *ImpDefs; ++ImpDefs) DOUT << " -> " << TRI->getName(*ImpDefs) << "\n"; } }); if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) { DOUT << "Cannot hoist with implicit defines or uses\n"; return false; } // The instruction is loop invariant if all of its operands are. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { const MachineOperand &MO = I.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Don't hoist an instruction that uses or defines a physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) return false; if (!MO.isUse()) continue; assert(RegInfo->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent())) return false; } // If we got this far, the instruction is loop invariant! return true; } /// HasPHIUses - Return true if the specified register has any PHI use. static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) { for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg), UE = RegInfo->use_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; if (UseMI->getOpcode() == TargetInstrInfo::PHI) return true; } return false; } /// IsProfitableToHoist - Return true if it is potentially profitable to hoist /// the given loop invariant. bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF) return false; const TargetInstrDesc &TID = MI.getDesc(); // FIXME: For now, only hoist re-materilizable instructions. LICM will // increase register pressure. We want to make sure it doesn't increase // spilling. if (!TID.mayLoad() && (!TID.isRematerializable() || !TII->isTriviallyReMaterializable(&MI))) return false; // If result(s) of this instruction is used by PHIs, then don't hoist it. // The presence of joins makes it difficult for current register allocator // implementation to perform remat. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (HasPHIUses(MO.getReg(), RegInfo)) return false; } return true; } static const MachineInstr *LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs, MachineRegisterInfo *RegInfo) { unsigned NumOps = MI->getNumOperands(); for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { const MachineInstr *PrevMI = PrevMIs[i]; unsigned NumOps2 = PrevMI->getNumOperands(); if (NumOps != NumOps2) continue; bool IsSame = true; for (unsigned j = 0; j != NumOps; ++j) { const MachineOperand &MO = MI->getOperand(j); if (MO.isReg() && MO.isDef()) { if (RegInfo->getRegClass(MO.getReg()) != RegInfo->getRegClass(PrevMI->getOperand(j).getReg())) { IsSame = false; break; } continue; } if (!MO.isIdenticalTo(PrevMI->getOperand(j))) { IsSame = false; break; } } if (IsSame) return PrevMI; } return 0; } /// Hoist - When an instruction is found to use only loop invariant operands /// that are safe to hoist, this instruction is called to do the dirty work. /// void MachineLICM::Hoist(MachineInstr &MI) { if (!IsLoopInvariantInst(MI)) return; if (!IsProfitableToHoist(MI)) return; // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG({ errs() << "Hoisting " << MI; if (CurPreheader->getBasicBlock()) errs() << " to MachineBasicBlock " << CurPreheader->getBasicBlock()->getName(); if (MI.getParent()->getBasicBlock()) errs() << " from MachineBasicBlock " << MI.getParent()->getBasicBlock()->getName(); errs() << "\n"; }); // Look for opportunity to CSE the hoisted instruction. std::pair BBOpcPair = std::make_pair(CurPreheader->getNumber(), MI.getOpcode()); DenseMap, std::vector >::iterator CI = CSEMap.find(BBOpcPair); bool DoneCSE = false; if (CI != CSEMap.end()) { const MachineInstr *Dup = LookForDuplicate(&MI, CI->second, RegInfo); if (Dup) { DOUT << "CSEing " << MI; DOUT << " with " << *Dup; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isDef()) RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg()); } MI.eraseFromParent(); DoneCSE = true; ++NumCSEed; } } // Otherwise, splice the instruction to the preheader. if (!DoneCSE) { CurPreheader->splice(CurPreheader->getFirstTerminator(), MI.getParent(), &MI); // Add to the CSE map. if (CI != CSEMap.end()) CI->second.push_back(&MI); else { std::vector CSEMIs; CSEMIs.push_back(&MI); CSEMap.insert(std::make_pair(BBOpcPair, CSEMIs)); } } ++NumHoisted; Changed = true; }