//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the ELF-specific dumper for llvm-readobj. /// //===----------------------------------------------------------------------===// #include "ARMEHABIPrinter.h" #include "DwarfCFIEHPrinter.h" #include "Error.h" #include "ObjDumper.h" #include "StackMapPrinter.h" #include "llvm-readobj.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Object/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ELFTypes.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/StackMapParser.h" #include "llvm/Support/AMDGPUMetadata.h" #include "llvm/Support/ARMAttributeParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MipsABIFlags.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::object; using namespace ELF; #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ case ns::enum: return #enum; #define ENUM_ENT(enum, altName) \ { #enum, altName, ELF::enum } #define ENUM_ENT_1(enum) \ { #enum, #enum, ELF::enum } #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \ case ns::enum: \ return std::string(#enum).substr(3); #define TYPEDEF_ELF_TYPES(ELFT) \ using ELFO = ELFFile; \ using Elf_Addr = typename ELFT::Addr; \ using Elf_Shdr = typename ELFT::Shdr; \ using Elf_Sym = typename ELFT::Sym; \ using Elf_Dyn = typename ELFT::Dyn; \ using Elf_Dyn_Range = typename ELFT::DynRange; \ using Elf_Rel = typename ELFT::Rel; \ using Elf_Rela = typename ELFT::Rela; \ using Elf_Relr = typename ELFT::Relr; \ using Elf_Rel_Range = typename ELFT::RelRange; \ using Elf_Rela_Range = typename ELFT::RelaRange; \ using Elf_Relr_Range = typename ELFT::RelrRange; \ using Elf_Phdr = typename ELFT::Phdr; \ using Elf_Half = typename ELFT::Half; \ using Elf_Ehdr = typename ELFT::Ehdr; \ using Elf_Word = typename ELFT::Word; \ using Elf_Hash = typename ELFT::Hash; \ using Elf_GnuHash = typename ELFT::GnuHash; \ using Elf_Note = typename ELFT::Note; \ using Elf_Sym_Range = typename ELFT::SymRange; \ using Elf_Versym = typename ELFT::Versym; \ using Elf_Verneed = typename ELFT::Verneed; \ using Elf_Vernaux = typename ELFT::Vernaux; \ using Elf_Verdef = typename ELFT::Verdef; \ using Elf_Verdaux = typename ELFT::Verdaux; \ using Elf_CGProfile = typename ELFT::CGProfile; \ using uintX_t = typename ELFT::uint; namespace { template class DumpStyle; /// Represents a contiguous uniform range in the file. We cannot just create a /// range directly because when creating one of these from the .dynamic table /// the size, entity size and virtual address are different entries in arbitrary /// order (DT_REL, DT_RELSZ, DT_RELENT for example). struct DynRegionInfo { DynRegionInfo() = default; DynRegionInfo(const void *A, uint64_t S, uint64_t ES) : Addr(A), Size(S), EntSize(ES) {} /// Address in current address space. const void *Addr = nullptr; /// Size in bytes of the region. uint64_t Size = 0; /// Size of each entity in the region. uint64_t EntSize = 0; template ArrayRef getAsArrayRef() const { const Type *Start = reinterpret_cast(Addr); if (!Start) return {Start, Start}; if (EntSize != sizeof(Type) || Size % EntSize) reportError("Invalid entity size"); return {Start, Start + (Size / EntSize)}; } }; template class ELFDumper : public ObjDumper { public: ELFDumper(const object::ELFObjectFile *ObjF, ScopedPrinter &Writer); void printFileHeaders() override; void printSectionHeaders() override; void printRelocations() override; void printDynamicRelocations() override; void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; void printHashSymbols() override; void printUnwindInfo() override; void printDynamicTable() override; void printNeededLibraries() override; void printProgramHeaders(bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printHashTable() override; void printGnuHashTable() override; void printLoadName() override; void printVersionInfo() override; void printGroupSections() override; void printAttributes() override; void printMipsPLTGOT() override; void printMipsABIFlags() override; void printMipsReginfo() override; void printMipsOptions() override; void printStackMap() const override; void printHashHistogram() override; void printCGProfile() override; void printAddrsig() override; void printNotes() override; void printELFLinkerOptions() override; private: std::unique_ptr> ELFDumperStyle; TYPEDEF_ELF_TYPES(ELFT) DynRegionInfo checkDRI(DynRegionInfo DRI) { const ELFFile *Obj = ObjF->getELFFile(); if (DRI.Addr < Obj->base() || (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize()) error(llvm::object::object_error::parse_failed); return DRI; } DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) { return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz, EntSize}); } DynRegionInfo createDRIFrom(const Elf_Shdr *S) { return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size, S->sh_entsize}); } void parseDynamicTable(ArrayRef LoadSegments); void printValue(uint64_t Type, uint64_t Value); StringRef getDynamicString(uint64_t Offset) const; StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, bool &IsDefault) const; void LoadVersionMap() const; void LoadVersionNeeds(const Elf_Shdr *ec) const; void LoadVersionDefs(const Elf_Shdr *sec) const; const object::ELFObjectFile *ObjF; DynRegionInfo DynRelRegion; DynRegionInfo DynRelaRegion; DynRegionInfo DynRelrRegion; DynRegionInfo DynPLTRelRegion; DynRegionInfo DynSymRegion; DynRegionInfo DynamicTable; StringRef DynamicStringTable; StringRef SOName; const Elf_Hash *HashTable = nullptr; const Elf_GnuHash *GnuHashTable = nullptr; const Elf_Shdr *DotSymtabSec = nullptr; const Elf_Shdr *DotCGProfileSec = nullptr; const Elf_Shdr *DotAddrsigSec = nullptr; StringRef DynSymtabName; ArrayRef ShndxTable; const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d // Records for each version index the corresponding Verdef or Vernaux entry. // This is filled the first time LoadVersionMap() is called. class VersionMapEntry : public PointerIntPair { public: // If the integer is 0, this is an Elf_Verdef*. // If the integer is 1, this is an Elf_Vernaux*. VersionMapEntry() : PointerIntPair(nullptr, 0) {} VersionMapEntry(const Elf_Verdef *verdef) : PointerIntPair(verdef, 0) {} VersionMapEntry(const Elf_Vernaux *vernaux) : PointerIntPair(vernaux, 1) {} bool isNull() const { return getPointer() == nullptr; } bool isVerdef() const { return !isNull() && getInt() == 0; } bool isVernaux() const { return !isNull() && getInt() == 1; } const Elf_Verdef *getVerdef() const { return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr; } const Elf_Vernaux *getVernaux() const { return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr; } }; mutable SmallVector VersionMap; public: Elf_Dyn_Range dynamic_table() const { return DynamicTable.getAsArrayRef(); } Elf_Sym_Range dynamic_symbols() const { return DynSymRegion.getAsArrayRef(); } Elf_Rel_Range dyn_rels() const; Elf_Rela_Range dyn_relas() const; Elf_Relr_Range dyn_relrs() const; std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, bool IsDynamic) const; void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym, StringRef &SectionName, unsigned &SectionIndex) const; std::string getStaticSymbolName(uint32_t Index) const; void printSymbolsHelper(bool IsDynamic) const; const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; } const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; } const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; } ArrayRef getShndxTable() const { return ShndxTable; } StringRef getDynamicStringTable() const { return DynamicStringTable; } const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; } const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; } const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; } const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; } const Elf_Hash *getHashTable() const { return HashTable; } const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; } }; template void ELFDumper::printSymbolsHelper(bool IsDynamic) const { StringRef StrTable, SymtabName; size_t Entries = 0; Elf_Sym_Range Syms(nullptr, nullptr); const ELFFile *Obj = ObjF->getELFFile(); if (IsDynamic) { StrTable = DynamicStringTable; Syms = dynamic_symbols(); SymtabName = DynSymtabName; if (DynSymRegion.Addr) Entries = DynSymRegion.Size / DynSymRegion.EntSize; } else { if (!DotSymtabSec) return; StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec)); Syms = unwrapOrError(Obj->symbols(DotSymtabSec)); SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec)); Entries = DotSymtabSec->getEntityCount(); } if (Syms.begin() == Syms.end()) return; ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries); for (const auto &Sym : Syms) ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic); } template class MipsGOTParser; template class DumpStyle { public: using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; DumpStyle(ELFDumper *Dumper) : Dumper(Dumper) {} virtual ~DumpStyle() = default; virtual void printFileHeaders(const ELFFile *Obj) = 0; virtual void printGroupSections(const ELFFile *Obj) = 0; virtual void printRelocations(const ELFFile *Obj) = 0; virtual void printSectionHeaders(const ELFFile *Obj) = 0; virtual void printSymbols(const ELFFile *Obj, bool PrintSymbols, bool PrintDynamicSymbols) = 0; virtual void printHashSymbols(const ELFFile *Obj) {} virtual void printDynamicRelocations(const ELFFile *Obj) = 0; virtual void printSymtabMessage(const ELFFile *Obj, StringRef Name, size_t Offset) {} virtual void printSymbol(const ELFFile *Obj, const Elf_Sym *Symbol, const Elf_Sym *FirstSym, StringRef StrTable, bool IsDynamic) = 0; virtual void printProgramHeaders(const ELFFile *Obj, bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) = 0; virtual void printHashHistogram(const ELFFile *Obj) = 0; virtual void printCGProfile(const ELFFile *Obj) = 0; virtual void printAddrsig(const ELFFile *Obj) = 0; virtual void printNotes(const ELFFile *Obj) = 0; virtual void printELFLinkerOptions(const ELFFile *Obj) = 0; virtual void printMipsGOT(const MipsGOTParser &Parser) = 0; virtual void printMipsPLT(const MipsGOTParser &Parser) = 0; const ELFDumper *dumper() const { return Dumper; } private: const ELFDumper *Dumper; }; template class GNUStyle : public DumpStyle { formatted_raw_ostream OS; public: TYPEDEF_ELF_TYPES(ELFT) GNUStyle(ScopedPrinter &W, ELFDumper *Dumper) : DumpStyle(Dumper), OS(W.getOStream()) {} void printFileHeaders(const ELFO *Obj) override; void printGroupSections(const ELFFile *Obj) override; void printRelocations(const ELFO *Obj) override; void printSectionHeaders(const ELFO *Obj) override; void printSymbols(const ELFO *Obj, bool PrintSymbols, bool PrintDynamicSymbols) override; void printHashSymbols(const ELFO *Obj) override; void printDynamicRelocations(const ELFO *Obj) override; void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset) override; void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printHashHistogram(const ELFFile *Obj) override; void printCGProfile(const ELFFile *Obj) override; void printAddrsig(const ELFFile *Obj) override; void printNotes(const ELFFile *Obj) override; void printELFLinkerOptions(const ELFFile *Obj) override; void printMipsGOT(const MipsGOTParser &Parser) override; void printMipsPLT(const MipsGOTParser &Parser) override; private: struct Field { std::string Str; unsigned Column; Field(StringRef S, unsigned Col) : Str(S), Column(Col) {} Field(unsigned Col) : Column(Col) {} }; template std::string printEnum(T Value, ArrayRef> EnumValues) { for (const auto &EnumItem : EnumValues) if (EnumItem.Value == Value) return EnumItem.AltName; return to_hexString(Value, false); } template std::string printFlags(T Value, ArrayRef> EnumValues, TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, TEnum EnumMask3 = {}) { std::string Str; for (const auto &Flag : EnumValues) { if (Flag.Value == 0) continue; TEnum EnumMask{}; if (Flag.Value & EnumMask1) EnumMask = EnumMask1; else if (Flag.Value & EnumMask2) EnumMask = EnumMask2; else if (Flag.Value & EnumMask3) EnumMask = EnumMask3; bool IsEnum = (Flag.Value & EnumMask) != 0; if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || (IsEnum && (Value & EnumMask) == Flag.Value)) { if (!Str.empty()) Str += ", "; Str += Flag.AltName; } } return Str; } formatted_raw_ostream &printField(struct Field F) { if (F.Column != 0) OS.PadToColumn(F.Column); OS << F.Str; OS.flush(); return OS; } void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym, StringRef StrTable, uint32_t Bucket); void printRelocHeader(unsigned SType); void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, const Elf_Rela &R, bool IsRela); void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, StringRef StrTable, bool IsDynamic) override; std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *FirstSym); void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela); bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); void printProgramHeaders(const ELFO *Obj); void printSectionMapping(const ELFO *Obj); }; template class LLVMStyle : public DumpStyle { public: TYPEDEF_ELF_TYPES(ELFT) LLVMStyle(ScopedPrinter &W, ELFDumper *Dumper) : DumpStyle(Dumper), W(W) {} void printFileHeaders(const ELFO *Obj) override; void printGroupSections(const ELFFile *Obj) override; void printRelocations(const ELFO *Obj) override; void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj); void printSectionHeaders(const ELFO *Obj) override; void printSymbols(const ELFO *Obj, bool PrintSymbols, bool PrintDynamicSymbols) override; void printDynamicRelocations(const ELFO *Obj) override; void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printHashHistogram(const ELFFile *Obj) override; void printCGProfile(const ELFFile *Obj) override; void printAddrsig(const ELFFile *Obj) override; void printNotes(const ELFFile *Obj) override; void printELFLinkerOptions(const ELFFile *Obj) override; void printMipsGOT(const MipsGOTParser &Parser) override; void printMipsPLT(const MipsGOTParser &Parser) override; private: void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab); void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel); void printSymbols(const ELFO *Obj); void printDynamicSymbols(const ELFO *Obj); void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, StringRef StrTable, bool IsDynamic) override; void printProgramHeaders(const ELFO *Obj); void printSectionMapping(const ELFO *Obj) {} ScopedPrinter &W; }; } // end anonymous namespace namespace llvm { template static std::error_code createELFDumper(const ELFObjectFile *Obj, ScopedPrinter &Writer, std::unique_ptr &Result) { Result.reset(new ELFDumper(Obj, Writer)); return readobj_error::success; } std::error_code createELFDumper(const object::ObjectFile *Obj, ScopedPrinter &Writer, std::unique_ptr &Result) { // Little-endian 32-bit if (const ELF32LEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj, Writer, Result); // Big-endian 32-bit if (const ELF32BEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj, Writer, Result); // Little-endian 64-bit if (const ELF64LEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj, Writer, Result); // Big-endian 64-bit if (const ELF64BEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj, Writer, Result); return readobj_error::unsupported_obj_file_format; } } // end namespace llvm // Iterate through the versions needed section, and place each Elf_Vernaux // in the VersionMap according to its index. template void ELFDumper::LoadVersionNeeds(const Elf_Shdr *sec) const { unsigned vn_size = sec->sh_size; // Size of section in bytes unsigned vn_count = sec->sh_info; // Number of Verneed entries const char *sec_start = (const char *)ObjF->getELFFile()->base() + sec->sh_offset; const char *sec_end = sec_start + vn_size; // The first Verneed entry is at the start of the section. const char *p = sec_start; for (unsigned i = 0; i < vn_count; i++) { if (p + sizeof(Elf_Verneed) > sec_end) report_fatal_error("Section ended unexpectedly while scanning " "version needed records."); const Elf_Verneed *vn = reinterpret_cast(p); if (vn->vn_version != ELF::VER_NEED_CURRENT) report_fatal_error("Unexpected verneed version"); // Iterate through the Vernaux entries const char *paux = p + vn->vn_aux; for (unsigned j = 0; j < vn->vn_cnt; j++) { if (paux + sizeof(Elf_Vernaux) > sec_end) report_fatal_error("Section ended unexpected while scanning auxiliary " "version needed records."); const Elf_Vernaux *vna = reinterpret_cast(paux); size_t index = vna->vna_other & ELF::VERSYM_VERSION; if (index >= VersionMap.size()) VersionMap.resize(index + 1); VersionMap[index] = VersionMapEntry(vna); paux += vna->vna_next; } p += vn->vn_next; } } // Iterate through the version definitions, and place each Elf_Verdef // in the VersionMap according to its index. template void ELFDumper::LoadVersionDefs(const Elf_Shdr *sec) const { unsigned vd_size = sec->sh_size; // Size of section in bytes unsigned vd_count = sec->sh_info; // Number of Verdef entries const char *sec_start = (const char *)ObjF->getELFFile()->base() + sec->sh_offset; const char *sec_end = sec_start + vd_size; // The first Verdef entry is at the start of the section. const char *p = sec_start; for (unsigned i = 0; i < vd_count; i++) { if (p + sizeof(Elf_Verdef) > sec_end) report_fatal_error("Section ended unexpectedly while scanning " "version definitions."); const Elf_Verdef *vd = reinterpret_cast(p); if (vd->vd_version != ELF::VER_DEF_CURRENT) report_fatal_error("Unexpected verdef version"); size_t index = vd->vd_ndx & ELF::VERSYM_VERSION; if (index >= VersionMap.size()) VersionMap.resize(index + 1); VersionMap[index] = VersionMapEntry(vd); p += vd->vd_next; } } template void ELFDumper::LoadVersionMap() const { // If there is no dynamic symtab or version table, there is nothing to do. if (!DynSymRegion.Addr || !dot_gnu_version_sec) return; // Has the VersionMap already been loaded? if (!VersionMap.empty()) return; // The first two version indexes are reserved. // Index 0 is LOCAL, index 1 is GLOBAL. VersionMap.push_back(VersionMapEntry()); VersionMap.push_back(VersionMapEntry()); if (dot_gnu_version_d_sec) LoadVersionDefs(dot_gnu_version_d_sec); if (dot_gnu_version_r_sec) LoadVersionNeeds(dot_gnu_version_r_sec); } template static void printVersionSymbolSection(ELFDumper *Dumper, const ELFO *Obj, const typename ELFO::Elf_Shdr *Sec, ScopedPrinter &W) { DictScope SS(W, "Version symbols"); if (!Sec) return; StringRef Name = unwrapOrError(Obj->getSectionName(Sec)); W.printNumber("Section Name", Name, Sec->sh_name); W.printHex("Address", Sec->sh_addr); W.printHex("Offset", Sec->sh_offset); W.printNumber("Link", Sec->sh_link); const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset; StringRef StrTable = Dumper->getDynamicStringTable(); // Same number of entries in the dynamic symbol table (DT_SYMTAB). ListScope Syms(W, "Symbols"); for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) { DictScope S(W, "Symbol"); std::string FullSymbolName = Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */); W.printNumber("Version", *P); W.printString("Name", FullSymbolName); P += sizeof(typename ELFO::Elf_Half); } } static const EnumEntry SymVersionFlags[] = { {"Base", "BASE", VER_FLG_BASE}, {"Weak", "WEAK", VER_FLG_WEAK}, {"Info", "INFO", VER_FLG_INFO}}; template static void printVersionDefinitionSection(ELFDumper *Dumper, const ELFO *Obj, const typename ELFO::Elf_Shdr *Sec, ScopedPrinter &W) { using VerDef = typename ELFO::Elf_Verdef; using VerdAux = typename ELFO::Elf_Verdaux; DictScope SD(W, "SHT_GNU_verdef"); if (!Sec) return; // The number of entries in the section SHT_GNU_verdef // is determined by DT_VERDEFNUM tag. unsigned VerDefsNum = 0; for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) { if (Dyn.d_tag == DT_VERDEFNUM) { VerDefsNum = Dyn.d_un.d_val; break; } } const uint8_t *SecStartAddress = (const uint8_t *)Obj->base() + Sec->sh_offset; const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size; const uint8_t *P = SecStartAddress; const typename ELFO::Elf_Shdr *StrTab = unwrapOrError(Obj->getSection(Sec->sh_link)); while (VerDefsNum--) { if (P + sizeof(VerDef) > SecEndAddress) report_fatal_error("invalid offset in the section"); auto *VD = reinterpret_cast(P); DictScope Def(W, "Definition"); W.printNumber("Version", VD->vd_version); W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags)); W.printNumber("Index", VD->vd_ndx); W.printNumber("Hash", VD->vd_hash); W.printString("Name", StringRef((const char *)(Obj->base() + StrTab->sh_offset + VD->getAux()->vda_name))); if (!VD->vd_cnt) report_fatal_error("at least one definition string must exist"); if (VD->vd_cnt > 2) report_fatal_error("more than one predecessor is not expected"); if (VD->vd_cnt == 2) { const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next; const VerdAux *Aux = reinterpret_cast(PAux); W.printString("Predecessor", StringRef((const char *)(Obj->base() + StrTab->sh_offset + Aux->vda_name))); } P += VD->vd_next; } } template static void printVersionDependencySection(ELFDumper *Dumper, const ELFO *Obj, const typename ELFO::Elf_Shdr *Sec, ScopedPrinter &W) { using VerNeed = typename ELFO::Elf_Verneed; using VernAux = typename ELFO::Elf_Vernaux; DictScope SD(W, "SHT_GNU_verneed"); if (!Sec) return; unsigned VerNeedNum = 0; for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) { if (Dyn.d_tag == DT_VERNEEDNUM) { VerNeedNum = Dyn.d_un.d_val; break; } } const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset; const typename ELFO::Elf_Shdr *StrTab = unwrapOrError(Obj->getSection(Sec->sh_link)); const uint8_t *P = SecData; for (unsigned I = 0; I < VerNeedNum; ++I) { const VerNeed *Need = reinterpret_cast(P); DictScope Entry(W, "Dependency"); W.printNumber("Version", Need->vn_version); W.printNumber("Count", Need->vn_cnt); W.printString("FileName", StringRef((const char *)(Obj->base() + StrTab->sh_offset + Need->vn_file))); const uint8_t *PAux = P + Need->vn_aux; for (unsigned J = 0; J < Need->vn_cnt; ++J) { const VernAux *Aux = reinterpret_cast(PAux); DictScope Entry(W, "Entry"); W.printNumber("Hash", Aux->vna_hash); W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags)); W.printNumber("Index", Aux->vna_other); W.printString("Name", StringRef((const char *)(Obj->base() + StrTab->sh_offset + Aux->vna_name))); PAux += Aux->vna_next; } P += Need->vn_next; } } template void ELFDumper::printVersionInfo() { // Dump version symbol section. printVersionSymbolSection(this, ObjF->getELFFile(), dot_gnu_version_sec, W); // Dump version definition section. printVersionDefinitionSection(this, ObjF->getELFFile(), dot_gnu_version_d_sec, W); // Dump version dependency section. printVersionDependencySection(this, ObjF->getELFFile(), dot_gnu_version_r_sec, W); } template StringRef ELFDumper::getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, bool &IsDefault) const { // This is a dynamic symbol. Look in the GNU symbol version table. if (!dot_gnu_version_sec) { // No version table. IsDefault = false; return StringRef(""); } // Determine the position in the symbol table of this entry. size_t entry_index = (reinterpret_cast(symb) - reinterpret_cast(DynSymRegion.Addr)) / sizeof(Elf_Sym); // Get the corresponding version index entry const Elf_Versym *vs = unwrapOrError( ObjF->getELFFile()->template getEntry(dot_gnu_version_sec, entry_index)); size_t version_index = vs->vs_index & ELF::VERSYM_VERSION; // Special markers for unversioned symbols. if (version_index == ELF::VER_NDX_LOCAL || version_index == ELF::VER_NDX_GLOBAL) { IsDefault = false; return StringRef(""); } // Lookup this symbol in the version table LoadVersionMap(); if (version_index >= VersionMap.size() || VersionMap[version_index].isNull()) reportError("Invalid version entry"); const VersionMapEntry &entry = VersionMap[version_index]; // Get the version name string size_t name_offset; if (entry.isVerdef()) { // The first Verdaux entry holds the name. name_offset = entry.getVerdef()->getAux()->vda_name; IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN); } else { name_offset = entry.getVernaux()->vna_name; IsDefault = false; } if (name_offset >= StrTab.size()) reportError("Invalid string offset"); return StringRef(StrTab.data() + name_offset); } static std::string maybeDemangle(StringRef Name) { return opts::Demangle ? demangle(Name) : Name.str(); } template std::string ELFDumper::getStaticSymbolName(uint32_t Index) const { const ELFFile *Obj = ObjF->getELFFile(); StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec)); Elf_Sym_Range Syms = unwrapOrError(Obj->symbols(DotSymtabSec)); if (Index >= Syms.size()) reportError("Invalid symbol index"); const Elf_Sym *Sym = &Syms[Index]; return maybeDemangle(unwrapOrError(Sym->getName(StrTable))); } template std::string ELFDumper::getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, bool IsDynamic) const { std::string SymbolName = maybeDemangle(unwrapOrError(Symbol->getName(StrTable))); if (!IsDynamic) return SymbolName; bool IsDefault; StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault); if (!Version.empty()) { SymbolName += (IsDefault ? "@@" : "@"); SymbolName += Version; } return SymbolName; } template void ELFDumper::getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym, StringRef &SectionName, unsigned &SectionIndex) const { SectionIndex = Symbol->st_shndx; if (Symbol->isUndefined()) SectionName = "Undefined"; else if (Symbol->isProcessorSpecific()) SectionName = "Processor Specific"; else if (Symbol->isOSSpecific()) SectionName = "Operating System Specific"; else if (Symbol->isAbsolute()) SectionName = "Absolute"; else if (Symbol->isCommon()) SectionName = "Common"; else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX) SectionName = "Reserved"; else { if (SectionIndex == SHN_XINDEX) SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex( Symbol, FirstSym, ShndxTable)); const ELFFile *Obj = ObjF->getELFFile(); const typename ELFT::Shdr *Sec = unwrapOrError(Obj->getSection(SectionIndex)); SectionName = unwrapOrError(Obj->getSectionName(Sec)); } } template static const typename ELFO::Elf_Shdr * findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) { for (const auto &Shdr : unwrapOrError(Obj->sections())) if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) return &Shdr; return nullptr; } template static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj, StringRef Name) { for (const auto &Shdr : unwrapOrError(Obj.sections())) { if (Name == unwrapOrError(Obj.getSectionName(&Shdr))) return &Shdr; } return nullptr; } static const EnumEntry ElfClass[] = { {"None", "none", ELF::ELFCLASSNONE}, {"32-bit", "ELF32", ELF::ELFCLASS32}, {"64-bit", "ELF64", ELF::ELFCLASS64}, }; static const EnumEntry ElfDataEncoding[] = { {"None", "none", ELF::ELFDATANONE}, {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, }; static const EnumEntry ElfObjectFileType[] = { {"None", "NONE (none)", ELF::ET_NONE}, {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, {"Core", "CORE (Core file)", ELF::ET_CORE}, }; static const EnumEntry ElfOSABI[] = { {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, {"AROS", "AROS", ELF::ELFOSABI_AROS}, {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} }; static const EnumEntry AMDGPUElfOSABI[] = { {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} }; static const EnumEntry ARMElfOSABI[] = { {"ARM", "ARM", ELF::ELFOSABI_ARM} }; static const EnumEntry C6000ElfOSABI[] = { {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} }; static const EnumEntry ElfMachineType[] = { ENUM_ENT(EM_NONE, "None"), ENUM_ENT(EM_M32, "WE32100"), ENUM_ENT(EM_SPARC, "Sparc"), ENUM_ENT(EM_386, "Intel 80386"), ENUM_ENT(EM_68K, "MC68000"), ENUM_ENT(EM_88K, "MC88000"), ENUM_ENT(EM_IAMCU, "EM_IAMCU"), ENUM_ENT(EM_860, "Intel 80860"), ENUM_ENT(EM_MIPS, "MIPS R3000"), ENUM_ENT(EM_S370, "IBM System/370"), ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), ENUM_ENT(EM_PARISC, "HPPA"), ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), ENUM_ENT(EM_960, "Intel 80960"), ENUM_ENT(EM_PPC, "PowerPC"), ENUM_ENT(EM_PPC64, "PowerPC64"), ENUM_ENT(EM_S390, "IBM S/390"), ENUM_ENT(EM_SPU, "SPU"), ENUM_ENT(EM_V800, "NEC V800 series"), ENUM_ENT(EM_FR20, "Fujistsu FR20"), ENUM_ENT(EM_RH32, "TRW RH-32"), ENUM_ENT(EM_RCE, "Motorola RCE"), ENUM_ENT(EM_ARM, "ARM"), ENUM_ENT(EM_ALPHA, "EM_ALPHA"), ENUM_ENT(EM_SH, "Hitachi SH"), ENUM_ENT(EM_SPARCV9, "Sparc v9"), ENUM_ENT(EM_TRICORE, "Siemens Tricore"), ENUM_ENT(EM_ARC, "ARC"), ENUM_ENT(EM_H8_300, "Hitachi H8/300"), ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), ENUM_ENT(EM_H8S, "Hitachi H8S"), ENUM_ENT(EM_H8_500, "Hitachi H8/500"), ENUM_ENT(EM_IA_64, "Intel IA-64"), ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), ENUM_ENT(EM_PCP, "Siemens PCP"), ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), ENUM_ENT(EM_ME16, "Toyota ME16 processor"), ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), ENUM_ENT(EM_PDSP, "Sony DSP processor"), ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), ENUM_ENT(EM_VAX, "Digital VAX"), ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), ENUM_ENT(EM_PRISM, "Vitesse Prism"), ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), ENUM_ENT(EM_FR30, "Fujitsu FR30"), ENUM_ENT(EM_D10V, "Mitsubishi D10V"), ENUM_ENT(EM_D30V, "Mitsubishi D30V"), ENUM_ENT(EM_V850, "NEC v850"), ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), ENUM_ENT(EM_MN10300, "Matsushita MN10300"), ENUM_ENT(EM_MN10200, "Matsushita MN10200"), ENUM_ENT(EM_PJ, "picoJava"), ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), ENUM_ENT(EM_SNP1K, "EM_SNP1K"), ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), ENUM_ENT(EM_MAX, "MAX Processor"), ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), ENUM_ENT(EM_UNICORE, "Unicore"), ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), ENUM_ENT(EM_M16C, "Renesas M16C"), ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), ENUM_ENT(EM_M32C, "Renesas M32C"), ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), ENUM_ENT(EM_SHARC, "EM_SHARC"), ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), ENUM_ENT(EM_8051, "Intel 8051 and variants"), ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), ENUM_ENT(EM_RX, "Renesas RX"), ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"), ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), ENUM_ENT(EM_L10M, "EM_L10M"), ENUM_ENT(EM_K10M, "EM_K10M"), ENUM_ENT(EM_AARCH64, "AArch64"), ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), ENUM_ENT(EM_OPEN8, "EM_OPEN8"), ENUM_ENT(EM_RL78, "Renesas RL78"), ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), ENUM_ENT(EM_78KOR, "EM_78KOR"), ENUM_ENT(EM_56800EX, "EM_56800EX"), ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), ENUM_ENT(EM_RISCV, "RISC-V"), ENUM_ENT(EM_LANAI, "EM_LANAI"), ENUM_ENT(EM_BPF, "EM_BPF"), }; static const EnumEntry ElfSymbolBindings[] = { {"Local", "LOCAL", ELF::STB_LOCAL}, {"Global", "GLOBAL", ELF::STB_GLOBAL}, {"Weak", "WEAK", ELF::STB_WEAK}, {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; static const EnumEntry ElfSymbolVisibilities[] = { {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; static const EnumEntry ElfSymbolTypes[] = { {"None", "NOTYPE", ELF::STT_NOTYPE}, {"Object", "OBJECT", ELF::STT_OBJECT}, {"Function", "FUNC", ELF::STT_FUNC}, {"Section", "SECTION", ELF::STT_SECTION}, {"File", "FILE", ELF::STT_FILE}, {"Common", "COMMON", ELF::STT_COMMON}, {"TLS", "TLS", ELF::STT_TLS}, {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}}; static const EnumEntry AMDGPUSymbolTypes[] = { { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } }; static const char *getGroupType(uint32_t Flag) { if (Flag & ELF::GRP_COMDAT) return "COMDAT"; else return "(unknown)"; } static const EnumEntry ElfSectionFlags[] = { ENUM_ENT(SHF_WRITE, "W"), ENUM_ENT(SHF_ALLOC, "A"), ENUM_ENT(SHF_EXCLUDE, "E"), ENUM_ENT(SHF_EXECINSTR, "X"), ENUM_ENT(SHF_MERGE, "M"), ENUM_ENT(SHF_STRINGS, "S"), ENUM_ENT(SHF_INFO_LINK, "I"), ENUM_ENT(SHF_LINK_ORDER, "L"), ENUM_ENT(SHF_OS_NONCONFORMING, "o"), ENUM_ENT(SHF_GROUP, "G"), ENUM_ENT(SHF_TLS, "T"), ENUM_ENT(SHF_MASKOS, "o"), ENUM_ENT(SHF_MASKPROC, "p"), ENUM_ENT_1(SHF_COMPRESSED), }; static const EnumEntry ElfXCoreSectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION), LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION) }; static const EnumEntry ElfARMSectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE) }; static const EnumEntry ElfHexagonSectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL) }; static const EnumEntry ElfMipsSectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING ) }; static const EnumEntry ElfX86_64SectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE) }; static std::string getGNUFlags(uint64_t Flags) { std::string Str; for (auto Entry : ElfSectionFlags) { uint64_t Flag = Entry.Value & Flags; Flags &= ~Entry.Value; switch (Flag) { case ELF::SHF_WRITE: case ELF::SHF_ALLOC: case ELF::SHF_EXECINSTR: case ELF::SHF_MERGE: case ELF::SHF_STRINGS: case ELF::SHF_INFO_LINK: case ELF::SHF_LINK_ORDER: case ELF::SHF_OS_NONCONFORMING: case ELF::SHF_GROUP: case ELF::SHF_TLS: case ELF::SHF_EXCLUDE: Str += Entry.AltName; break; default: if (Flag & ELF::SHF_MASKOS) Str += "o"; else if (Flag & ELF::SHF_MASKPROC) Str += "p"; else if (Flag) Str += "x"; } } return Str; } static const char *getElfSegmentType(unsigned Arch, unsigned Type) { // Check potentially overlapped processor-specific // program header type. switch (Arch) { case ELF::EM_ARM: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } break; case ELF::EM_MIPS: case ELF::EM_MIPS_RS3_LE: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); } break; } switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL ); LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD ); LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP ); LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE ); LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB ); LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR ); LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS ); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); default: return ""; } } static std::string getElfPtType(unsigned Arch, unsigned Type) { switch (Type) { LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL) LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD) LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC) LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP) LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE) LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB) LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR) LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS) LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME) LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND) LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK) LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO) default: // All machine specific PT_* types switch (Arch) { case ELF::EM_ARM: if (Type == ELF::PT_ARM_EXIDX) return "EXIDX"; break; case ELF::EM_MIPS: case ELF::EM_MIPS_RS3_LE: switch (Type) { case PT_MIPS_REGINFO: return "REGINFO"; case PT_MIPS_RTPROC: return "RTPROC"; case PT_MIPS_OPTIONS: return "OPTIONS"; case PT_MIPS_ABIFLAGS: return "ABIFLAGS"; } break; } } return std::string(": ") + to_string(format_hex(Type, 1)); } static const EnumEntry ElfSegmentFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, PF_X), LLVM_READOBJ_ENUM_ENT(ELF, PF_W), LLVM_READOBJ_ENUM_ENT(ELF, PF_R) }; static const EnumEntry ElfHeaderMipsFlags[] = { ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), ENUM_ENT(EF_MIPS_PIC, "pic"), ENUM_ENT(EF_MIPS_CPIC, "cpic"), ENUM_ENT(EF_MIPS_ABI2, "abi2"), ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), ENUM_ENT(EF_MIPS_FP64, "fp64"), ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), ENUM_ENT(EF_MIPS_ABI_O32, "o32"), ENUM_ENT(EF_MIPS_ABI_O64, "o64"), ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), ENUM_ENT(EF_MIPS_MACH_3900, "3900"), ENUM_ENT(EF_MIPS_MACH_4010, "4010"), ENUM_ENT(EF_MIPS_MACH_4100, "4100"), ENUM_ENT(EF_MIPS_MACH_4650, "4650"), ENUM_ENT(EF_MIPS_MACH_4120, "4120"), ENUM_ENT(EF_MIPS_MACH_4111, "4111"), ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), ENUM_ENT(EF_MIPS_MACH_5400, "5400"), ENUM_ENT(EF_MIPS_MACH_5900, "5900"), ENUM_ENT(EF_MIPS_MACH_5500, "5500"), ENUM_ENT(EF_MIPS_MACH_9000, "9000"), ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") }; static const EnumEntry ElfHeaderAMDGPUFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC) }; static const EnumEntry ElfHeaderRISCVFlags[] = { ENUM_ENT(EF_RISCV_RVC, "RVC"), ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), ENUM_ENT(EF_RISCV_RVE, "RVE") }; static const EnumEntry ElfSymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) }; static const EnumEntry ElfMipsSymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) }; static const EnumEntry ElfMips16SymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) }; static const char *getElfMipsOptionsOdkType(unsigned Odk) { switch (Odk) { LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); default: return "Unknown"; } } template ELFDumper::ELFDumper(const object::ELFObjectFile *ObjF, ScopedPrinter &Writer) : ObjDumper(Writer), ObjF(ObjF) { SmallVector LoadSegments; const ELFFile *Obj = ObjF->getELFFile(); for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn)); continue; } if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0) continue; LoadSegments.push_back(&Phdr); } for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { switch (Sec.sh_type) { case ELF::SHT_SYMTAB: if (DotSymtabSec != nullptr) reportError("Multiple SHT_SYMTAB"); DotSymtabSec = &Sec; break; case ELF::SHT_DYNSYM: if (DynSymRegion.Size) reportError("Multiple SHT_DYNSYM"); DynSymRegion = createDRIFrom(&Sec); // This is only used (if Elf_Shdr present)for naming section in GNU style DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec)); DynamicStringTable = unwrapOrError(Obj->getStringTableForSymtab(Sec)); break; case ELF::SHT_SYMTAB_SHNDX: ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec)); break; case ELF::SHT_GNU_versym: if (dot_gnu_version_sec != nullptr) reportError("Multiple SHT_GNU_versym"); dot_gnu_version_sec = &Sec; break; case ELF::SHT_GNU_verdef: if (dot_gnu_version_d_sec != nullptr) reportError("Multiple SHT_GNU_verdef"); dot_gnu_version_d_sec = &Sec; break; case ELF::SHT_GNU_verneed: if (dot_gnu_version_r_sec != nullptr) reportError("Multiple SHT_GNU_verneed"); dot_gnu_version_r_sec = &Sec; break; case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: if (DotCGProfileSec != nullptr) reportError("Multiple .llvm.call-graph-profile"); DotCGProfileSec = &Sec; break; case ELF::SHT_LLVM_ADDRSIG: if (DotAddrsigSec != nullptr) reportError("Multiple .llvm_addrsig"); DotAddrsigSec = &Sec; break; } } parseDynamicTable(LoadSegments); if (opts::Output == opts::GNU) ELFDumperStyle.reset(new GNUStyle(Writer, this)); else ELFDumperStyle.reset(new LLVMStyle(Writer, this)); } template void ELFDumper::parseDynamicTable( ArrayRef LoadSegments) { auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * { auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr); if (!MappedAddrOrError) report_fatal_error(MappedAddrOrError.takeError()); return MappedAddrOrError.get(); }; uint64_t SONameOffset = 0; const char *StringTableBegin = nullptr; uint64_t StringTableSize = 0; for (const Elf_Dyn &Dyn : dynamic_table()) { switch (Dyn.d_tag) { case ELF::DT_HASH: HashTable = reinterpret_cast(toMappedAddr(Dyn.getPtr())); break; case ELF::DT_GNU_HASH: GnuHashTable = reinterpret_cast(toMappedAddr(Dyn.getPtr())); break; case ELF::DT_STRTAB: StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr()); break; case ELF::DT_STRSZ: StringTableSize = Dyn.getVal(); break; case ELF::DT_SYMTAB: DynSymRegion.Addr = toMappedAddr(Dyn.getPtr()); DynSymRegion.EntSize = sizeof(Elf_Sym); break; case ELF::DT_RELA: DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr()); break; case ELF::DT_RELASZ: DynRelaRegion.Size = Dyn.getVal(); break; case ELF::DT_RELAENT: DynRelaRegion.EntSize = Dyn.getVal(); break; case ELF::DT_SONAME: SONameOffset = Dyn.getVal(); break; case ELF::DT_REL: DynRelRegion.Addr = toMappedAddr(Dyn.getPtr()); break; case ELF::DT_RELSZ: DynRelRegion.Size = Dyn.getVal(); break; case ELF::DT_RELENT: DynRelRegion.EntSize = Dyn.getVal(); break; case ELF::DT_RELR: case ELF::DT_ANDROID_RELR: DynRelrRegion.Addr = toMappedAddr(Dyn.getPtr()); break; case ELF::DT_RELRSZ: case ELF::DT_ANDROID_RELRSZ: DynRelrRegion.Size = Dyn.getVal(); break; case ELF::DT_RELRENT: case ELF::DT_ANDROID_RELRENT: DynRelrRegion.EntSize = Dyn.getVal(); break; case ELF::DT_PLTREL: if (Dyn.getVal() == DT_REL) DynPLTRelRegion.EntSize = sizeof(Elf_Rel); else if (Dyn.getVal() == DT_RELA) DynPLTRelRegion.EntSize = sizeof(Elf_Rela); else reportError(Twine("unknown DT_PLTREL value of ") + Twine((uint64_t)Dyn.getVal())); break; case ELF::DT_JMPREL: DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr()); break; case ELF::DT_PLTRELSZ: DynPLTRelRegion.Size = Dyn.getVal(); break; } } if (StringTableBegin) DynamicStringTable = StringRef(StringTableBegin, StringTableSize); if (SONameOffset) SOName = getDynamicString(SONameOffset); } template typename ELFDumper::Elf_Rel_Range ELFDumper::dyn_rels() const { return DynRelRegion.getAsArrayRef(); } template typename ELFDumper::Elf_Rela_Range ELFDumper::dyn_relas() const { return DynRelaRegion.getAsArrayRef(); } template typename ELFDumper::Elf_Relr_Range ELFDumper::dyn_relrs() const { return DynRelrRegion.getAsArrayRef(); } template void ELFDumper::printFileHeaders() { ELFDumperStyle->printFileHeaders(ObjF->getELFFile()); } template void ELFDumper::printSectionHeaders() { ELFDumperStyle->printSectionHeaders(ObjF->getELFFile()); } template void ELFDumper::printRelocations() { ELFDumperStyle->printRelocations(ObjF->getELFFile()); } template void ELFDumper::printProgramHeaders( bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders, PrintSectionMapping); } template void ELFDumper::printDynamicRelocations() { ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile()); } template void ELFDumper::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) { ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols, PrintDynamicSymbols); } template void ELFDumper::printHashSymbols() { ELFDumperStyle->printHashSymbols(ObjF->getELFFile()); } template void ELFDumper::printHashHistogram() { ELFDumperStyle->printHashHistogram(ObjF->getELFFile()); } template void ELFDumper::printCGProfile() { ELFDumperStyle->printCGProfile(ObjF->getELFFile()); } template void ELFDumper::printNotes() { ELFDumperStyle->printNotes(ObjF->getELFFile()); } template void ELFDumper::printELFLinkerOptions() { ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile()); } static const char *getTypeString(unsigned Arch, uint64_t Type) { #define DYNAMIC_TAG(n, v) switch (Arch) { case EM_HEXAGON: switch (Type) { #define HEXAGON_DYNAMIC_TAG(name, value) \ case DT_##name: \ return #name; #include "llvm/BinaryFormat/DynamicTags.def" #undef HEXAGON_DYNAMIC_TAG } break; case EM_MIPS: switch (Type) { #define MIPS_DYNAMIC_TAG(name, value) \ case DT_##name: \ return #name; #include "llvm/BinaryFormat/DynamicTags.def" #undef MIPS_DYNAMIC_TAG } break; case EM_PPC64: switch(Type) { #define PPC64_DYNAMIC_TAG(name, value) \ case DT_##name: \ return #name; #include "llvm/BinaryFormat/DynamicTags.def" #undef PPC64_DYNAMIC_TAG } break; } #undef DYNAMIC_TAG switch (Type) { // Now handle all dynamic tags except the architecture specific ones #define MIPS_DYNAMIC_TAG(name, value) #define HEXAGON_DYNAMIC_TAG(name, value) #define PPC64_DYNAMIC_TAG(name, value) // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. #define DYNAMIC_TAG_MARKER(name, value) #define DYNAMIC_TAG(name, value) \ case DT_##name: \ return #name; #include "llvm/BinaryFormat/DynamicTags.def" #undef DYNAMIC_TAG #undef MIPS_DYNAMIC_TAG #undef HEXAGON_DYNAMIC_TAG #undef PPC64_DYNAMIC_TAG #undef DYNAMIC_TAG_MARKER default: return "unknown"; } } #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ { #enum, prefix##_##enum } static const EnumEntry ElfDynamicDTFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) }; static const EnumEntry ElfDynamicDTFlags1[] = { LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON) }; static const EnumEntry ElfDynamicDTMipsFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) }; #undef LLVM_READOBJ_DT_FLAG_ENT template void printFlags(T Value, ArrayRef> Flags, raw_ostream &OS) { using FlagEntry = EnumEntry; using FlagVector = SmallVector; FlagVector SetFlags; for (const auto &Flag : Flags) { if (Flag.Value == 0) continue; if ((Value & Flag.Value) == Flag.Value) SetFlags.push_back(Flag); } for (const auto &Flag : SetFlags) { OS << Flag.Name << " "; } } template StringRef ELFDumper::getDynamicString(uint64_t Value) const { if (Value >= DynamicStringTable.size()) reportError("Invalid dynamic string table reference"); return StringRef(DynamicStringTable.data() + Value); } static void printLibrary(raw_ostream &OS, const Twine &Tag, const Twine &Name) { OS << Tag << ": [" << Name << "]"; } template void ELFDumper::printValue(uint64_t Type, uint64_t Value) { raw_ostream &OS = W.getOStream(); const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; switch (Type) { case DT_PLTREL: if (Value == DT_REL) { OS << "REL"; break; } else if (Value == DT_RELA) { OS << "RELA"; break; } LLVM_FALLTHROUGH; case DT_PLTGOT: case DT_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_RELA: case DT_INIT: case DT_FINI: case DT_REL: case DT_JMPREL: case DT_INIT_ARRAY: case DT_FINI_ARRAY: case DT_PREINIT_ARRAY: case DT_DEBUG: case DT_VERDEF: case DT_VERNEED: case DT_VERSYM: case DT_GNU_HASH: case DT_NULL: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_GOTSYM: case DT_MIPS_RLD_MAP: case DT_MIPS_RLD_MAP_REL: case DT_MIPS_PLTGOT: case DT_MIPS_OPTIONS: OS << format(ConvChar, Value); break; case DT_RELACOUNT: case DT_RELCOUNT: case DT_VERDEFNUM: case DT_VERNEEDNUM: case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: OS << Value; break; case DT_PLTRELSZ: case DT_RELASZ: case DT_RELAENT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_PREINIT_ARRAYSZ: case DT_ANDROID_RELSZ: case DT_ANDROID_RELASZ: OS << Value << " (bytes)"; break; case DT_NEEDED: printLibrary(OS, "Shared library", getDynamicString(Value)); break; case DT_SONAME: printLibrary(OS, "Library soname", getDynamicString(Value)); break; case DT_AUXILIARY: printLibrary(OS, "Auxiliary library", getDynamicString(Value)); break; case DT_FILTER: printLibrary(OS, "Filter library", getDynamicString(Value)); break; case DT_RPATH: case DT_RUNPATH: OS << getDynamicString(Value); break; case DT_MIPS_FLAGS: printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS); break; case DT_FLAGS: printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS); break; case DT_FLAGS_1: printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS); break; default: OS << format(ConvChar, Value); break; } } template void ELFDumper::printUnwindInfo() { const unsigned Machine = ObjF->getELFFile()->getHeader()->e_machine; if (Machine == EM_386 || Machine == EM_X86_64) { DwarfCFIEH::PrinterContext Ctx(W, ObjF); return Ctx.printUnwindInformation(); } W.startLine() << "UnwindInfo not implemented.\n"; } namespace { template <> void ELFDumper::printUnwindInfo() { const ELFFile *Obj = ObjF->getELFFile(); const unsigned Machine = Obj->getHeader()->e_machine; if (Machine == EM_ARM) { ARM::EHABI::PrinterContext Ctx(W, Obj, DotSymtabSec); return Ctx.PrintUnwindInformation(); } W.startLine() << "UnwindInfo not implemented.\n"; } } // end anonymous namespace template void ELFDumper::printDynamicTable() { auto I = dynamic_table().begin(); auto E = dynamic_table().end(); if (I == E) return; --E; while (I != E && E->getTag() == ELF::DT_NULL) --E; if (E->getTag() != ELF::DT_NULL) ++E; ++E; ptrdiff_t Total = std::distance(I, E); if (Total == 0) return; raw_ostream &OS = W.getOStream(); W.startLine() << "DynamicSection [ (" << Total << " entries)\n"; bool Is64 = ELFT::Is64Bits; W.startLine() << " Tag" << (Is64 ? " " : " ") << "Type" << " " << "Name/Value\n"; while (I != E) { const Elf_Dyn &Entry = *I; uintX_t Tag = Entry.getTag(); ++I; W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " " << format("%-21s", getTypeString(ObjF->getELFFile()->getHeader()->e_machine, Tag)); printValue(Tag, Entry.getVal()); OS << "\n"; } W.startLine() << "]\n"; } template void ELFDumper::printNeededLibraries() { ListScope D(W, "NeededLibraries"); using LibsTy = std::vector; LibsTy Libs; for (const auto &Entry : dynamic_table()) if (Entry.d_tag == ELF::DT_NEEDED) Libs.push_back(getDynamicString(Entry.d_un.d_val)); std::stable_sort(Libs.begin(), Libs.end()); for (const auto &L : Libs) W.startLine() << L << "\n"; } template void ELFDumper::printHashTable() { DictScope D(W, "HashTable"); if (!HashTable) return; W.printNumber("Num Buckets", HashTable->nbucket); W.printNumber("Num Chains", HashTable->nchain); W.printList("Buckets", HashTable->buckets()); W.printList("Chains", HashTable->chains()); } template void ELFDumper::printGnuHashTable() { DictScope D(W, "GnuHashTable"); if (!GnuHashTable) return; W.printNumber("Num Buckets", GnuHashTable->nbuckets); W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); W.printNumber("Num Mask Words", GnuHashTable->maskwords); W.printNumber("Shift Count", GnuHashTable->shift2); W.printHexList("Bloom Filter", GnuHashTable->filter()); W.printList("Buckets", GnuHashTable->buckets()); Elf_Sym_Range Syms = dynamic_symbols(); unsigned NumSyms = std::distance(Syms.begin(), Syms.end()); if (!NumSyms) reportError("No dynamic symbol section"); W.printHexList("Values", GnuHashTable->values(NumSyms)); } template void ELFDumper::printLoadName() { W.printString("LoadName", SOName); } template void ELFDumper::printAttributes() { W.startLine() << "Attributes not implemented.\n"; } namespace { template <> void ELFDumper::printAttributes() { const ELFFile *Obj = ObjF->getELFFile(); if (Obj->getHeader()->e_machine != EM_ARM) { W.startLine() << "Attributes not implemented.\n"; return; } DictScope BA(W, "BuildAttributes"); for (const ELFO::Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES) continue; ArrayRef Contents = unwrapOrError(Obj->getSectionContents(&Sec)); if (Contents[0] != ARMBuildAttrs::Format_Version) { errs() << "unrecognised FormatVersion: 0x" << Twine::utohexstr(Contents[0]) << '\n'; continue; } W.printHex("FormatVersion", Contents[0]); if (Contents.size() == 1) continue; ARMAttributeParser(&W).Parse(Contents, true); } } template class MipsGOTParser { public: TYPEDEF_ELF_TYPES(ELFT) using Entry = typename ELFO::Elf_Addr; using Entries = ArrayRef; const bool IsStatic; const ELFO * const Obj; MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); bool hasGot() const { return !GotEntries.empty(); } bool hasPlt() const { return !PltEntries.empty(); } uint64_t getGp() const; const Entry *getGotLazyResolver() const; const Entry *getGotModulePointer() const; const Entry *getPltLazyResolver() const; const Entry *getPltModulePointer() const; Entries getLocalEntries() const; Entries getGlobalEntries() const; Entries getOtherEntries() const; Entries getPltEntries() const; uint64_t getGotAddress(const Entry * E) const; int64_t getGotOffset(const Entry * E) const; const Elf_Sym *getGotSym(const Entry *E) const; uint64_t getPltAddress(const Entry * E) const; const Elf_Sym *getPltSym(const Entry *E) const; StringRef getPltStrTable() const { return PltStrTable; } private: const Elf_Shdr *GotSec; size_t LocalNum; size_t GlobalNum; const Elf_Shdr *PltSec; const Elf_Shdr *PltRelSec; const Elf_Shdr *PltSymTable; Elf_Sym_Range GotDynSyms; StringRef PltStrTable; Entries GotEntries; Entries PltEntries; }; } // end anonymous namespace template MipsGOTParser::MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms) : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) { // See "Global Offset Table" in Chapter 5 in the following document // for detailed GOT description. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf // Find static GOT secton. if (IsStatic) { GotSec = findSectionByName(*Obj, ".got"); if (!GotSec) reportError("Cannot find .got section"); ArrayRef Content = unwrapOrError(Obj->getSectionContents(GotSec)); GotEntries = Entries(reinterpret_cast(Content.data()), Content.size() / sizeof(Entry)); LocalNum = GotEntries.size(); return; } // Lookup dynamic table tags which define GOT/PLT layouts. Optional DtPltGot; Optional DtLocalGotNum; Optional DtGotSym; Optional DtMipsPltGot; Optional DtJmpRel; for (const auto &Entry : DynTable) { switch (Entry.getTag()) { case ELF::DT_PLTGOT: DtPltGot = Entry.getVal(); break; case ELF::DT_MIPS_LOCAL_GOTNO: DtLocalGotNum = Entry.getVal(); break; case ELF::DT_MIPS_GOTSYM: DtGotSym = Entry.getVal(); break; case ELF::DT_MIPS_PLTGOT: DtMipsPltGot = Entry.getVal(); break; case ELF::DT_JMPREL: DtJmpRel = Entry.getVal(); break; } } // Find dynamic GOT section. if (DtPltGot || DtLocalGotNum || DtGotSym) { if (!DtPltGot) report_fatal_error("Cannot find PLTGOT dynamic table tag."); if (!DtLocalGotNum) report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag."); if (!DtGotSym) report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag."); size_t DynSymTotal = DynSyms.size(); if (*DtGotSym > DynSymTotal) reportError("MIPS_GOTSYM exceeds a number of dynamic symbols"); GotSec = findNotEmptySectionByAddress(Obj, *DtPltGot); if (!GotSec) reportError("There is no not empty GOT section at 0x" + Twine::utohexstr(*DtPltGot)); LocalNum = *DtLocalGotNum; GlobalNum = DynSymTotal - *DtGotSym; ArrayRef Content = unwrapOrError(Obj->getSectionContents(GotSec)); GotEntries = Entries(reinterpret_cast(Content.data()), Content.size() / sizeof(Entry)); GotDynSyms = DynSyms.drop_front(*DtGotSym); } // Find PLT section. if (DtMipsPltGot || DtJmpRel) { if (!DtMipsPltGot) report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag."); if (!DtJmpRel) report_fatal_error("Cannot find JMPREL dynamic table tag."); PltSec = findNotEmptySectionByAddress(Obj, *DtMipsPltGot); if (!PltSec) report_fatal_error("There is no not empty PLTGOT section at 0x " + Twine::utohexstr(*DtMipsPltGot)); PltRelSec = findNotEmptySectionByAddress(Obj, *DtJmpRel); if (!PltRelSec) report_fatal_error("There is no not empty RELPLT section at 0x" + Twine::utohexstr(*DtJmpRel)); ArrayRef PltContent = unwrapOrError(Obj->getSectionContents(PltSec)); PltEntries = Entries(reinterpret_cast(PltContent.data()), PltContent.size() / sizeof(Entry)); PltSymTable = unwrapOrError(Obj->getSection(PltRelSec->sh_link)); PltStrTable = unwrapOrError(Obj->getStringTableForSymtab(*PltSymTable)); } } template uint64_t MipsGOTParser::getGp() const { return GotSec->sh_addr + 0x7ff0; } template const typename MipsGOTParser::Entry * MipsGOTParser::getGotLazyResolver() const { return LocalNum > 0 ? &GotEntries[0] : nullptr; } template const typename MipsGOTParser::Entry * MipsGOTParser::getGotModulePointer() const { if (LocalNum < 2) return nullptr; const Entry &E = GotEntries[1]; if ((E >> (sizeof(Entry) * 8 - 1)) == 0) return nullptr; return &E; } template typename MipsGOTParser::Entries MipsGOTParser::getLocalEntries() const { size_t Skip = getGotModulePointer() ? 2 : 1; if (LocalNum - Skip <= 0) return Entries(); return GotEntries.slice(Skip, LocalNum - Skip); } template typename MipsGOTParser::Entries MipsGOTParser::getGlobalEntries() const { if (GlobalNum == 0) return Entries(); return GotEntries.slice(LocalNum, GlobalNum); } template typename MipsGOTParser::Entries MipsGOTParser::getOtherEntries() const { size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; if (OtherNum == 0) return Entries(); return GotEntries.slice(LocalNum + GlobalNum, OtherNum); } template uint64_t MipsGOTParser::getGotAddress(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); return GotSec->sh_addr + Offset; } template int64_t MipsGOTParser::getGotOffset(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); return Offset - 0x7ff0; } template const typename MipsGOTParser::Elf_Sym * MipsGOTParser::getGotSym(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E); return &GotDynSyms[Offset - LocalNum]; } template const typename MipsGOTParser::Entry * MipsGOTParser::getPltLazyResolver() const { return PltEntries.empty() ? nullptr : &PltEntries[0]; } template const typename MipsGOTParser::Entry * MipsGOTParser::getPltModulePointer() const { return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; } template typename MipsGOTParser::Entries MipsGOTParser::getPltEntries() const { if (PltEntries.size() <= 2) return Entries(); return PltEntries.slice(2, PltEntries.size() - 2); } template uint64_t MipsGOTParser::getPltAddress(const Entry *E) const { int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); return PltSec->sh_addr + Offset; } template const typename MipsGOTParser::Elf_Sym * MipsGOTParser::getPltSym(const Entry *E) const { int64_t Offset = std::distance(getPltEntries().data(), E); if (PltRelSec->sh_type == ELF::SHT_REL) { Elf_Rel_Range Rels = unwrapOrError(Obj->rels(PltRelSec)); return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); } else { Elf_Rela_Range Rels = unwrapOrError(Obj->relas(PltRelSec)); return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); } } template void ELFDumper::printMipsPLTGOT() { const ELFFile *Obj = ObjF->getELFFile(); if (Obj->getHeader()->e_machine != EM_MIPS) reportError("MIPS PLT GOT is available for MIPS targets only"); MipsGOTParser Parser(Obj, dynamic_table(), dynamic_symbols()); if (Parser.hasGot()) ELFDumperStyle->printMipsGOT(Parser); if (Parser.hasPlt()) ELFDumperStyle->printMipsPLT(Parser); } static const EnumEntry ElfMipsISAExtType[] = { {"None", Mips::AFL_EXT_NONE}, {"Broadcom SB-1", Mips::AFL_EXT_SB1}, {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, {"LSI R4010", Mips::AFL_EXT_4010}, {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, {"MIPS R4650", Mips::AFL_EXT_4650}, {"MIPS R5900", Mips::AFL_EXT_5900}, {"MIPS R10000", Mips::AFL_EXT_10000}, {"NEC VR4100", Mips::AFL_EXT_4100}, {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, {"NEC VR4120", Mips::AFL_EXT_4120}, {"NEC VR5400", Mips::AFL_EXT_5400}, {"NEC VR5500", Mips::AFL_EXT_5500}, {"RMI Xlr", Mips::AFL_EXT_XLR}, {"Toshiba R3900", Mips::AFL_EXT_3900} }; static const EnumEntry ElfMipsASEFlags[] = { {"DSP", Mips::AFL_ASE_DSP}, {"DSPR2", Mips::AFL_ASE_DSPR2}, {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, {"MCU", Mips::AFL_ASE_MCU}, {"MDMX", Mips::AFL_ASE_MDMX}, {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, {"MT", Mips::AFL_ASE_MT}, {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, {"VZ", Mips::AFL_ASE_VIRT}, {"MSA", Mips::AFL_ASE_MSA}, {"MIPS16", Mips::AFL_ASE_MIPS16}, {"microMIPS", Mips::AFL_ASE_MICROMIPS}, {"XPA", Mips::AFL_ASE_XPA}, {"CRC", Mips::AFL_ASE_CRC}, {"GINV", Mips::AFL_ASE_GINV}, }; static const EnumEntry ElfMipsFpABIType[] = { {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, {"Hard float compat (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64A} }; static const EnumEntry ElfMipsFlags1[] { {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, }; static int getMipsRegisterSize(uint8_t Flag) { switch (Flag) { case Mips::AFL_REG_NONE: return 0; case Mips::AFL_REG_32: return 32; case Mips::AFL_REG_64: return 64; case Mips::AFL_REG_128: return 128; default: return -1; } } template void ELFDumper::printMipsABIFlags() { const ELFFile *Obj = ObjF->getELFFile(); const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags"); if (!Shdr) { W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; return; } ArrayRef Sec = unwrapOrError(Obj->getSectionContents(Shdr)); if (Sec.size() != sizeof(Elf_Mips_ABIFlags)) { W.startLine() << "The .MIPS.abiflags section has a wrong size.\n"; return; } auto *Flags = reinterpret_cast *>(Sec.data()); raw_ostream &OS = W.getOStream(); DictScope GS(W, "MIPS ABI Flags"); W.printNumber("Version", Flags->version); W.startLine() << "ISA: "; if (Flags->isa_rev <= 1) OS << format("MIPS%u", Flags->isa_level); else OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); OS << "\n"; W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); W.printHex("Flags 2", Flags->flags2); } template static void printMipsReginfoData(ScopedPrinter &W, const Elf_Mips_RegInfo &Reginfo) { W.printHex("GP", Reginfo.ri_gp_value); W.printHex("General Mask", Reginfo.ri_gprmask); W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); } template void ELFDumper::printMipsReginfo() { const ELFFile *Obj = ObjF->getELFFile(); const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo"); if (!Shdr) { W.startLine() << "There is no .reginfo section in the file.\n"; return; } ArrayRef Sec = unwrapOrError(Obj->getSectionContents(Shdr)); if (Sec.size() != sizeof(Elf_Mips_RegInfo)) { W.startLine() << "The .reginfo section has a wrong size.\n"; return; } DictScope GS(W, "MIPS RegInfo"); auto *Reginfo = reinterpret_cast *>(Sec.data()); printMipsReginfoData(W, *Reginfo); } template void ELFDumper::printMipsOptions() { const ELFFile *Obj = ObjF->getELFFile(); const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options"); if (!Shdr) { W.startLine() << "There is no .MIPS.options section in the file.\n"; return; } DictScope GS(W, "MIPS Options"); ArrayRef Sec = unwrapOrError(Obj->getSectionContents(Shdr)); while (!Sec.empty()) { if (Sec.size() < sizeof(Elf_Mips_Options)) { W.startLine() << "The .MIPS.options section has a wrong size.\n"; return; } auto *O = reinterpret_cast *>(Sec.data()); DictScope GS(W, getElfMipsOptionsOdkType(O->kind)); switch (O->kind) { case ODK_REGINFO: printMipsReginfoData(W, O->getRegInfo()); break; default: W.startLine() << "Unsupported MIPS options tag.\n"; break; } Sec = Sec.slice(O->size); } } template void ELFDumper::printStackMap() const { const ELFFile *Obj = ObjF->getELFFile(); const Elf_Shdr *StackMapSection = nullptr; for (const auto &Sec : unwrapOrError(Obj->sections())) { StringRef Name = unwrapOrError(Obj->getSectionName(&Sec)); if (Name == ".llvm_stackmaps") { StackMapSection = &Sec; break; } } if (!StackMapSection) return; ArrayRef StackMapContentsArray = unwrapOrError(Obj->getSectionContents(StackMapSection)); prettyPrintStackMap( W, StackMapV2Parser(StackMapContentsArray)); } template void ELFDumper::printGroupSections() { ELFDumperStyle->printGroupSections(ObjF->getELFFile()); } template void ELFDumper::printAddrsig() { ELFDumperStyle->printAddrsig(ObjF->getELFFile()); } static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, StringRef Str2) { OS.PadToColumn(2u); OS << Str1; OS.PadToColumn(37u); OS << Str2 << "\n"; OS.flush(); } template static std::string getSectionHeadersNumString(const ELFFile *Obj) { const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); if (ElfHeader->e_shnum != 0) return to_string(ElfHeader->e_shnum); ArrayRef Arr = unwrapOrError(Obj->sections()); if (Arr.empty()) return "0"; return "0 (" + to_string(Arr[0].sh_size) + ")"; } template static std::string getSectionHeaderTableIndexString(const ELFFile *Obj) { const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); if (ElfHeader->e_shstrndx != SHN_XINDEX) return to_string(ElfHeader->e_shstrndx); ArrayRef Arr = unwrapOrError(Obj->sections()); if (Arr.empty()) return "65535 (corrupt: out of range)"; return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) + ")"; } template void GNUStyle::printFileHeaders(const ELFO *Obj) { const Elf_Ehdr *e = Obj->getHeader(); OS << "ELF Header:\n"; OS << " Magic: "; std::string Str; for (int i = 0; i < ELF::EI_NIDENT; i++) OS << format(" %02x", static_cast(e->e_ident[i])); OS << "\n"; Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); printFields(OS, "Class:", Str); Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); printFields(OS, "Data:", Str); OS.PadToColumn(2u); OS << "Version:"; OS.PadToColumn(37u); OS << to_hexString(e->e_ident[ELF::EI_VERSION]); if (e->e_version == ELF::EV_CURRENT) OS << " (current)"; OS << "\n"; Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); printFields(OS, "OS/ABI:", Str); Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]); printFields(OS, "ABI Version:", Str); Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType)); printFields(OS, "Type:", Str); Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType)); printFields(OS, "Machine:", Str); Str = "0x" + to_hexString(e->e_version); printFields(OS, "Version:", Str); Str = "0x" + to_hexString(e->e_entry); printFields(OS, "Entry point address:", Str); Str = to_string(e->e_phoff) + " (bytes into file)"; printFields(OS, "Start of program headers:", Str); Str = to_string(e->e_shoff) + " (bytes into file)"; printFields(OS, "Start of section headers:", Str); std::string ElfFlags; if (e->e_machine == EM_MIPS) ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); else if (e->e_machine == EM_RISCV) ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); Str = "0x" + to_hexString(e->e_flags); if (!ElfFlags.empty()) Str = Str + ", " + ElfFlags; printFields(OS, "Flags:", Str); Str = to_string(e->e_ehsize) + " (bytes)"; printFields(OS, "Size of this header:", Str); Str = to_string(e->e_phentsize) + " (bytes)"; printFields(OS, "Size of program headers:", Str); Str = to_string(e->e_phnum); printFields(OS, "Number of program headers:", Str); Str = to_string(e->e_shentsize) + " (bytes)"; printFields(OS, "Size of section headers:", Str); Str = getSectionHeadersNumString(Obj); printFields(OS, "Number of section headers:", Str); Str = getSectionHeaderTableIndexString(Obj); printFields(OS, "Section header string table index:", Str); } namespace { struct GroupMember { StringRef Name; uint64_t Index; }; struct GroupSection { StringRef Name; std::string Signature; uint64_t ShName; uint64_t Index; uint32_t Link; uint32_t Info; uint32_t Type; std::vector Members; }; template std::vector getGroups(const ELFFile *Obj) { using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Word = typename ELFT::Word; std::vector Ret; uint64_t I = 0; for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { ++I; if (Sec.sh_type != ELF::SHT_GROUP) continue; const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link)); StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab)); const Elf_Sym *Sym = unwrapOrError(Obj->template getEntry(Symtab, Sec.sh_info)); auto Data = unwrapOrError(Obj->template getSectionContentsAsArray(&Sec)); StringRef Name = unwrapOrError(Obj->getSectionName(&Sec)); StringRef Signature = StrTable.data() + Sym->st_name; Ret.push_back({Name, maybeDemangle(Signature), Sec.sh_name, I - 1, Sec.sh_link, Sec.sh_info, Data[0], {}}); std::vector &GM = Ret.back().Members; for (uint32_t Ndx : Data.slice(1)) { auto Sec = unwrapOrError(Obj->getSection(Ndx)); const StringRef Name = unwrapOrError(Obj->getSectionName(Sec)); GM.push_back({Name, Ndx}); } } return Ret; } DenseMap mapSectionsToGroups(ArrayRef Groups) { DenseMap Ret; for (const GroupSection &G : Groups) for (const GroupMember &GM : G.Members) Ret.insert({GM.Index, &G}); return Ret; } } // namespace template void GNUStyle::printGroupSections(const ELFO *Obj) { std::vector V = getGroups(Obj); DenseMap Map = mapSectionsToGroups(V); for (const GroupSection &G : V) { OS << "\n" << getGroupType(G.Type) << " group section [" << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature << "] contains " << G.Members.size() << " sections:\n" << " [Index] Name\n"; for (const GroupMember &GM : G.Members) { const GroupSection *MainGroup = Map[GM.Index]; if (MainGroup != &G) { OS.flush(); errs() << "Error: section [" << format_decimal(GM.Index, 5) << "] in group section [" << format_decimal(G.Index, 5) << "] already in group section [" << format_decimal(MainGroup->Index, 5) << "]"; errs().flush(); continue; } OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; } } if (V.empty()) OS << "There are no section groups in this file.\n"; } template void GNUStyle::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, const Elf_Rela &R, bool IsRela) { // First two fields are bit width dependent. The rest of them are after are // fixed width. unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; SmallString<32> RelocName; Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName); const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&R, SymTab)); std::string TargetName; if (Sym && Sym->getType() == ELF::STT_SECTION) { const Elf_Shdr *Sec = unwrapOrError( Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); TargetName = unwrapOrError(Obj->getSectionName(Sec)); } else if (Sym) { StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab)); TargetName = maybeDemangle(unwrapOrError(Sym->getName(StrTable))); } unsigned Width = ELFT::Is64Bits ? 16 : 8; Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width)); Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width)); Fields[2].Str = RelocName.str(); if (Sym) Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width)); Fields[4].Str = TargetName; for (auto &F : Fields) printField(F); std::string Addend; if (Sym && IsRela) { if (R.r_addend < 0) Addend = " - "; else Addend = " + "; } if (IsRela) Addend += to_hexString(std::abs(R.r_addend), false); OS << Addend << "\n"; } template void GNUStyle::printRelocHeader(unsigned SType) { bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; if (ELFT::Is64Bits) OS << " "; else OS << " "; if (IsRelr && opts::RawRelr) OS << "Data "; else OS << "Offset"; if (ELFT::Is64Bits) OS << " Info Type" << " Symbol's Value Symbol's Name"; else OS << " Info Type Sym. Value Symbol's Name"; if (IsRela) OS << " + Addend"; OS << "\n"; } template void GNUStyle::printRelocations(const ELFO *Obj) { bool HasRelocSections = false; for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && Sec.sh_type != ELF::SHT_ANDROID_RELA && Sec.sh_type != ELF::SHT_ANDROID_RELR) continue; HasRelocSections = true; StringRef Name = unwrapOrError(Obj->getSectionName(&Sec)); unsigned Entries = Sec.getEntityCount(); std::vector AndroidRelas; if (Sec.sh_type == ELF::SHT_ANDROID_REL || Sec.sh_type == ELF::SHT_ANDROID_RELA) { // Android's packed relocation section needs to be unpacked first // to get the actual number of entries. AndroidRelas = unwrapOrError(Obj->android_relas(&Sec)); Entries = AndroidRelas.size(); } std::vector RelrRelas; if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR)) { // .relr.dyn relative relocation section needs to be unpacked first // to get the actual number of entries. Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(&Sec)); RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs)); Entries = RelrRelas.size(); } uintX_t Offset = Sec.sh_offset; OS << "\nRelocation section '" << Name << "' at offset 0x" << to_hexString(Offset, false) << " contains " << Entries << " entries:\n"; printRelocHeader(Sec.sh_type); const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link)); switch (Sec.sh_type) { case ELF::SHT_REL: for (const auto &R : unwrapOrError(Obj->rels(&Sec))) { Elf_Rela Rela; Rela.r_offset = R.r_offset; Rela.r_info = R.r_info; Rela.r_addend = 0; printRelocation(Obj, SymTab, Rela, false); } break; case ELF::SHT_RELA: for (const auto &R : unwrapOrError(Obj->relas(&Sec))) printRelocation(Obj, SymTab, R, true); break; case ELF::SHT_RELR: case ELF::SHT_ANDROID_RELR: if (opts::RawRelr) for (const auto &R : unwrapOrError(Obj->relrs(&Sec))) OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; else for (const auto &R : RelrRelas) printRelocation(Obj, SymTab, R, false); break; case ELF::SHT_ANDROID_REL: case ELF::SHT_ANDROID_RELA: for (const auto &R : AndroidRelas) printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA); break; } } if (!HasRelocSections) OS << "\nThere are no relocations in this file.\n"; } std::string getSectionTypeString(unsigned Arch, unsigned Type) { using namespace ELF; switch (Arch) { case EM_ARM: switch (Type) { case SHT_ARM_EXIDX: return "ARM_EXIDX"; case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; } break; case EM_X86_64: switch (Type) { case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; } break; case EM_MIPS: case EM_MIPS_RS3_LE: switch (Type) { case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS"; case SHT_MIPS_DWARF: return "SHT_MIPS_DWARF"; } break; } switch (Type) { case SHT_NULL: return "NULL"; case SHT_PROGBITS: return "PROGBITS"; case SHT_SYMTAB: return "SYMTAB"; case SHT_STRTAB: return "STRTAB"; case SHT_RELA: return "RELA"; case SHT_HASH: return "HASH"; case SHT_DYNAMIC: return "DYNAMIC"; case SHT_NOTE: return "NOTE"; case SHT_NOBITS: return "NOBITS"; case SHT_REL: return "REL"; case SHT_SHLIB: return "SHLIB"; case SHT_DYNSYM: return "DYNSYM"; case SHT_INIT_ARRAY: return "INIT_ARRAY"; case SHT_FINI_ARRAY: return "FINI_ARRAY"; case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case SHT_GROUP: return "GROUP"; case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES"; case SHT_RELR: case SHT_ANDROID_RELR: return "RELR"; case SHT_LLVM_ODRTAB: return "LLVM_ODRTAB"; case SHT_LLVM_LINKER_OPTIONS: return "LLVM_LINKER_OPTIONS"; case SHT_LLVM_CALL_GRAPH_PROFILE: return "LLVM_CALL_GRAPH_PROFILE"; case SHT_LLVM_ADDRSIG: return "LLVM_ADDRSIG"; // FIXME: Parse processor specific GNU attributes case SHT_GNU_ATTRIBUTES: return "ATTRIBUTES"; case SHT_GNU_HASH: return "GNU_HASH"; case SHT_GNU_verdef: return "VERDEF"; case SHT_GNU_verneed: return "VERNEED"; case SHT_GNU_versym: return "VERSYM"; default: return ""; } return ""; } template void GNUStyle::printSectionHeaders(const ELFO *Obj) { unsigned Bias = ELFT::Is64Bits ? 0 : 8; ArrayRef Sections = unwrapOrError(Obj->sections()); OS << "There are " << to_string(Sections.size()) << " section headers, starting at offset " << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n"; OS << "Section Headers:\n"; Field Fields[11] = { {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; for (auto &F : Fields) printField(F); OS << "\n"; size_t SectionIndex = 0; for (const Elf_Shdr &Sec : Sections) { Fields[0].Str = to_string(SectionIndex); Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec)); Fields[2].Str = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type); Fields[3].Str = to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); Fields[7].Str = getGNUFlags(Sec.sh_flags); Fields[8].Str = to_string(Sec.sh_link); Fields[9].Str = to_string(Sec.sh_info); Fields[10].Str = to_string(Sec.sh_addralign); OS.PadToColumn(Fields[0].Column); OS << "[" << right_justify(Fields[0].Str, 2) << "]"; for (int i = 1; i < 7; i++) printField(Fields[i]); OS.PadToColumn(Fields[7].Column); OS << right_justify(Fields[7].Str, 3); OS.PadToColumn(Fields[8].Column); OS << right_justify(Fields[8].Str, 2); OS.PadToColumn(Fields[9].Column); OS << right_justify(Fields[9].Str, 3); OS.PadToColumn(Fields[10].Column); OS << right_justify(Fields[10].Str, 2); OS << "\n"; ++SectionIndex; } OS << "Key to Flags:\n" << " W (write), A (alloc), X (execute), M (merge), S (strings), l " "(large)\n" << " I (info), L (link order), G (group), T (TLS), E (exclude),\ x (unknown)\n" << " O (extra OS processing required) o (OS specific),\ p (processor specific)\n"; } template void GNUStyle::printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Entries) { if (!Name.empty()) OS << "\nSymbol table '" << Name << "' contains " << Entries << " entries:\n"; else OS << "\n Symbol table for image:\n"; if (ELFT::Is64Bits) OS << " Num: Value Size Type Bind Vis Ndx Name\n"; else OS << " Num: Value Size Type Bind Vis Ndx Name\n"; } template std::string GNUStyle::getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *FirstSym) { unsigned SectionIndex = Symbol->st_shndx; switch (SectionIndex) { case ELF::SHN_UNDEF: return "UND"; case ELF::SHN_ABS: return "ABS"; case ELF::SHN_COMMON: return "COM"; case ELF::SHN_XINDEX: SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex( Symbol, FirstSym, this->dumper()->getShndxTable())); LLVM_FALLTHROUGH; default: // Find if: // Processor specific if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) return std::string("PRC[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // OS specific if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) return std::string("OS[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // Architecture reserved: if (SectionIndex >= ELF::SHN_LORESERVE && SectionIndex <= ELF::SHN_HIRESERVE) return std::string("RSV[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // A normal section with an index return to_string(format_decimal(SectionIndex, 3)); } } template void GNUStyle::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *FirstSym, StringRef StrTable, bool IsDynamic) { static int Idx = 0; static bool Dynamic = true; // If this function was called with a different value from IsDynamic // from last call, happens when we move from dynamic to static symbol // table, "Num" field should be reset. if (!Dynamic != !IsDynamic) { Idx = 0; Dynamic = false; } unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias}; Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":"; Fields[1].Str = to_string( format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5)); unsigned char SymbolType = Symbol->getType(); if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); Fields[4].Str = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); Fields[5].Str = printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); Fields[7].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); for (auto &Entry : Fields) printField(Entry); OS << "\n"; } template void GNUStyle::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym, StringRef StrTable, uint32_t Bucket) { unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; Fields[0].Str = to_string(format_decimal(Sym, 5)); Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; const auto Symbol = FirstSym + Sym; Fields[2].Str = to_string( format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 18 : 8)); Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); unsigned char SymbolType = Symbol->getType(); if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); Fields[5].Str = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); Fields[6].Str = printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true); for (auto &Entry : Fields) printField(Entry); OS << "\n"; } template void GNUStyle::printSymbols(const ELFO *Obj, bool PrintSymbols, bool PrintDynamicSymbols) { if (!PrintSymbols && !PrintDynamicSymbols) return; // GNU readelf prints both the .dynsym and .symtab with --symbols. this->dumper()->printSymbolsHelper(true); if (PrintSymbols) this->dumper()->printSymbolsHelper(false); } template void GNUStyle::printHashSymbols(const ELFO *Obj) { if (this->dumper()->getDynamicStringTable().empty()) return; auto StringTable = this->dumper()->getDynamicStringTable(); auto DynSyms = this->dumper()->dynamic_symbols(); // Try printing .hash if (auto SysVHash = this->dumper()->getHashTable()) { OS << "\n Symbol table of .hash for image:\n"; if (ELFT::Is64Bits) OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; else OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; OS << "\n"; auto Buckets = SysVHash->buckets(); auto Chains = SysVHash->chains(); for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) { if (Buckets[Buc] == ELF::STN_UNDEF) continue; for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) { if (Ch == ELF::STN_UNDEF) break; printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc); } } } // Try printing .gnu.hash if (auto GnuHash = this->dumper()->getGnuHashTable()) { OS << "\n Symbol table of .gnu.hash for image:\n"; if (ELFT::Is64Bits) OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; else OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; OS << "\n"; auto Buckets = GnuHash->buckets(); for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) { if (Buckets[Buc] == ELF::STN_UNDEF) continue; uint32_t Index = Buckets[Buc]; uint32_t GnuHashable = Index - GnuHash->symndx; // Print whole chain while (true) { printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc); // Chain ends at symbol with stopper bit if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1) break; } } } } static inline std::string printPhdrFlags(unsigned Flag) { std::string Str; Str = (Flag & PF_R) ? "R" : " "; Str += (Flag & PF_W) ? "W" : " "; Str += (Flag & PF_X) ? "E" : " "; return Str; } // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO // PT_TLS must only have SHF_TLS sections template bool GNUStyle::checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { return (((Sec.sh_flags & ELF::SHF_TLS) && ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || (Phdr.p_type == ELF::PT_GNU_RELRO))) || (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS)); } // Non-SHT_NOBITS must have its offset inside the segment // Only non-zero section can be at end of segment template bool GNUStyle::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { if (Sec.sh_type == ELF::SHT_NOBITS) return true; bool IsSpecial = (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); // .tbss is special, it only has memory in PT_TLS and has NOBITS properties auto SectionSize = (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; if (Sec.sh_offset >= Phdr.p_offset) return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset) /*only non-zero sized sections at end*/ && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz)); return false; } // SHF_ALLOC must have VMA inside segment // Only non-zero section can be at end of segment template bool GNUStyle::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { if (!(Sec.sh_flags & ELF::SHF_ALLOC)) return true; bool IsSpecial = (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); // .tbss is special, it only has memory in PT_TLS and has NOBITS properties auto SectionSize = (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; if (Sec.sh_addr >= Phdr.p_vaddr) return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) && (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz)); return false; } // No section with zero size must be at start or end of PT_DYNAMIC template bool GNUStyle::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0) return true; // Is section within the phdr both based on offset and VMA ? return ((Sec.sh_type == ELF::SHT_NOBITS) || (Sec.sh_offset > Phdr.p_offset && Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) && (!(Sec.sh_flags & ELF::SHF_ALLOC) || (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz)); } template void GNUStyle::printProgramHeaders( const ELFO *Obj, bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { if (PrintProgramHeaders) printProgramHeaders(Obj); // Display the section mapping along with the program headers, unless // -section-mapping is explicitly set to false. if (PrintSectionMapping != cl::BOU_FALSE) printSectionMapping(Obj); } template void GNUStyle::printProgramHeaders(const ELFO *Obj) { unsigned Bias = ELFT::Is64Bits ? 8 : 0; const Elf_Ehdr *Header = Obj->getHeader(); Field Fields[8] = {2, 17, 26, 37 + Bias, 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; OS << "\nElf file type is " << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n" << "Entry point " << format_hex(Header->e_entry, 3) << "\n" << "There are " << Header->e_phnum << " program headers," << " starting at offset " << Header->e_phoff << "\n\n" << "Program Headers:\n"; if (ELFT::Is64Bits) OS << " Type Offset VirtAddr PhysAddr " << " FileSiz MemSiz Flg Align\n"; else OS << " Type Offset VirtAddr PhysAddr FileSiz " << "MemSiz Flg Align\n"; unsigned Width = ELFT::Is64Bits ? 18 : 10; unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; for (const auto &Phdr : unwrapOrError(Obj->program_headers())) { Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type); Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); Fields[6].Str = printPhdrFlags(Phdr.p_flags); Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); for (auto Field : Fields) printField(Field); if (Phdr.p_type == ELF::PT_INTERP) { OS << "\n [Requesting program interpreter: "; OS << reinterpret_cast(Obj->base()) + Phdr.p_offset << "]"; } OS << "\n"; } } template void GNUStyle::printSectionMapping(const ELFO *Obj) { OS << "\n Section to Segment mapping:\n Segment Sections...\n"; DenseSet BelongsToSegment; int Phnum = 0; for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) { std::string Sections; OS << format(" %2.2d ", Phnum++); for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { // Check if each section is in a segment and then print mapping. // readelf additionally makes sure it does not print zero sized sections // at end of segments and for PT_DYNAMIC both start and end of section // .tbss must only be shown in PT_TLS section. bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0) && Phdr.p_type != ELF::PT_TLS; if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) && checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) && checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) { Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " "; BelongsToSegment.insert(&Sec); } } OS << Sections << "\n"; OS.flush(); } // Display sections that do not belong to a segment. std::string Sections; for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + ' '; } if (!Sections.empty()) { OS << " None " << Sections << '\n'; OS.flush(); } } template void GNUStyle::printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela) { unsigned Bias = ELFT::Is64Bits ? 8 : 0; // First two fields are bit width dependent. The rest of them are after are // fixed width. Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; unsigned Width = ELFT::Is64Bits ? 16 : 8; Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width)); Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width)); uint32_t SymIndex = R.getSymbol(Obj->isMips64EL()); const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex; SmallString<32> RelocName; Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName); Fields[2].Str = RelocName.c_str(); std::string SymbolName = maybeDemangle( unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()))); if (!SymbolName.empty() || Sym->getValue() != 0) Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width)); Fields[4].Str = SymbolName; for (auto &Field : Fields) printField(Field); int64_t RelAddend = R.r_addend; std::string Addend; if (!SymbolName.empty() && IsRela) { if (R.r_addend < 0) Addend = " - "; else Addend = " + "; } if (IsRela) Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1)); OS << Addend << "\n"; } template void GNUStyle::printDynamicRelocations(const ELFO *Obj) { const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); if (DynRelaRegion.Size > 0) { OS << "\n'RELA' relocation section at offset " << format_hex(reinterpret_cast(DynRelaRegion.Addr) - Obj->base(), 1) << " contains " << DynRelaRegion.Size << " bytes:\n"; printRelocHeader(ELF::SHT_RELA); for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) printDynamicRelocation(Obj, Rela, true); } if (DynRelRegion.Size > 0) { OS << "\n'REL' relocation section at offset " << format_hex(reinterpret_cast(DynRelRegion.Addr) - Obj->base(), 1) << " contains " << DynRelRegion.Size << " bytes:\n"; printRelocHeader(ELF::SHT_REL); for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { Elf_Rela Rela; Rela.r_offset = Rel.r_offset; Rela.r_info = Rel.r_info; Rela.r_addend = 0; printDynamicRelocation(Obj, Rela, false); } } if (DynRelrRegion.Size > 0) { OS << "\n'RELR' relocation section at offset " << format_hex(reinterpret_cast(DynRelrRegion.Addr) - Obj->base(), 1) << " contains " << DynRelrRegion.Size << " bytes:\n"; printRelocHeader(ELF::SHT_REL); Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); std::vector RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs)); for (const Elf_Rela &Rela : RelrRelas) { printDynamicRelocation(Obj, Rela, false); } } if (DynPLTRelRegion.Size) { OS << "\n'PLT' relocation section at offset " << format_hex(reinterpret_cast(DynPLTRelRegion.Addr) - Obj->base(), 1) << " contains " << DynPLTRelRegion.Size << " bytes:\n"; } if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { printRelocHeader(ELF::SHT_RELA); for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef()) printDynamicRelocation(Obj, Rela, true); } else { printRelocHeader(ELF::SHT_REL); for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef()) { Elf_Rela Rela; Rela.r_offset = Rel.r_offset; Rela.r_info = Rel.r_info; Rela.r_addend = 0; printDynamicRelocation(Obj, Rela, false); } } } // Hash histogram shows statistics of how efficient the hash was for the // dynamic symbol table. The table shows number of hash buckets for different // lengths of chains as absolute number and percentage of the total buckets. // Additionally cumulative coverage of symbols for each set of buckets. template void GNUStyle::printHashHistogram(const ELFFile *Obj) { // Print histogram for .hash section if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) { size_t NBucket = HashTable->nbucket; size_t NChain = HashTable->nchain; ArrayRef Buckets = HashTable->buckets(); ArrayRef Chains = HashTable->chains(); size_t TotalSyms = 0; // If hash table is correct, we have at least chains with 0 length size_t MaxChain = 1; size_t CumulativeNonZero = 0; if (NChain == 0 || NBucket == 0) return; std::vector ChainLen(NBucket, 0); // Go over all buckets and and note chain lengths of each bucket (total // unique chain lengths). for (size_t B = 0; B < NBucket; B++) { for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C]) if (MaxChain <= ++ChainLen[B]) MaxChain++; TotalSyms += ChainLen[B]; } if (!TotalSyms) return; std::vector Count(MaxChain, 0) ; // Count how long is the chain for each bucket for (size_t B = 0; B < NBucket; B++) ++Count[ChainLen[B]]; // Print Number of buckets with each chain lengths and their cumulative // coverage of the symbols OS << "Histogram for bucket list length (total of " << NBucket << " buckets)\n" << " Length Number % of total Coverage\n"; for (size_t I = 0; I < MaxChain; I++) { CumulativeNonZero += Count[I] * I; OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], (Count[I] * 100.0) / NBucket, (CumulativeNonZero * 100.0) / TotalSyms); } } // Print histogram for .gnu.hash section if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) { size_t NBucket = GnuHashTable->nbuckets; ArrayRef Buckets = GnuHashTable->buckets(); unsigned NumSyms = this->dumper()->dynamic_symbols().size(); if (!NumSyms) return; ArrayRef Chains = GnuHashTable->values(NumSyms); size_t Symndx = GnuHashTable->symndx; size_t TotalSyms = 0; size_t MaxChain = 1; size_t CumulativeNonZero = 0; if (Chains.empty() || NBucket == 0) return; std::vector ChainLen(NBucket, 0); for (size_t B = 0; B < NBucket; B++) { if (!Buckets[B]) continue; size_t Len = 1; for (size_t C = Buckets[B] - Symndx; C < Chains.size() && (Chains[C] & 1) == 0; C++) if (MaxChain < ++Len) MaxChain++; ChainLen[B] = Len; TotalSyms += Len; } MaxChain++; if (!TotalSyms) return; std::vector Count(MaxChain, 0) ; for (size_t B = 0; B < NBucket; B++) ++Count[ChainLen[B]]; // Print Number of buckets with each chain lengths and their cumulative // coverage of the symbols OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket << " buckets)\n" << " Length Number % of total Coverage\n"; for (size_t I = 0; I void GNUStyle::printCGProfile(const ELFFile *Obj) { OS << "GNUStyle::printCGProfile not implemented\n"; } template void GNUStyle::printAddrsig(const ELFFile *Obj) { OS << "GNUStyle::printAddrsig not implemented\n"; } static std::string getGNUNoteTypeName(const uint32_t NT) { static const struct { uint32_t ID; const char *Name; } Notes[] = { {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, }; for (const auto &Note : Notes) if (Note.ID == NT) return std::string(Note.Name); std::string string; raw_string_ostream OS(string); OS << format("Unknown note type (0x%08x)", NT); return OS.str(); } static std::string getFreeBSDNoteTypeName(const uint32_t NT) { static const struct { uint32_t ID; const char *Name; } Notes[] = { {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, }; for (const auto &Note : Notes) if (Note.ID == NT) return std::string(Note.Name); std::string string; raw_string_ostream OS(string); OS << format("Unknown note type (0x%08x)", NT); return OS.str(); } static std::string getAMDNoteTypeName(const uint32_t NT) { static const struct { uint32_t ID; const char *Name; } Notes[] = { {ELF::NT_AMD_AMDGPU_HSA_METADATA, "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"}, {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"}, {ELF::NT_AMD_AMDGPU_PAL_METADATA, "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"} }; for (const auto &Note : Notes) if (Note.ID == NT) return std::string(Note.Name); std::string string; raw_string_ostream OS(string); OS << format("Unknown note type (0x%08x)", NT); return OS.str(); } static std::string getAMDGPUNoteTypeName(const uint32_t NT) { if (NT == ELF::NT_AMDGPU_METADATA) return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)"); std::string string; raw_string_ostream OS(string); OS << format("Unknown note type (0x%08x)", NT); return OS.str(); } template static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, ArrayRef Data) { std::string str; raw_string_ostream OS(str); switch (Type) { default: OS << format("", Type); return OS.str(); case GNU_PROPERTY_STACK_SIZE: { OS << "stack size: "; if (DataSize == sizeof(typename ELFT::uint)) OS << formatv("{0:x}", (uint64_t)(*(const typename ELFT::Addr *)Data.data())); else OS << format("", DataSize); return OS.str(); } case GNU_PROPERTY_NO_COPY_ON_PROTECTED: OS << "no copy on protected"; if (DataSize) OS << format(" ", DataSize); return OS.str(); case GNU_PROPERTY_X86_FEATURE_1_AND: OS << "X86 features: "; if (DataSize != 4 && DataSize != 8) { OS << format("", DataSize); return OS.str(); } uint64_t CFProtection = (DataSize == 4) ? support::endian::read32(Data.data()) : support::endian::read64(Data.data()); if (CFProtection == 0) { OS << "none"; return OS.str(); } if (CFProtection & GNU_PROPERTY_X86_FEATURE_1_IBT) { OS << "IBT"; CFProtection &= ~GNU_PROPERTY_X86_FEATURE_1_IBT; if (CFProtection) OS << ", "; } if (CFProtection & GNU_PROPERTY_X86_FEATURE_1_SHSTK) { OS << "SHSTK"; CFProtection &= ~GNU_PROPERTY_X86_FEATURE_1_SHSTK; if (CFProtection) OS << ", "; } if (CFProtection) OS << format("", CFProtection); return OS.str(); } } template static SmallVector getGNUPropertyList(ArrayRef Arr) { using Elf_Word = typename ELFT::Word; SmallVector Properties; while (Arr.size() >= 8) { uint32_t Type = *reinterpret_cast(Arr.data()); uint32_t DataSize = *reinterpret_cast(Arr.data() + 4); Arr = Arr.drop_front(8); // Take padding size into account if present. uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); std::string str; raw_string_ostream OS(str); if (Arr.size() < PaddedSize) { OS << format("", Type, DataSize); Properties.push_back(OS.str()); break; } Properties.push_back( getGNUProperty(Type, DataSize, Arr.take_front(PaddedSize))); Arr = Arr.drop_front(PaddedSize); } if (!Arr.empty()) Properties.push_back(""); return Properties; } struct GNUAbiTag { std::string OSName; std::string ABI; bool IsValid; }; template static GNUAbiTag getGNUAbiTag(ArrayRef Desc) { typedef typename ELFT::Word Elf_Word; ArrayRef Words(reinterpret_cast(Desc.begin()), reinterpret_cast(Desc.end())); if (Words.size() < 4) return {"", "", /*IsValid=*/false}; static const char *OSNames[] = { "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", }; StringRef OSName = "Unknown"; if (Words[0] < array_lengthof(OSNames)) OSName = OSNames[Words[0]]; uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; std::string str; raw_string_ostream ABI(str); ABI << Major << "." << Minor << "." << Patch; return {OSName, ABI.str(), /*IsValid=*/true}; } static std::string getGNUBuildId(ArrayRef Desc) { std::string str; raw_string_ostream OS(str); for (const auto &B : Desc) OS << format_hex_no_prefix(B, 2); return OS.str(); } static StringRef getGNUGoldVersion(ArrayRef Desc) { return StringRef(reinterpret_cast(Desc.data()), Desc.size()); } template static void printGNUNote(raw_ostream &OS, uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return; case ELF::NT_GNU_ABI_TAG: { const GNUAbiTag &AbiTag = getGNUAbiTag(Desc); if (!AbiTag.IsValid) OS << " "; else OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; break; } case ELF::NT_GNU_BUILD_ID: { OS << " Build ID: " << getGNUBuildId(Desc); break; } case ELF::NT_GNU_GOLD_VERSION: OS << " Version: " << getGNUGoldVersion(Desc); break; case ELF::NT_GNU_PROPERTY_TYPE_0: OS << " Properties:"; for (const auto &Property : getGNUPropertyList(Desc)) OS << " " << Property << "\n"; break; } OS << '\n'; } struct AMDNote { std::string Type; std::string Value; }; template static AMDNote getAMDNote(uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return {"", ""}; case ELF::NT_AMD_AMDGPU_HSA_METADATA: return {"HSA Metadata", std::string(reinterpret_cast(Desc.data()), Desc.size())}; case ELF::NT_AMD_AMDGPU_ISA: return {"ISA Version", std::string(reinterpret_cast(Desc.data()), Desc.size())}; case ELF::NT_AMD_AMDGPU_PAL_METADATA: const uint32_t *PALMetadataBegin = reinterpret_cast(Desc.data()); const uint32_t *PALMetadataEnd = PALMetadataBegin + Desc.size(); std::vector PALMetadata(PALMetadataBegin, PALMetadataEnd); std::string PALMetadataString; auto Error = AMDGPU::PALMD::toString(PALMetadata, PALMetadataString); if (Error) { return {"PAL Metadata", "Invalid"}; } return {"PAL Metadata", PALMetadataString}; } } struct AMDGPUNote { std::string Type; std::string Value; }; template static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return {"", ""}; case ELF::NT_AMDGPU_METADATA: auto MsgPackString = StringRef(reinterpret_cast(Desc.data()), Desc.size()); msgpack::Reader MsgPackReader(MsgPackString); auto OptMsgPackNodeOrErr = msgpack::Node::read(MsgPackReader); if (errorToBool(OptMsgPackNodeOrErr.takeError())) return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; auto &OptMsgPackNode = *OptMsgPackNodeOrErr; if (!OptMsgPackNode) return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; auto &MsgPackNode = *OptMsgPackNode; AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); if (!Verifier.verify(*MsgPackNode)) return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; std::string HSAMetadataString; raw_string_ostream StrOS(HSAMetadataString); yaml::Output YOut(StrOS); YOut << MsgPackNode; return {"AMDGPU Metadata", StrOS.str()}; } } template void GNUStyle::printNotes(const ELFFile *Obj) { auto PrintHeader = [&](const typename ELFT::Off Offset, const typename ELFT::Addr Size) { OS << "Displaying notes found at file offset " << format_hex(Offset, 10) << " with length " << format_hex(Size, 10) << ":\n" << " Owner Data size\tDescription\n"; }; auto ProcessNote = [&](const Elf_Note &Note) { StringRef Name = Note.getName(); ArrayRef Descriptor = Note.getDesc(); Elf_Word Type = Note.getType(); OS << " " << Name << std::string(22 - Name.size(), ' ') << format_hex(Descriptor.size(), 10) << '\t'; if (Name == "GNU") { OS << getGNUNoteTypeName(Type) << '\n'; printGNUNote(OS, Type, Descriptor); } else if (Name == "FreeBSD") { OS << getFreeBSDNoteTypeName(Type) << '\n'; } else if (Name == "AMD") { OS << getAMDNoteTypeName(Type) << '\n'; const AMDNote N = getAMDNote(Type, Descriptor); if (!N.Type.empty()) OS << " " << N.Type << ":\n " << N.Value << '\n'; } else if (Name == "AMDGPU") { OS << getAMDGPUNoteTypeName(Type) << '\n'; const AMDGPUNote N = getAMDGPUNote(Type, Descriptor); if (!N.Type.empty()) OS << " " << N.Type << ":\n " << N.Value << '\n'; } else { OS << "Unknown note type: (" << format_hex(Type, 10) << ')'; } OS << '\n'; }; if (Obj->getHeader()->e_type == ELF::ET_CORE) { for (const auto &P : unwrapOrError(Obj->program_headers())) { if (P.p_type != PT_NOTE) continue; PrintHeader(P.p_offset, P.p_filesz); Error Err = Error::success(); for (const auto &Note : Obj->notes(P, Err)) ProcessNote(Note); if (Err) error(std::move(Err)); } } else { for (const auto &S : unwrapOrError(Obj->sections())) { if (S.sh_type != SHT_NOTE) continue; PrintHeader(S.sh_offset, S.sh_size); Error Err = Error::success(); for (const auto &Note : Obj->notes(S, Err)) ProcessNote(Note); if (Err) error(std::move(Err)); } } } template void GNUStyle::printELFLinkerOptions(const ELFFile *Obj) { OS << "printELFLinkerOptions not implemented!\n"; } template void GNUStyle::printMipsGOT(const MipsGOTParser &Parser) { size_t Bias = ELFT::Is64Bits ? 8 : 0; auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { OS.PadToColumn(2); OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); OS.PadToColumn(11 + Bias); OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; OS.PadToColumn(22 + Bias); OS << format_hex_no_prefix(*E, 8 + Bias); OS.PadToColumn(31 + 2 * Bias); OS << Purpose << "\n"; }; OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); OS << " Canonical gp value: " << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; OS << " Reserved entries:\n"; OS << " Address Access Initial Purpose\n"; PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); if (Parser.getGotModulePointer()) PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); if (!Parser.getLocalEntries().empty()) { OS << "\n"; OS << " Local entries:\n"; OS << " Address Access Initial\n"; for (auto &E : Parser.getLocalEntries()) PrintEntry(&E, ""); } if (Parser.IsStatic) return; if (!Parser.getGlobalEntries().empty()) { OS << "\n"; OS << " Global entries:\n"; OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; for (auto &E : Parser.getGlobalEntries()) { const Elf_Sym *Sym = Parser.getGotSym(&E); std::string SymName = this->dumper()->getFullSymbolName( Sym, this->dumper()->getDynamicStringTable(), false); OS.PadToColumn(2); OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); OS.PadToColumn(11 + Bias); OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; OS.PadToColumn(22 + Bias); OS << to_string(format_hex_no_prefix(E, 8 + Bias)); OS.PadToColumn(31 + 2 * Bias); OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); OS.PadToColumn(40 + 3 * Bias); OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); OS.PadToColumn(48 + 3 * Bias); OS << getSymbolSectionNdx(Parser.Obj, Sym, this->dumper()->dynamic_symbols().begin()); OS.PadToColumn(52 + 3 * Bias); OS << SymName << "\n"; } } if (!Parser.getOtherEntries().empty()) OS << "\n Number of TLS and multi-GOT entries " << Parser.getOtherEntries().size() << "\n"; } template void GNUStyle::printMipsPLT(const MipsGOTParser &Parser) { size_t Bias = ELFT::Is64Bits ? 8 : 0; auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { OS.PadToColumn(2); OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); OS.PadToColumn(11 + Bias); OS << format_hex_no_prefix(*E, 8 + Bias); OS.PadToColumn(20 + 2 * Bias); OS << Purpose << "\n"; }; OS << "PLT GOT:\n\n"; OS << " Reserved entries:\n"; OS << " Address Initial Purpose\n"; PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); if (Parser.getPltModulePointer()) PrintEntry(Parser.getGotModulePointer(), "Module pointer"); if (!Parser.getPltEntries().empty()) { OS << "\n"; OS << " Entries:\n"; OS << " Address Initial Sym.Val. Type Ndx Name\n"; for (auto &E : Parser.getPltEntries()) { const Elf_Sym *Sym = Parser.getPltSym(&E); std::string SymName = this->dumper()->getFullSymbolName( Sym, this->dumper()->getDynamicStringTable(), false); OS.PadToColumn(2); OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); OS.PadToColumn(11 + Bias); OS << to_string(format_hex_no_prefix(E, 8 + Bias)); OS.PadToColumn(20 + 2 * Bias); OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); OS.PadToColumn(29 + 3 * Bias); OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); OS.PadToColumn(37 + 3 * Bias); OS << getSymbolSectionNdx(Parser.Obj, Sym, this->dumper()->dynamic_symbols().begin()); OS.PadToColumn(41 + 3 * Bias); OS << SymName << "\n"; } } } template void LLVMStyle::printFileHeaders(const ELFO *Obj) { const Elf_Ehdr *E = Obj->getHeader(); { DictScope D(W, "ElfHeader"); { DictScope D(W, "Ident"); W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4)); W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]); auto OSABI = makeArrayRef(ElfOSABI); if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { switch (E->e_machine) { case ELF::EM_AMDGPU: OSABI = makeArrayRef(AMDGPUElfOSABI); break; case ELF::EM_ARM: OSABI = makeArrayRef(ARMElfOSABI); break; case ELF::EM_TI_C6000: OSABI = makeArrayRef(C6000ElfOSABI); break; } } W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI); W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]); W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD)); } W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType)); W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType)); W.printNumber("Version", E->e_version); W.printHex("Entry", E->e_entry); W.printHex("ProgramHeaderOffset", E->e_phoff); W.printHex("SectionHeaderOffset", E->e_shoff); if (E->e_machine == EM_MIPS) W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); else if (E->e_machine == EM_AMDGPU) W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags), unsigned(ELF::EF_AMDGPU_MACH)); else if (E->e_machine == EM_RISCV) W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); else W.printFlags("Flags", E->e_flags); W.printNumber("HeaderSize", E->e_ehsize); W.printNumber("ProgramHeaderEntrySize", E->e_phentsize); W.printNumber("ProgramHeaderCount", E->e_phnum); W.printNumber("SectionHeaderEntrySize", E->e_shentsize); W.printString("SectionHeaderCount", getSectionHeadersNumString(Obj)); W.printString("StringTableSectionIndex", getSectionHeaderTableIndexString(Obj)); } } template void LLVMStyle::printGroupSections(const ELFO *Obj) { DictScope Lists(W, "Groups"); std::vector V = getGroups(Obj); DenseMap Map = mapSectionsToGroups(V); for (const GroupSection &G : V) { DictScope D(W, "Group"); W.printNumber("Name", G.Name, G.ShName); W.printNumber("Index", G.Index); W.printNumber("Link", G.Link); W.printNumber("Info", G.Info); W.printHex("Type", getGroupType(G.Type), G.Type); W.startLine() << "Signature: " << G.Signature << "\n"; ListScope L(W, "Section(s) in group"); for (const GroupMember &GM : G.Members) { const GroupSection *MainGroup = Map[GM.Index]; if (MainGroup != &G) { W.flush(); errs() << "Error: " << GM.Name << " (" << GM.Index << ") in a group " + G.Name + " (" << G.Index << ") is already in a group " + MainGroup->Name + " (" << MainGroup->Index << ")\n"; errs().flush(); continue; } W.startLine() << GM.Name << " (" << GM.Index << ")\n"; } } if (V.empty()) W.startLine() << "There are no group sections in the file.\n"; } template void LLVMStyle::printRelocations(const ELFO *Obj) { ListScope D(W, "Relocations"); int SectionNumber = -1; for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { ++SectionNumber; if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && Sec.sh_type != ELF::SHT_ANDROID_RELA && Sec.sh_type != ELF::SHT_ANDROID_RELR) continue; StringRef Name = unwrapOrError(Obj->getSectionName(&Sec)); W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n"; W.indent(); printRelocations(&Sec, Obj); W.unindent(); W.startLine() << "}\n"; } } template void LLVMStyle::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) { const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link)); switch (Sec->sh_type) { case ELF::SHT_REL: for (const Elf_Rel &R : unwrapOrError(Obj->rels(Sec))) { Elf_Rela Rela; Rela.r_offset = R.r_offset; Rela.r_info = R.r_info; Rela.r_addend = 0; printRelocation(Obj, Rela, SymTab); } break; case ELF::SHT_RELA: for (const Elf_Rela &R : unwrapOrError(Obj->relas(Sec))) printRelocation(Obj, R, SymTab); break; case ELF::SHT_RELR: case ELF::SHT_ANDROID_RELR: { Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(Sec)); if (opts::RawRelr) { for (const Elf_Relr &R : Relrs) W.startLine() << W.hex(R) << "\n"; } else { std::vector RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs)); for (const Elf_Rela &R : RelrRelas) printRelocation(Obj, R, SymTab); } break; } case ELF::SHT_ANDROID_REL: case ELF::SHT_ANDROID_RELA: for (const Elf_Rela &R : unwrapOrError(Obj->android_relas(Sec))) printRelocation(Obj, R, SymTab); break; } } template void LLVMStyle::printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab) { SmallString<32> RelocName; Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); std::string TargetName; const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&Rel, SymTab)); if (Sym && Sym->getType() == ELF::STT_SECTION) { const Elf_Shdr *Sec = unwrapOrError( Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); TargetName = unwrapOrError(Obj->getSectionName(Sec)); } else if (Sym) { StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab)); TargetName = maybeDemangle(unwrapOrError(Sym->getName(StrTable))); } if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", Rel.r_offset); W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-", Rel.getSymbol(Obj->isMips64EL())); W.printHex("Addend", Rel.r_addend); } else { raw_ostream &OS = W.startLine(); OS << W.hex(Rel.r_offset) << " " << RelocName << " " << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend) << "\n"; } } template void LLVMStyle::printSectionHeaders(const ELFO *Obj) { ListScope SectionsD(W, "Sections"); int SectionIndex = -1; for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) { ++SectionIndex; StringRef Name = unwrapOrError(Obj->getSectionName(&Sec)); DictScope SectionD(W, "Section"); W.printNumber("Index", SectionIndex); W.printNumber("Name", Name, Sec.sh_name); W.printHex( "Type", object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type), Sec.sh_type); std::vector> SectionFlags(std::begin(ElfSectionFlags), std::end(ElfSectionFlags)); switch (Obj->getHeader()->e_machine) { case EM_ARM: SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags), std::end(ElfARMSectionFlags)); break; case EM_HEXAGON: SectionFlags.insert(SectionFlags.end(), std::begin(ElfHexagonSectionFlags), std::end(ElfHexagonSectionFlags)); break; case EM_MIPS: SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags), std::end(ElfMipsSectionFlags)); break; case EM_X86_64: SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags), std::end(ElfX86_64SectionFlags)); break; case EM_XCORE: SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags), std::end(ElfXCoreSectionFlags)); break; default: // Nothing to do. break; } W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags)); W.printHex("Address", Sec.sh_addr); W.printHex("Offset", Sec.sh_offset); W.printNumber("Size", Sec.sh_size); W.printNumber("Link", Sec.sh_link); W.printNumber("Info", Sec.sh_info); W.printNumber("AddressAlignment", Sec.sh_addralign); W.printNumber("EntrySize", Sec.sh_entsize); if (opts::SectionRelocations) { ListScope D(W, "Relocations"); printRelocations(&Sec, Obj); } if (opts::SectionSymbols) { ListScope D(W, "Symbols"); const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec(); StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab)); for (const Elf_Sym &Sym : unwrapOrError(Obj->symbols(Symtab))) { const Elf_Shdr *SymSec = unwrapOrError( Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable())); if (SymSec == &Sec) printSymbol(Obj, &Sym, unwrapOrError(Obj->symbols(Symtab)).begin(), StrTable, false); } } if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { ArrayRef Data = unwrapOrError(Obj->getSectionContents(&Sec)); W.printBinaryBlock("SectionData", StringRef((const char *)Data.data(), Data.size())); } } } template void LLVMStyle::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, StringRef StrTable, bool IsDynamic) { unsigned SectionIndex = 0; StringRef SectionName; this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex); std::string FullSymbolName = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); unsigned char SymbolType = Symbol->getType(); DictScope D(W, "Symbol"); W.printNumber("Name", FullSymbolName, Symbol->st_name); W.printHex("Value", Symbol->st_value); W.printNumber("Size", Symbol->st_size); W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); if (Symbol->st_other == 0) // Usually st_other flag is zero. Do not pollute the output // by flags enumeration in that case. W.printNumber("Other", 0); else { std::vector> SymOtherFlags(std::begin(ElfSymOtherFlags), std::end(ElfSymOtherFlags)); if (Obj->getHeader()->e_machine == EM_MIPS) { // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 // flag overlapped with other ST_MIPS_xxx flags. So consider both // cases separately. if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfMips16SymOtherFlags), std::end(ElfMips16SymOtherFlags)); else SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfMipsSymOtherFlags), std::end(ElfMipsSymOtherFlags)); } W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u); } W.printHex("Section", SectionName, SectionIndex); } template void LLVMStyle::printSymbols(const ELFO *Obj, bool PrintSymbols, bool PrintDynamicSymbols) { if (PrintSymbols) printSymbols(Obj); if (PrintDynamicSymbols) printDynamicSymbols(Obj); } template void LLVMStyle::printSymbols(const ELFO *Obj) { ListScope Group(W, "Symbols"); this->dumper()->printSymbolsHelper(false); } template void LLVMStyle::printDynamicSymbols(const ELFO *Obj) { ListScope Group(W, "DynamicSymbols"); this->dumper()->printSymbolsHelper(true); } template void LLVMStyle::printDynamicRelocations(const ELFO *Obj) { const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); if (DynRelRegion.Size && DynRelaRegion.Size) report_fatal_error("There are both REL and RELA dynamic relocations"); W.startLine() << "Dynamic Relocations {\n"; W.indent(); if (DynRelaRegion.Size > 0) for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) printDynamicRelocation(Obj, Rela); else for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { Elf_Rela Rela; Rela.r_offset = Rel.r_offset; Rela.r_info = Rel.r_info; Rela.r_addend = 0; printDynamicRelocation(Obj, Rela); } if (DynRelrRegion.Size > 0) { Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); std::vector RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs)); for (const Elf_Rela &Rela : RelrRelas) printDynamicRelocation(Obj, Rela); } if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef()) printDynamicRelocation(Obj, Rela); else for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef()) { Elf_Rela Rela; Rela.r_offset = Rel.r_offset; Rela.r_info = Rel.r_info; Rela.r_addend = 0; printDynamicRelocation(Obj, Rela); } W.unindent(); W.startLine() << "}\n"; } template void LLVMStyle::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) { SmallString<32> RelocName; Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); std::string SymbolName; uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL()); const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex; SymbolName = maybeDemangle( unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()))); if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", Rel.r_offset); W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-"); W.printHex("Addend", Rel.r_addend); } else { raw_ostream &OS = W.startLine(); OS << W.hex(Rel.r_offset) << " " << RelocName << " " << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend) << "\n"; } } template void LLVMStyle::printProgramHeaders( const ELFO *Obj, bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { if (PrintProgramHeaders) printProgramHeaders(Obj); if (PrintSectionMapping == cl::BOU_TRUE) printSectionMapping(Obj); } template void LLVMStyle::printProgramHeaders(const ELFO *Obj) { ListScope L(W, "ProgramHeaders"); for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) { DictScope P(W, "ProgramHeader"); W.printHex("Type", getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type), Phdr.p_type); W.printHex("Offset", Phdr.p_offset); W.printHex("VirtualAddress", Phdr.p_vaddr); W.printHex("PhysicalAddress", Phdr.p_paddr); W.printNumber("FileSize", Phdr.p_filesz); W.printNumber("MemSize", Phdr.p_memsz); W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); W.printNumber("Alignment", Phdr.p_align); } } template void LLVMStyle::printHashHistogram(const ELFFile *Obj) { W.startLine() << "Hash Histogram not implemented!\n"; } template void LLVMStyle::printCGProfile(const ELFFile *Obj) { ListScope L(W, "CGProfile"); if (!this->dumper()->getDotCGProfileSec()) return; auto CGProfile = unwrapOrError(Obj->template getSectionContentsAsArray( this->dumper()->getDotCGProfileSec())); for (const Elf_CGProfile &CGPE : CGProfile) { DictScope D(W, "CGProfileEntry"); W.printNumber("From", this->dumper()->getStaticSymbolName(CGPE.cgp_from), CGPE.cgp_from); W.printNumber("To", this->dumper()->getStaticSymbolName(CGPE.cgp_to), CGPE.cgp_to); W.printNumber("Weight", CGPE.cgp_weight); } } template void LLVMStyle::printAddrsig(const ELFFile *Obj) { ListScope L(W, "Addrsig"); if (!this->dumper()->getDotAddrsigSec()) return; ArrayRef Contents = unwrapOrError( Obj->getSectionContents(this->dumper()->getDotAddrsigSec())); const uint8_t *Cur = Contents.begin(); const uint8_t *End = Contents.end(); while (Cur != End) { unsigned Size; const char *Err; uint64_t SymIndex = decodeULEB128(Cur, &Size, End, &Err); if (Err) reportError(Err); W.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex), SymIndex); Cur += Size; } } template static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef Desc, ScopedPrinter &W) { switch (NoteType) { default: return; case ELF::NT_GNU_ABI_TAG: { const GNUAbiTag &AbiTag = getGNUAbiTag(Desc); if (!AbiTag.IsValid) { W.printString("ABI", ""); } else { W.printString("OS", AbiTag.OSName); W.printString("ABI", AbiTag.ABI); } break; } case ELF::NT_GNU_BUILD_ID: { W.printString("Build ID", getGNUBuildId(Desc)); break; } case ELF::NT_GNU_GOLD_VERSION: W.printString("Version", getGNUGoldVersion(Desc)); break; case ELF::NT_GNU_PROPERTY_TYPE_0: ListScope D(W, "Property"); for (const auto &Property : getGNUPropertyList(Desc)) W.printString(Property); break; } } template void LLVMStyle::printNotes(const ELFFile *Obj) { ListScope L(W, "Notes"); auto PrintHeader = [&](const typename ELFT::Off Offset, const typename ELFT::Addr Size) { W.printHex("Offset", Offset); W.printHex("Size", Size); }; auto ProcessNote = [&](const Elf_Note &Note) { DictScope D2(W, "Note"); StringRef Name = Note.getName(); ArrayRef Descriptor = Note.getDesc(); Elf_Word Type = Note.getType(); W.printString("Owner", Name); W.printHex("Data size", Descriptor.size()); if (Name == "GNU") { W.printString("Type", getGNUNoteTypeName(Type)); printGNUNoteLLVMStyle(Type, Descriptor, W); } else if (Name == "FreeBSD") { W.printString("Type", getFreeBSDNoteTypeName(Type)); } else if (Name == "AMD") { W.printString("Type", getAMDNoteTypeName(Type)); const AMDNote N = getAMDNote(Type, Descriptor); if (!N.Type.empty()) W.printString(N.Type, N.Value); } else if (Name == "AMDGPU") { W.printString("Type", getAMDGPUNoteTypeName(Type)); const AMDGPUNote N = getAMDGPUNote(Type, Descriptor); if (!N.Type.empty()) W.printString(N.Type, N.Value); } else { W.getOStream() << "Unknown note type: (" << format_hex(Type, 10) << ')'; } }; if (Obj->getHeader()->e_type == ELF::ET_CORE) { for (const auto &P : unwrapOrError(Obj->program_headers())) { if (P.p_type != PT_NOTE) continue; DictScope D(W, "NoteSection"); PrintHeader(P.p_offset, P.p_filesz); Error Err = Error::success(); for (const auto &Note : Obj->notes(P, Err)) ProcessNote(Note); if (Err) error(std::move(Err)); } } else { for (const auto &S : unwrapOrError(Obj->sections())) { if (S.sh_type != SHT_NOTE) continue; DictScope D(W, "NoteSection"); PrintHeader(S.sh_offset, S.sh_size); Error Err = Error::success(); for (const auto &Note : Obj->notes(S, Err)) ProcessNote(Note); if (Err) error(std::move(Err)); } } } template void LLVMStyle::printELFLinkerOptions(const ELFFile *Obj) { ListScope L(W, "LinkerOptions"); for (const Elf_Shdr &Shdr : unwrapOrError(Obj->sections())) { if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) continue; ArrayRef Contents = unwrapOrError(Obj->getSectionContents(&Shdr)); for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) { StringRef Key = StringRef(reinterpret_cast(P)); StringRef Value = StringRef(reinterpret_cast(P) + Key.size() + 1); W.printString(Key, Value); P = P + Key.size() + Value.size() + 2; } } } template void LLVMStyle::printMipsGOT(const MipsGOTParser &Parser) { auto PrintEntry = [&](const Elf_Addr *E) { W.printHex("Address", Parser.getGotAddress(E)); W.printNumber("Access", Parser.getGotOffset(E)); W.printHex("Initial", *E); }; DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); W.printHex("Canonical gp value", Parser.getGp()); { ListScope RS(W, "Reserved entries"); { DictScope D(W, "Entry"); PrintEntry(Parser.getGotLazyResolver()); W.printString("Purpose", StringRef("Lazy resolver")); } if (Parser.getGotModulePointer()) { DictScope D(W, "Entry"); PrintEntry(Parser.getGotModulePointer()); W.printString("Purpose", StringRef("Module pointer (GNU extension)")); } } { ListScope LS(W, "Local entries"); for (auto &E : Parser.getLocalEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); } } if (Parser.IsStatic) return; { ListScope GS(W, "Global entries"); for (auto &E : Parser.getGlobalEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); const Elf_Sym *Sym = Parser.getGotSym(&E); W.printHex("Value", Sym->st_value); W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); unsigned SectionIndex = 0; StringRef SectionName; this->dumper()->getSectionNameIndex( Sym, this->dumper()->dynamic_symbols().begin(), SectionName, SectionIndex); W.printHex("Section", SectionName, SectionIndex); std::string SymName = this->dumper()->getFullSymbolName( Sym, this->dumper()->getDynamicStringTable(), true); W.printNumber("Name", SymName, Sym->st_name); } } W.printNumber("Number of TLS and multi-GOT entries", uint64_t(Parser.getOtherEntries().size())); } template void LLVMStyle::printMipsPLT(const MipsGOTParser &Parser) { auto PrintEntry = [&](const Elf_Addr *E) { W.printHex("Address", Parser.getPltAddress(E)); W.printHex("Initial", *E); }; DictScope GS(W, "PLT GOT"); { ListScope RS(W, "Reserved entries"); { DictScope D(W, "Entry"); PrintEntry(Parser.getPltLazyResolver()); W.printString("Purpose", StringRef("PLT lazy resolver")); } if (auto E = Parser.getPltModulePointer()) { DictScope D(W, "Entry"); PrintEntry(E); W.printString("Purpose", StringRef("Module pointer")); } } { ListScope LS(W, "Entries"); for (auto &E : Parser.getPltEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); const Elf_Sym *Sym = Parser.getPltSym(&E); W.printHex("Value", Sym->st_value); W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); unsigned SectionIndex = 0; StringRef SectionName; this->dumper()->getSectionNameIndex( Sym, this->dumper()->dynamic_symbols().begin(), SectionName, SectionIndex); W.printHex("Section", SectionName, SectionIndex); std::string SymName = this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true); W.printNumber("Name", SymName, Sym->st_name); } } }