//===- StackMaps.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/StackMaps.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "stackmaps" static cl::opt StackMapVersion( "stackmap-version", cl::init(3), cl::Hidden, cl::desc("Specify the stackmap encoding version (default = 3)")); const char *StackMaps::WSMP = "Stack Maps: "; static uint64_t getConstMetaVal(const MachineInstr &MI, unsigned Idx) { assert(MI.getOperand(Idx).isImm() && MI.getOperand(Idx).getImm() == StackMaps::ConstantOp); const auto &MO = MI.getOperand(Idx + 1); assert(MO.isImm()); return MO.getImm(); } StackMapOpers::StackMapOpers(const MachineInstr *MI) : MI(MI) { assert(getVarIdx() <= MI->getNumOperands() && "invalid stackmap definition"); } PatchPointOpers::PatchPointOpers(const MachineInstr *MI) : MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && !MI->getOperand(0).isImplicit()) { #ifndef NDEBUG unsigned CheckStartIdx = 0, e = MI->getNumOperands(); while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() && MI->getOperand(CheckStartIdx).isDef() && !MI->getOperand(CheckStartIdx).isImplicit()) ++CheckStartIdx; assert(getMetaIdx() == CheckStartIdx && "Unexpected additional definition in Patchpoint intrinsic."); #endif } unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const { if (!StartIdx) StartIdx = getVarIdx(); // Find the next scratch register (implicit def and early clobber) unsigned ScratchIdx = StartIdx, e = MI->getNumOperands(); while (ScratchIdx < e && !(MI->getOperand(ScratchIdx).isReg() && MI->getOperand(ScratchIdx).isDef() && MI->getOperand(ScratchIdx).isImplicit() && MI->getOperand(ScratchIdx).isEarlyClobber())) ++ScratchIdx; assert(ScratchIdx != e && "No scratch register available"); return ScratchIdx; } int StatepointOpers::getFirstGCPtrIdx() { unsigned NumDeoptsIdx = getNumDeoptArgsIdx(); unsigned NumDeoptArgs = MI->getOperand(NumDeoptsIdx).getImm(); unsigned CurIdx = NumDeoptsIdx + 1; while (NumDeoptArgs--) { CurIdx = StackMaps::getNextMetaArgIdx(MI, CurIdx); } ++CurIdx; // unsigned NumGCPtrs = MI->getOperand(CurIdx).getImm(); if (NumGCPtrs == 0) return -1; ++CurIdx; // assert(CurIdx < MI->getNumOperands() && "Index points past operand list"); return (int)CurIdx; } unsigned StatepointOpers::getGCPointerMap( SmallVectorImpl> &GCMap) { int FirstGCIdx = getFirstGCPtrIdx(); if (FirstGCIdx == -1) return 0; unsigned NumGCPtr = getConstMetaVal(*MI, (unsigned)FirstGCIdx - 2); unsigned CurIdx = (unsigned)FirstGCIdx; while (NumGCPtr--) CurIdx = StackMaps::getNextMetaArgIdx(MI, CurIdx); unsigned NumAllocas = getConstMetaVal(*MI, CurIdx); CurIdx += 2; while (NumAllocas--) CurIdx = StackMaps::getNextMetaArgIdx(MI, CurIdx); assert(CurIdx < MI->getNumOperands()); unsigned GCMapSize = getConstMetaVal(*MI, CurIdx); CurIdx += 2; for (unsigned N = 0; N < GCMapSize; ++N) { unsigned B = MI->getOperand(CurIdx++).getImm(); unsigned D = MI->getOperand(CurIdx++).getImm(); GCMap.push_back(std::make_pair(B, D)); } return GCMapSize; } StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) { if (StackMapVersion != 3) llvm_unreachable("Unsupported stackmap version!"); } unsigned StackMaps::getNextMetaArgIdx(const MachineInstr *MI, unsigned CurIdx) { assert(CurIdx < MI->getNumOperands() && "Bad meta arg index"); const auto &MO = MI->getOperand(CurIdx); if (MO.isImm()) { switch (MO.getImm()) { default: llvm_unreachable("Unrecognized operand type."); case StackMaps::DirectMemRefOp: CurIdx += 2; break; case StackMaps::IndirectMemRefOp: CurIdx += 3; break; case StackMaps::ConstantOp: ++CurIdx; break; } } ++CurIdx; assert(CurIdx < MI->getNumOperands() && "points past operand list"); return CurIdx; } /// Go up the super-register chain until we hit a valid dwarf register number. static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) { int RegNum = TRI->getDwarfRegNum(Reg, false); for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNum < 0; ++SR) RegNum = TRI->getDwarfRegNum(*SR, false); assert(RegNum >= 0 && "Invalid Dwarf register number."); return (unsigned)RegNum; } MachineInstr::const_mop_iterator StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI, MachineInstr::const_mop_iterator MOE, LocationVec &Locs, LiveOutVec &LiveOuts) const { const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo(); if (MOI->isImm()) { switch (MOI->getImm()) { default: llvm_unreachable("Unrecognized operand type."); case StackMaps::DirectMemRefOp: { auto &DL = AP.MF->getDataLayout(); unsigned Size = DL.getPointerSizeInBits(); assert((Size % 8) == 0 && "Need pointer size in bytes."); Size /= 8; Register Reg = (++MOI)->getReg(); int64_t Imm = (++MOI)->getImm(); Locs.emplace_back(StackMaps::Location::Direct, Size, getDwarfRegNum(Reg, TRI), Imm); break; } case StackMaps::IndirectMemRefOp: { int64_t Size = (++MOI)->getImm(); assert(Size > 0 && "Need a valid size for indirect memory locations."); Register Reg = (++MOI)->getReg(); int64_t Imm = (++MOI)->getImm(); Locs.emplace_back(StackMaps::Location::Indirect, Size, getDwarfRegNum(Reg, TRI), Imm); break; } case StackMaps::ConstantOp: { ++MOI; assert(MOI->isImm() && "Expected constant operand."); int64_t Imm = MOI->getImm(); Locs.emplace_back(Location::Constant, sizeof(int64_t), 0, Imm); break; } } return ++MOI; } // The physical register number will ultimately be encoded as a DWARF regno. // The stack map also records the size of a spill slot that can hold the // register content. (The runtime can track the actual size of the data type // if it needs to.) if (MOI->isReg()) { // Skip implicit registers (this includes our scratch registers) if (MOI->isImplicit()) return ++MOI; assert(Register::isPhysicalRegister(MOI->getReg()) && "Virtreg operands should have been rewritten before now."); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MOI->getReg()); assert(!MOI->getSubReg() && "Physical subreg still around."); unsigned Offset = 0; unsigned DwarfRegNum = getDwarfRegNum(MOI->getReg(), TRI); unsigned LLVMRegNum = *TRI->getLLVMRegNum(DwarfRegNum, false); unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNum, MOI->getReg()); if (SubRegIdx) Offset = TRI->getSubRegIdxOffset(SubRegIdx); Locs.emplace_back(Location::Register, TRI->getSpillSize(*RC), DwarfRegNum, Offset); return ++MOI; } if (MOI->isRegLiveOut()) LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut()); return ++MOI; } void StackMaps::print(raw_ostream &OS) { const TargetRegisterInfo *TRI = AP.MF ? AP.MF->getSubtarget().getRegisterInfo() : nullptr; OS << WSMP << "callsites:\n"; for (const auto &CSI : CSInfos) { const LocationVec &CSLocs = CSI.Locations; const LiveOutVec &LiveOuts = CSI.LiveOuts; OS << WSMP << "callsite " << CSI.ID << "\n"; OS << WSMP << " has " << CSLocs.size() << " locations\n"; unsigned Idx = 0; for (const auto &Loc : CSLocs) { OS << WSMP << "\t\tLoc " << Idx << ": "; switch (Loc.Type) { case Location::Unprocessed: OS << ""; break; case Location::Register: OS << "Register "; if (TRI) OS << printReg(Loc.Reg, TRI); else OS << Loc.Reg; break; case Location::Direct: OS << "Direct "; if (TRI) OS << printReg(Loc.Reg, TRI); else OS << Loc.Reg; if (Loc.Offset) OS << " + " << Loc.Offset; break; case Location::Indirect: OS << "Indirect "; if (TRI) OS << printReg(Loc.Reg, TRI); else OS << Loc.Reg; OS << "+" << Loc.Offset; break; case Location::Constant: OS << "Constant " << Loc.Offset; break; case Location::ConstantIndex: OS << "Constant Index " << Loc.Offset; break; } OS << "\t[encoding: .byte " << Loc.Type << ", .byte 0" << ", .short " << Loc.Size << ", .short " << Loc.Reg << ", .short 0" << ", .int " << Loc.Offset << "]\n"; Idx++; } OS << WSMP << "\thas " << LiveOuts.size() << " live-out registers\n"; Idx = 0; for (const auto &LO : LiveOuts) { OS << WSMP << "\t\tLO " << Idx << ": "; if (TRI) OS << printReg(LO.Reg, TRI); else OS << LO.Reg; OS << "\t[encoding: .short " << LO.DwarfRegNum << ", .byte 0, .byte " << LO.Size << "]\n"; Idx++; } } } /// Create a live-out register record for the given register Reg. StackMaps::LiveOutReg StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const { unsigned DwarfRegNum = getDwarfRegNum(Reg, TRI); unsigned Size = TRI->getSpillSize(*TRI->getMinimalPhysRegClass(Reg)); return LiveOutReg(Reg, DwarfRegNum, Size); } /// Parse the register live-out mask and return a vector of live-out registers /// that need to be recorded in the stackmap. StackMaps::LiveOutVec StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const { assert(Mask && "No register mask specified"); const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo(); LiveOutVec LiveOuts; // Create a LiveOutReg for each bit that is set in the register mask. for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) if ((Mask[Reg / 32] >> (Reg % 32)) & 1) LiveOuts.push_back(createLiveOutReg(Reg, TRI)); // We don't need to keep track of a register if its super-register is already // in the list. Merge entries that refer to the same dwarf register and use // the maximum size that needs to be spilled. llvm::sort(LiveOuts, [](const LiveOutReg &LHS, const LiveOutReg &RHS) { // Only sort by the dwarf register number. return LHS.DwarfRegNum < RHS.DwarfRegNum; }); for (auto I = LiveOuts.begin(), E = LiveOuts.end(); I != E; ++I) { for (auto II = std::next(I); II != E; ++II) { if (I->DwarfRegNum != II->DwarfRegNum) { // Skip all the now invalid entries. I = --II; break; } I->Size = std::max(I->Size, II->Size); if (TRI->isSuperRegister(I->Reg, II->Reg)) I->Reg = II->Reg; II->Reg = 0; // mark for deletion. } } LiveOuts.erase( llvm::remove_if(LiveOuts, [](const LiveOutReg &LO) { return LO.Reg == 0; }), LiveOuts.end()); return LiveOuts; } // See statepoint MI format description in StatepointOpers' class comment // in include/llvm/CodeGen/StackMaps.h void StackMaps::parseStatepointOpers(const MachineInstr &MI, MachineInstr::const_mop_iterator MOI, MachineInstr::const_mop_iterator MOE, LocationVec &Locations, LiveOutVec &LiveOuts) { LLVM_DEBUG(dbgs() << "record statepoint : " << MI << "\n"); StatepointOpers SO(&MI); MOI = parseOperand(MOI, MOE, Locations, LiveOuts); // CC MOI = parseOperand(MOI, MOE, Locations, LiveOuts); // Flags MOI = parseOperand(MOI, MOE, Locations, LiveOuts); // Num Deopts // Record Deopt Args. unsigned NumDeoptArgs = Locations.back().Offset; assert(Locations.back().Type = Location::Constant); assert(NumDeoptArgs == SO.getNumDeoptArgs()); while (NumDeoptArgs--) MOI = parseOperand(MOI, MOE, Locations, LiveOuts); // Record gc base/derived pairs assert(MOI->isImm() && MOI->getImm() == StackMaps::ConstantOp); ++MOI; assert(MOI->isImm()); unsigned NumGCPointers = MOI->getImm(); ++MOI; if (NumGCPointers) { // Map logical index of GC ptr to MI operand index. SmallVector GCPtrIndices; unsigned GCPtrIdx = (unsigned)SO.getFirstGCPtrIdx(); assert((int)GCPtrIdx != -1); assert(MOI - MI.operands_begin() == GCPtrIdx); while (NumGCPointers--) { GCPtrIndices.push_back(GCPtrIdx); GCPtrIdx = StackMaps::getNextMetaArgIdx(&MI, GCPtrIdx); } SmallVector, 8> GCPairs; unsigned NumGCPairs = SO.getGCPointerMap(GCPairs); (void)NumGCPairs; LLVM_DEBUG(dbgs() << "NumGCPairs = " << NumGCPairs << "\n"); auto MOB = MI.operands_begin(); for (auto &P : GCPairs) { assert(P.first < GCPtrIndices.size() && "base pointer index not found"); assert(P.second < GCPtrIndices.size() && "derived pointer index not found"); unsigned BaseIdx = GCPtrIndices[P.first]; unsigned DerivedIdx = GCPtrIndices[P.second]; LLVM_DEBUG(dbgs() << "Base : " << BaseIdx << " Derived : " << DerivedIdx << "\n"); (void)parseOperand(MOB + BaseIdx, MOE, Locations, LiveOuts); (void)parseOperand(MOB + DerivedIdx, MOE, Locations, LiveOuts); } MOI = MOB + GCPtrIdx; } // Record gc allocas assert(MOI < MOE); assert(MOI->isImm() && MOI->getImm() == StackMaps::ConstantOp); ++MOI; unsigned NumAllocas = MOI->getImm(); ++MOI; while (NumAllocas--) { MOI = parseOperand(MOI, MOE, Locations, LiveOuts); assert(MOI < MOE); } } void StackMaps::recordStackMapOpers(const MCSymbol &MILabel, const MachineInstr &MI, uint64_t ID, MachineInstr::const_mop_iterator MOI, MachineInstr::const_mop_iterator MOE, bool recordResult) { MCContext &OutContext = AP.OutStreamer->getContext(); LocationVec Locations; LiveOutVec LiveOuts; if (recordResult) { assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value."); parseOperand(MI.operands_begin(), std::next(MI.operands_begin()), Locations, LiveOuts); } // Parse operands. if (MI.getOpcode() == TargetOpcode::STATEPOINT) parseStatepointOpers(MI, MOI, MOE, Locations, LiveOuts); else while (MOI != MOE) MOI = parseOperand(MOI, MOE, Locations, LiveOuts); // Move large constants into the constant pool. for (auto &Loc : Locations) { // Constants are encoded as sign-extended integers. // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool. if (Loc.Type == Location::Constant && !isInt<32>(Loc.Offset)) { Loc.Type = Location::ConstantIndex; // ConstPool is intentionally a MapVector of 'uint64_t's (as // opposed to 'int64_t's). We should never be in a situation // where we have to insert either the tombstone or the empty // keys into a map, and for a DenseMap these are // (uint64_t)0 and (uint64_t)-1. They can be and are // represented using 32 bit integers. assert((uint64_t)Loc.Offset != DenseMapInfo::getEmptyKey() && (uint64_t)Loc.Offset != DenseMapInfo::getTombstoneKey() && "empty and tombstone keys should fit in 32 bits!"); auto Result = ConstPool.insert(std::make_pair(Loc.Offset, Loc.Offset)); Loc.Offset = Result.first - ConstPool.begin(); } } // Create an expression to calculate the offset of the callsite from function // entry. const MCExpr *CSOffsetExpr = MCBinaryExpr::createSub( MCSymbolRefExpr::create(&MILabel, OutContext), MCSymbolRefExpr::create(AP.CurrentFnSymForSize, OutContext), OutContext); CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations), std::move(LiveOuts)); // Record the stack size of the current function and update callsite count. const MachineFrameInfo &MFI = AP.MF->getFrameInfo(); const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo(); bool HasDynamicFrameSize = MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF)); uint64_t FrameSize = HasDynamicFrameSize ? UINT64_MAX : MFI.getStackSize(); auto CurrentIt = FnInfos.find(AP.CurrentFnSym); if (CurrentIt != FnInfos.end()) CurrentIt->second.RecordCount++; else FnInfos.insert(std::make_pair(AP.CurrentFnSym, FunctionInfo(FrameSize))); } void StackMaps::recordStackMap(const MCSymbol &L, const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap"); StackMapOpers opers(&MI); const int64_t ID = MI.getOperand(PatchPointOpers::IDPos).getImm(); recordStackMapOpers(L, MI, ID, std::next(MI.operands_begin(), opers.getVarIdx()), MI.operands_end()); } void StackMaps::recordPatchPoint(const MCSymbol &L, const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint"); PatchPointOpers opers(&MI); const int64_t ID = opers.getID(); auto MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx()); recordStackMapOpers(L, MI, ID, MOI, MI.operands_end(), opers.isAnyReg() && opers.hasDef()); #ifndef NDEBUG // verify anyregcc auto &Locations = CSInfos.back().Locations; if (opers.isAnyReg()) { unsigned NArgs = opers.getNumCallArgs(); for (unsigned i = 0, e = (opers.hasDef() ? NArgs + 1 : NArgs); i != e; ++i) assert(Locations[i].Type == Location::Register && "anyreg arg must be in reg."); } #endif } void StackMaps::recordStatepoint(const MCSymbol &L, const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::STATEPOINT && "expected statepoint"); StatepointOpers opers(&MI); const unsigned StartIdx = opers.getVarIdx(); recordStackMapOpers(L, MI, opers.getID(), MI.operands_begin() + StartIdx, MI.operands_end(), false); } /// Emit the stackmap header. /// /// Header { /// uint8 : Stack Map Version (currently 3) /// uint8 : Reserved (expected to be 0) /// uint16 : Reserved (expected to be 0) /// } /// uint32 : NumFunctions /// uint32 : NumConstants /// uint32 : NumRecords void StackMaps::emitStackmapHeader(MCStreamer &OS) { // Header. OS.emitIntValue(StackMapVersion, 1); // Version. OS.emitIntValue(0, 1); // Reserved. OS.emitInt16(0); // Reserved. // Num functions. LLVM_DEBUG(dbgs() << WSMP << "#functions = " << FnInfos.size() << '\n'); OS.emitInt32(FnInfos.size()); // Num constants. LLVM_DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n'); OS.emitInt32(ConstPool.size()); // Num callsites. LLVM_DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n'); OS.emitInt32(CSInfos.size()); } /// Emit the function frame record for each function. /// /// StkSizeRecord[NumFunctions] { /// uint64 : Function Address /// uint64 : Stack Size /// uint64 : Record Count /// } void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) { // Function Frame records. LLVM_DEBUG(dbgs() << WSMP << "functions:\n"); for (auto const &FR : FnInfos) { LLVM_DEBUG(dbgs() << WSMP << "function addr: " << FR.first << " frame size: " << FR.second.StackSize << " callsite count: " << FR.second.RecordCount << '\n'); OS.emitSymbolValue(FR.first, 8); OS.emitIntValue(FR.second.StackSize, 8); OS.emitIntValue(FR.second.RecordCount, 8); } } /// Emit the constant pool. /// /// int64 : Constants[NumConstants] void StackMaps::emitConstantPoolEntries(MCStreamer &OS) { // Constant pool entries. LLVM_DEBUG(dbgs() << WSMP << "constants:\n"); for (const auto &ConstEntry : ConstPool) { LLVM_DEBUG(dbgs() << WSMP << ConstEntry.second << '\n'); OS.emitIntValue(ConstEntry.second, 8); } } /// Emit the callsite info for each callsite. /// /// StkMapRecord[NumRecords] { /// uint64 : PatchPoint ID /// uint32 : Instruction Offset /// uint16 : Reserved (record flags) /// uint16 : NumLocations /// Location[NumLocations] { /// uint8 : Register | Direct | Indirect | Constant | ConstantIndex /// uint8 : Size in Bytes /// uint16 : Dwarf RegNum /// int32 : Offset /// } /// uint16 : Padding /// uint16 : NumLiveOuts /// LiveOuts[NumLiveOuts] { /// uint16 : Dwarf RegNum /// uint8 : Reserved /// uint8 : Size in Bytes /// } /// uint32 : Padding (only if required to align to 8 byte) /// } /// /// Location Encoding, Type, Value: /// 0x1, Register, Reg (value in register) /// 0x2, Direct, Reg + Offset (frame index) /// 0x3, Indirect, [Reg + Offset] (spilled value) /// 0x4, Constant, Offset (small constant) /// 0x5, ConstIndex, Constants[Offset] (large constant) void StackMaps::emitCallsiteEntries(MCStreamer &OS) { LLVM_DEBUG(print(dbgs())); // Callsite entries. for (const auto &CSI : CSInfos) { const LocationVec &CSLocs = CSI.Locations; const LiveOutVec &LiveOuts = CSI.LiveOuts; // Verify stack map entry. It's better to communicate a problem to the // runtime than crash in case of in-process compilation. Currently, we do // simple overflow checks, but we may eventually communicate other // compilation errors this way. if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) { OS.emitIntValue(UINT64_MAX, 8); // Invalid ID. OS.emitValue(CSI.CSOffsetExpr, 4); OS.emitInt16(0); // Reserved. OS.emitInt16(0); // 0 locations. OS.emitInt16(0); // padding. OS.emitInt16(0); // 0 live-out registers. OS.emitInt32(0); // padding. continue; } OS.emitIntValue(CSI.ID, 8); OS.emitValue(CSI.CSOffsetExpr, 4); // Reserved for flags. OS.emitInt16(0); OS.emitInt16(CSLocs.size()); for (const auto &Loc : CSLocs) { OS.emitIntValue(Loc.Type, 1); OS.emitIntValue(0, 1); // Reserved OS.emitInt16(Loc.Size); OS.emitInt16(Loc.Reg); OS.emitInt16(0); // Reserved OS.emitInt32(Loc.Offset); } // Emit alignment to 8 byte. OS.emitValueToAlignment(8); // Num live-out registers and padding to align to 4 byte. OS.emitInt16(0); OS.emitInt16(LiveOuts.size()); for (const auto &LO : LiveOuts) { OS.emitInt16(LO.DwarfRegNum); OS.emitIntValue(0, 1); OS.emitIntValue(LO.Size, 1); } // Emit alignment to 8 byte. OS.emitValueToAlignment(8); } } /// Serialize the stackmap data. void StackMaps::serializeToStackMapSection() { (void)WSMP; // Bail out if there's no stack map data. assert((!CSInfos.empty() || ConstPool.empty()) && "Expected empty constant pool too!"); assert((!CSInfos.empty() || FnInfos.empty()) && "Expected empty function record too!"); if (CSInfos.empty()) return; MCContext &OutContext = AP.OutStreamer->getContext(); MCStreamer &OS = *AP.OutStreamer; // Create the section. MCSection *StackMapSection = OutContext.getObjectFileInfo()->getStackMapSection(); OS.SwitchSection(StackMapSection); // Emit a dummy symbol to force section inclusion. OS.emitLabel(OutContext.getOrCreateSymbol(Twine("__LLVM_StackMaps"))); // Serialize data. LLVM_DEBUG(dbgs() << "********** Stack Map Output **********\n"); emitStackmapHeader(OS); emitFunctionFrameRecords(OS); emitConstantPoolEntries(OS); emitCallsiteEntries(OS); OS.AddBlankLine(); // Clean up. CSInfos.clear(); ConstPool.clear(); }