//===-- SIPreEmitPeephole.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass performs the peephole optimizations before code emission. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Support/CommandLine.h" using namespace llvm; #define DEBUG_TYPE "si-pre-emit-peephole" namespace { class SIPreEmitPeephole : public MachineFunctionPass { private: const SIInstrInfo *TII = nullptr; const SIRegisterInfo *TRI = nullptr; bool optimizeVccBranch(MachineInstr &MI) const; bool optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const; public: static char ID; SIPreEmitPeephole() : MachineFunctionPass(ID) { initializeSIPreEmitPeepholePass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; }; } // End anonymous namespace. INITIALIZE_PASS(SIPreEmitPeephole, DEBUG_TYPE, "SI peephole optimizations", false, false) char SIPreEmitPeephole::ID = 0; char &llvm::SIPreEmitPeepholeID = SIPreEmitPeephole::ID; bool SIPreEmitPeephole::optimizeVccBranch(MachineInstr &MI) const { // Match: // sreg = -1 or 0 // vcc = S_AND_B64 exec, sreg or S_ANDN2_B64 exec, sreg // S_CBRANCH_VCC[N]Z // => // S_CBRANCH_EXEC[N]Z // We end up with this pattern sometimes after basic block placement. // It happens while combining a block which assigns -1 or 0 to a saved mask // and another block which consumes that saved mask and then a branch. bool Changed = false; MachineBasicBlock &MBB = *MI.getParent(); const GCNSubtarget &ST = MBB.getParent()->getSubtarget(); const bool IsWave32 = ST.isWave32(); const unsigned CondReg = TRI->getVCC(); const unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; const unsigned And = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; const unsigned AndN2 = IsWave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64; const unsigned Mov = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; MachineBasicBlock::reverse_iterator A = MI.getReverseIterator(), E = MBB.rend(); bool ReadsCond = false; unsigned Threshold = 5; for (++A; A != E; ++A) { if (!--Threshold) return false; if (A->modifiesRegister(ExecReg, TRI)) return false; if (A->modifiesRegister(CondReg, TRI)) { if (!A->definesRegister(CondReg, TRI) || (A->getOpcode() != And && A->getOpcode() != AndN2)) return false; break; } ReadsCond |= A->readsRegister(CondReg, TRI); } if (A == E) return false; MachineOperand &Op1 = A->getOperand(1); MachineOperand &Op2 = A->getOperand(2); if (Op1.getReg() != ExecReg && Op2.isReg() && Op2.getReg() == ExecReg) { TII->commuteInstruction(*A); Changed = true; } if (Op1.getReg() != ExecReg) return Changed; if (Op2.isImm() && !(Op2.getImm() == -1 || Op2.getImm() == 0)) return Changed; int64_t MaskValue = 0; Register SReg; if (Op2.isReg()) { SReg = Op2.getReg(); auto M = std::next(A); bool ReadsSreg = false; for (; M != E; ++M) { if (M->definesRegister(SReg, TRI)) break; if (M->modifiesRegister(SReg, TRI)) return Changed; ReadsSreg |= M->readsRegister(SReg, TRI); } if (M == E || !M->isMoveImmediate() || !M->getOperand(1).isImm() || (M->getOperand(1).getImm() != -1 && M->getOperand(1).getImm() != 0)) return Changed; MaskValue = M->getOperand(1).getImm(); // First if sreg is only used in the AND instruction fold the immediate // into into the AND. if (!ReadsSreg && Op2.isKill()) { A->getOperand(2).ChangeToImmediate(MaskValue); M->eraseFromParent(); } } else if (Op2.isImm()) { MaskValue = Op2.getImm(); } else { llvm_unreachable("Op2 must be register or immediate"); } // Invert mask for s_andn2 assert(MaskValue == 0 || MaskValue == -1); if (A->getOpcode() == AndN2) MaskValue = ~MaskValue; if (!ReadsCond && A->registerDefIsDead(AMDGPU::SCC)) { if (!MI.killsRegister(CondReg, TRI)) { // Replace AND with MOV if (MaskValue == 0) { BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg) .addImm(0); } else { BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg) .addReg(ExecReg); } } // Remove AND instruction A->eraseFromParent(); } bool IsVCCZ = MI.getOpcode() == AMDGPU::S_CBRANCH_VCCZ; if (SReg == ExecReg) { // EXEC is updated directly if (IsVCCZ) { MI.eraseFromParent(); return true; } MI.setDesc(TII->get(AMDGPU::S_BRANCH)); } else if (IsVCCZ && MaskValue == 0) { // Will always branch // Remove all succesors shadowed by new unconditional branch MachineBasicBlock *Parent = MI.getParent(); SmallVector ToRemove; bool Found = false; for (MachineInstr &Term : Parent->terminators()) { if (Found) { if (Term.isBranch()) ToRemove.push_back(&Term); } else { Found = Term.isIdenticalTo(MI); } } assert(Found && "conditional branch is not terminator"); for (auto BranchMI : ToRemove) { MachineOperand &Dst = BranchMI->getOperand(0); assert(Dst.isMBB() && "destination is not basic block"); Parent->removeSuccessor(Dst.getMBB()); BranchMI->eraseFromParent(); } if (MachineBasicBlock *Succ = Parent->getFallThrough()) { Parent->removeSuccessor(Succ); } // Rewrite to unconditional branch MI.setDesc(TII->get(AMDGPU::S_BRANCH)); } else if (!IsVCCZ && MaskValue == 0) { // Will never branch MachineOperand &Dst = MI.getOperand(0); assert(Dst.isMBB() && "destination is not basic block"); MI.getParent()->removeSuccessor(Dst.getMBB()); MI.eraseFromParent(); return true; } else if (MaskValue == -1) { // Depends only on EXEC MI.setDesc( TII->get(IsVCCZ ? AMDGPU::S_CBRANCH_EXECZ : AMDGPU::S_CBRANCH_EXECNZ)); } MI.RemoveOperand(MI.findRegisterUseOperandIdx(CondReg, false /*Kill*/, TRI)); MI.addImplicitDefUseOperands(*MBB.getParent()); return true; } bool SIPreEmitPeephole::optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); const MachineFunction &MF = *MBB.getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::src0); Register IdxReg = Idx->isReg() ? Idx->getReg() : Register(); SmallVector ToRemove; bool IdxOn = true; if (!MI.isIdenticalTo(First)) return false; // Scan back to find an identical S_SET_GPR_IDX_ON for (MachineBasicBlock::iterator I = std::next(First.getIterator()), E = MI.getIterator(); I != E; ++I) { switch (I->getOpcode()) { case AMDGPU::S_SET_GPR_IDX_MODE: return false; case AMDGPU::S_SET_GPR_IDX_OFF: IdxOn = false; ToRemove.push_back(&*I); break; default: if (I->modifiesRegister(AMDGPU::M0, TRI)) return false; if (IdxReg && I->modifiesRegister(IdxReg, TRI)) return false; if (llvm::any_of(I->operands(), [&MRI, this](const MachineOperand &MO) { return MO.isReg() && TRI->isVectorRegister(MRI, MO.getReg()); })) { // The only exception allowed here is another indirect vector move // with the same mode. if (!IdxOn || !((I->getOpcode() == AMDGPU::V_MOV_B32_e32 && I->hasRegisterImplicitUseOperand(AMDGPU::M0)) || I->getOpcode() == AMDGPU::V_MOV_B32_indirect)) return false; } } } MI.eraseFromParent(); for (MachineInstr *RI : ToRemove) RI->eraseFromParent(); return true; } bool SIPreEmitPeephole::runOnMachineFunction(MachineFunction &MF) { const GCNSubtarget &ST = MF.getSubtarget(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); MachineBasicBlock *EmptyMBBAtEnd = nullptr; bool Changed = false; for (MachineBasicBlock &MBB : MF) { MachineBasicBlock::iterator MBBE = MBB.getFirstTerminator(); MachineBasicBlock::iterator TermI = MBBE; // Check first terminator for VCC branches to optimize if (TermI != MBB.end()) { MachineInstr &MI = *TermI; switch (MI.getOpcode()) { case AMDGPU::S_CBRANCH_VCCZ: case AMDGPU::S_CBRANCH_VCCNZ: Changed |= optimizeVccBranch(MI); continue; default: break; } } // Check all terminators for SI_RETURN_TO_EPILOG // FIXME: This is not an optimization and should be moved somewhere else. while (TermI != MBB.end()) { MachineInstr &MI = *TermI; if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) { assert(!MF.getInfo()->returnsVoid()); // Graphics shaders returning non-void shouldn't contain S_ENDPGM, // because external bytecode will be appended at the end. if (&MBB != &MF.back() || &MI != &MBB.back()) { // SI_RETURN_TO_EPILOG is not the last instruction. Add an empty block // at the end and jump there. if (!EmptyMBBAtEnd) { EmptyMBBAtEnd = MF.CreateMachineBasicBlock(); MF.insert(MF.end(), EmptyMBBAtEnd); } MBB.addSuccessor(EmptyMBBAtEnd); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(EmptyMBBAtEnd); MI.eraseFromParent(); MBBE = MBB.getFirstTerminator(); TermI = MBBE; continue; } } TermI++; } if (!ST.hasVGPRIndexMode()) continue; MachineInstr *SetGPRMI = nullptr; const unsigned Threshold = 20; unsigned Count = 0; // Scan the block for two S_SET_GPR_IDX_ON instructions to see if a // second is not needed. Do expensive checks in the optimizeSetGPR() // and limit the distance to 20 instructions for compile time purposes. for (MachineBasicBlock::iterator MBBI = MBB.begin(); MBBI != MBBE; ) { MachineInstr &MI = *MBBI; ++MBBI; if (Count == Threshold) SetGPRMI = nullptr; else ++Count; if (MI.getOpcode() != AMDGPU::S_SET_GPR_IDX_ON) continue; Count = 0; if (!SetGPRMI) { SetGPRMI = &MI; continue; } if (optimizeSetGPR(*SetGPRMI, MI)) Changed = true; else SetGPRMI = &MI; } } return Changed; }