//===- llvm/unittest/ADT/DenseMapMap.cpp - DenseMap unit tests --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "gtest/gtest.h" #include #include using namespace llvm; namespace { uint32_t getTestKey(int i, uint32_t *) { return i; } uint32_t getTestValue(int i, uint32_t *) { return 42 + i; } uint32_t *getTestKey(int i, uint32_t **) { static uint32_t dummy_arr1[8192]; assert(i < 8192 && "Only support 8192 dummy keys."); return &dummy_arr1[i]; } uint32_t *getTestValue(int i, uint32_t **) { static uint32_t dummy_arr1[8192]; assert(i < 8192 && "Only support 8192 dummy keys."); return &dummy_arr1[i]; } /// A test class that tries to check that construction and destruction /// occur correctly. class CtorTester { static std::set Constructed; int Value; public: explicit CtorTester(int Value = 0) : Value(Value) { EXPECT_TRUE(Constructed.insert(this).second); } CtorTester(uint32_t Value) : Value(Value) { EXPECT_TRUE(Constructed.insert(this).second); } CtorTester(const CtorTester &Arg) : Value(Arg.Value) { EXPECT_TRUE(Constructed.insert(this).second); } CtorTester &operator=(const CtorTester &) = default; ~CtorTester() { EXPECT_EQ(1u, Constructed.erase(this)); } operator uint32_t() const { return Value; } int getValue() const { return Value; } bool operator==(const CtorTester &RHS) const { return Value == RHS.Value; } }; std::set CtorTester::Constructed; struct CtorTesterMapInfo { static inline CtorTester getEmptyKey() { return CtorTester(-1); } static inline CtorTester getTombstoneKey() { return CtorTester(-2); } static unsigned getHashValue(const CtorTester &Val) { return Val.getValue() * 37u; } static bool isEqual(const CtorTester &LHS, const CtorTester &RHS) { return LHS == RHS; } }; CtorTester getTestKey(int i, CtorTester *) { return CtorTester(i); } CtorTester getTestValue(int i, CtorTester *) { return CtorTester(42 + i); } // Test fixture, with helper functions implemented by forwarding to global // function overloads selected by component types of the type parameter. This // allows all of the map implementations to be tested with shared // implementations of helper routines. template class DenseMapTest : public ::testing::Test { protected: T Map; static typename T::key_type *const dummy_key_ptr; static typename T::mapped_type *const dummy_value_ptr; typename T::key_type getKey(int i = 0) { return getTestKey(i, dummy_key_ptr); } typename T::mapped_type getValue(int i = 0) { return getTestValue(i, dummy_value_ptr); } }; template typename T::key_type *const DenseMapTest::dummy_key_ptr = nullptr; template typename T::mapped_type *const DenseMapTest::dummy_value_ptr = nullptr; // Register these types for testing. typedef ::testing::Types, DenseMap, DenseMap, SmallDenseMap, SmallDenseMap, SmallDenseMap > DenseMapTestTypes; TYPED_TEST_CASE(DenseMapTest, DenseMapTestTypes); // Empty map tests TYPED_TEST(DenseMapTest, EmptyIntMapTest) { // Size tests EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); // Iterator tests EXPECT_TRUE(this->Map.begin() == this->Map.end()); // Lookup tests EXPECT_FALSE(this->Map.count(this->getKey())); EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.end()); EXPECT_EQ(typename TypeParam::mapped_type(), this->Map.lookup(this->getKey())); } // Constant map tests TYPED_TEST(DenseMapTest, ConstEmptyMapTest) { const TypeParam &ConstMap = this->Map; EXPECT_EQ(0u, ConstMap.size()); EXPECT_TRUE(ConstMap.empty()); EXPECT_TRUE(ConstMap.begin() == ConstMap.end()); } // A map with a single entry TYPED_TEST(DenseMapTest, SingleEntryMapTest) { this->Map[this->getKey()] = this->getValue(); // Size tests EXPECT_EQ(1u, this->Map.size()); EXPECT_FALSE(this->Map.begin() == this->Map.end()); EXPECT_FALSE(this->Map.empty()); // Iterator tests typename TypeParam::iterator it = this->Map.begin(); EXPECT_EQ(this->getKey(), it->first); EXPECT_EQ(this->getValue(), it->second); ++it; EXPECT_TRUE(it == this->Map.end()); // Lookup tests EXPECT_TRUE(this->Map.count(this->getKey())); EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.begin()); EXPECT_EQ(this->getValue(), this->Map.lookup(this->getKey())); EXPECT_EQ(this->getValue(), this->Map[this->getKey()]); } // Test clear() method TYPED_TEST(DenseMapTest, ClearTest) { this->Map[this->getKey()] = this->getValue(); this->Map.clear(); EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); EXPECT_TRUE(this->Map.begin() == this->Map.end()); } // Test erase(iterator) method TYPED_TEST(DenseMapTest, EraseTest) { this->Map[this->getKey()] = this->getValue(); this->Map.erase(this->Map.begin()); EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); EXPECT_TRUE(this->Map.begin() == this->Map.end()); } // Test erase(value) method TYPED_TEST(DenseMapTest, EraseTest2) { this->Map[this->getKey()] = this->getValue(); this->Map.erase(this->getKey()); EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); EXPECT_TRUE(this->Map.begin() == this->Map.end()); } // Test insert() method TYPED_TEST(DenseMapTest, InsertTest) { this->Map.insert(std::make_pair(this->getKey(), this->getValue())); EXPECT_EQ(1u, this->Map.size()); EXPECT_EQ(this->getValue(), this->Map[this->getKey()]); } // Test copy constructor method TYPED_TEST(DenseMapTest, CopyConstructorTest) { this->Map[this->getKey()] = this->getValue(); TypeParam copyMap(this->Map); EXPECT_EQ(1u, copyMap.size()); EXPECT_EQ(this->getValue(), copyMap[this->getKey()]); } // Test copy constructor method where SmallDenseMap isn't small. TYPED_TEST(DenseMapTest, CopyConstructorNotSmallTest) { for (int Key = 0; Key < 5; ++Key) this->Map[this->getKey(Key)] = this->getValue(Key); TypeParam copyMap(this->Map); EXPECT_EQ(5u, copyMap.size()); for (int Key = 0; Key < 5; ++Key) EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]); } // Test copying from a default-constructed map. TYPED_TEST(DenseMapTest, CopyConstructorFromDefaultTest) { TypeParam copyMap(this->Map); EXPECT_TRUE(copyMap.empty()); } // Test copying from an empty map where SmallDenseMap isn't small. TYPED_TEST(DenseMapTest, CopyConstructorFromEmptyTest) { for (int Key = 0; Key < 5; ++Key) this->Map[this->getKey(Key)] = this->getValue(Key); this->Map.clear(); TypeParam copyMap(this->Map); EXPECT_TRUE(copyMap.empty()); } // Test assignment operator method TYPED_TEST(DenseMapTest, AssignmentTest) { this->Map[this->getKey()] = this->getValue(); TypeParam copyMap = this->Map; EXPECT_EQ(1u, copyMap.size()); EXPECT_EQ(this->getValue(), copyMap[this->getKey()]); // test self-assignment. copyMap = static_cast(copyMap); EXPECT_EQ(1u, copyMap.size()); EXPECT_EQ(this->getValue(), copyMap[this->getKey()]); } TYPED_TEST(DenseMapTest, AssignmentTestNotSmall) { for (int Key = 0; Key < 5; ++Key) this->Map[this->getKey(Key)] = this->getValue(Key); TypeParam copyMap = this->Map; EXPECT_EQ(5u, copyMap.size()); for (int Key = 0; Key < 5; ++Key) EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]); // test self-assignment. copyMap = static_cast(copyMap); EXPECT_EQ(5u, copyMap.size()); for (int Key = 0; Key < 5; ++Key) EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]); } // Test swap method TYPED_TEST(DenseMapTest, SwapTest) { this->Map[this->getKey()] = this->getValue(); TypeParam otherMap; this->Map.swap(otherMap); EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); EXPECT_EQ(1u, otherMap.size()); EXPECT_EQ(this->getValue(), otherMap[this->getKey()]); this->Map.swap(otherMap); EXPECT_EQ(0u, otherMap.size()); EXPECT_TRUE(otherMap.empty()); EXPECT_EQ(1u, this->Map.size()); EXPECT_EQ(this->getValue(), this->Map[this->getKey()]); // Make this more interesting by inserting 100 numbers into the map. for (int i = 0; i < 100; ++i) this->Map[this->getKey(i)] = this->getValue(i); this->Map.swap(otherMap); EXPECT_EQ(0u, this->Map.size()); EXPECT_TRUE(this->Map.empty()); EXPECT_EQ(100u, otherMap.size()); for (int i = 0; i < 100; ++i) EXPECT_EQ(this->getValue(i), otherMap[this->getKey(i)]); this->Map.swap(otherMap); EXPECT_EQ(0u, otherMap.size()); EXPECT_TRUE(otherMap.empty()); EXPECT_EQ(100u, this->Map.size()); for (int i = 0; i < 100; ++i) EXPECT_EQ(this->getValue(i), this->Map[this->getKey(i)]); } // A more complex iteration test TYPED_TEST(DenseMapTest, IterationTest) { bool visited[100]; std::map visitedIndex; // Insert 100 numbers into the map for (int i = 0; i < 100; ++i) { visited[i] = false; visitedIndex[this->getKey(i)] = i; this->Map[this->getKey(i)] = this->getValue(i); } // Iterate over all numbers and mark each one found. for (typename TypeParam::iterator it = this->Map.begin(); it != this->Map.end(); ++it) visited[visitedIndex[it->first]] = true; // Ensure every number was visited. for (int i = 0; i < 100; ++i) ASSERT_TRUE(visited[i]) << "Entry #" << i << " was never visited"; } // const_iterator test TYPED_TEST(DenseMapTest, ConstIteratorTest) { // Check conversion from iterator to const_iterator. typename TypeParam::iterator it = this->Map.begin(); typename TypeParam::const_iterator cit(it); EXPECT_TRUE(it == cit); // Check copying of const_iterators. typename TypeParam::const_iterator cit2(cit); EXPECT_TRUE(cit == cit2); } namespace { // Simple class that counts how many moves and copy happens when growing a map struct CountCopyAndMove { static int Move; static int Copy; CountCopyAndMove() {} CountCopyAndMove(const CountCopyAndMove &) { Copy++; } CountCopyAndMove &operator=(const CountCopyAndMove &) { Copy++; return *this; } CountCopyAndMove(CountCopyAndMove &&) { Move++; } CountCopyAndMove &operator=(const CountCopyAndMove &&) { Move++; return *this; } }; int CountCopyAndMove::Copy = 0; int CountCopyAndMove::Move = 0; } // anonymous namespace // Test initializer list construction. TEST(DenseMapCustomTest, InitializerList) { DenseMap M({{0, 0}, {0, 1}, {1, 2}}); EXPECT_EQ(2u, M.size()); EXPECT_EQ(1u, M.count(0)); EXPECT_EQ(0, M[0]); EXPECT_EQ(1u, M.count(1)); EXPECT_EQ(2, M[1]); } // Test initializer list construction. TEST(DenseMapCustomTest, EqualityComparison) { DenseMap M1({{0, 0}, {1, 2}}); DenseMap M2({{0, 0}, {1, 2}}); DenseMap M3({{0, 0}, {1, 3}}); EXPECT_EQ(M1, M2); EXPECT_NE(M1, M3); } // Test for the default minimum size of a DenseMap TEST(DenseMapCustomTest, DefaultMinReservedSizeTest) { // IF THIS VALUE CHANGE, please update InitialSizeTest, InitFromIterator, and // ReserveTest as well! const int ExpectedInitialBucketCount = 64; // Formula from DenseMap::getMinBucketToReserveForEntries() const int ExpectedMaxInitialEntries = ExpectedInitialBucketCount * 3 / 4 - 1; DenseMap Map; // Will allocate 64 buckets Map.reserve(1); unsigned MemorySize = Map.getMemorySize(); CountCopyAndMove::Copy = 0; CountCopyAndMove::Move = 0; for (int i = 0; i < ExpectedMaxInitialEntries; ++i) Map.insert(std::pair(std::piecewise_construct, std::forward_as_tuple(i), std::forward_as_tuple())); // Check that we didn't grow EXPECT_EQ(MemorySize, Map.getMemorySize()); // Check that move was called the expected number of times EXPECT_EQ(ExpectedMaxInitialEntries, CountCopyAndMove::Move); // Check that no copy occurred EXPECT_EQ(0, CountCopyAndMove::Copy); // Adding one extra element should grow the map Map.insert(std::pair( std::piecewise_construct, std::forward_as_tuple(ExpectedMaxInitialEntries), std::forward_as_tuple())); // Check that we grew EXPECT_NE(MemorySize, Map.getMemorySize()); // Check that move was called the expected number of times // This relies on move-construction elision, and cannot be reliably tested. // EXPECT_EQ(ExpectedMaxInitialEntries + 2, CountCopyAndMove::Move); // Check that no copy occurred EXPECT_EQ(0, CountCopyAndMove::Copy); } // Make sure creating the map with an initial size of N actually gives us enough // buckets to insert N items without increasing allocation size. TEST(DenseMapCustomTest, InitialSizeTest) { // Test a few different sizes, 48 is *not* a random choice: we need a value // that is 2/3 of a power of two to stress the grow() condition, and the power // of two has to be at least 64 because of minimum size allocation in the // DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the // 64 default init. for (auto Size : {1, 2, 48, 66}) { DenseMap Map(Size); unsigned MemorySize = Map.getMemorySize(); CountCopyAndMove::Copy = 0; CountCopyAndMove::Move = 0; for (int i = 0; i < Size; ++i) Map.insert(std::pair(std::piecewise_construct, std::forward_as_tuple(i), std::forward_as_tuple())); // Check that we didn't grow EXPECT_EQ(MemorySize, Map.getMemorySize()); // Check that move was called the expected number of times EXPECT_EQ(Size, CountCopyAndMove::Move); // Check that no copy occurred EXPECT_EQ(0, CountCopyAndMove::Copy); } } // Make sure creating the map with a iterator range does not trigger grow() TEST(DenseMapCustomTest, InitFromIterator) { std::vector> Values; // The size is a random value greater than 64 (hardcoded DenseMap min init) const int Count = 65; for (int i = 0; i < Count; i++) Values.emplace_back(i, CountCopyAndMove()); CountCopyAndMove::Move = 0; CountCopyAndMove::Copy = 0; DenseMap Map(Values.begin(), Values.end()); // Check that no move occurred EXPECT_EQ(0, CountCopyAndMove::Move); // Check that copy was called the expected number of times EXPECT_EQ(Count, CountCopyAndMove::Copy); } // Make sure reserve actually gives us enough buckets to insert N items // without increasing allocation size. TEST(DenseMapCustomTest, ReserveTest) { // Test a few different size, 48 is *not* a random choice: we need a value // that is 2/3 of a power of two to stress the grow() condition, and the power // of two has to be at least 64 because of minimum size allocation in the // DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the // 64 default init. for (auto Size : {1, 2, 48, 66}) { DenseMap Map; Map.reserve(Size); unsigned MemorySize = Map.getMemorySize(); CountCopyAndMove::Copy = 0; CountCopyAndMove::Move = 0; for (int i = 0; i < Size; ++i) Map.insert(std::pair(std::piecewise_construct, std::forward_as_tuple(i), std::forward_as_tuple())); // Check that we didn't grow EXPECT_EQ(MemorySize, Map.getMemorySize()); // Check that move was called the expected number of times EXPECT_EQ(Size, CountCopyAndMove::Move); // Check that no copy occurred EXPECT_EQ(0, CountCopyAndMove::Copy); } } // Make sure DenseMap works with StringRef keys. TEST(DenseMapCustomTest, StringRefTest) { DenseMap M; M["a"] = 1; M["b"] = 2; M["c"] = 3; EXPECT_EQ(3u, M.size()); EXPECT_EQ(1, M.lookup("a")); EXPECT_EQ(2, M.lookup("b")); EXPECT_EQ(3, M.lookup("c")); EXPECT_EQ(0, M.lookup("q")); // Test the empty string, spelled various ways. EXPECT_EQ(0, M.lookup("")); EXPECT_EQ(0, M.lookup(StringRef())); EXPECT_EQ(0, M.lookup(StringRef("a", 0))); M[""] = 42; EXPECT_EQ(42, M.lookup("")); EXPECT_EQ(42, M.lookup(StringRef())); EXPECT_EQ(42, M.lookup(StringRef("a", 0))); } // Key traits that allows lookup with either an unsigned or char* key; // In the latter case, "a" == 0, "b" == 1 and so on. struct TestDenseMapInfo { static inline unsigned getEmptyKey() { return ~0; } static inline unsigned getTombstoneKey() { return ~0U - 1; } static unsigned getHashValue(const unsigned& Val) { return Val * 37U; } static unsigned getHashValue(const char* Val) { return (unsigned)(Val[0] - 'a') * 37U; } static bool isEqual(const unsigned& LHS, const unsigned& RHS) { return LHS == RHS; } static bool isEqual(const char* LHS, const unsigned& RHS) { return (unsigned)(LHS[0] - 'a') == RHS; } }; // find_as() tests TEST(DenseMapCustomTest, FindAsTest) { DenseMap map; map[0] = 1; map[1] = 2; map[2] = 3; // Size tests EXPECT_EQ(3u, map.size()); // Normal lookup tests EXPECT_EQ(1u, map.count(1)); EXPECT_EQ(1u, map.find(0)->second); EXPECT_EQ(2u, map.find(1)->second); EXPECT_EQ(3u, map.find(2)->second); EXPECT_TRUE(map.find(3) == map.end()); // find_as() tests EXPECT_EQ(1u, map.find_as("a")->second); EXPECT_EQ(2u, map.find_as("b")->second); EXPECT_EQ(3u, map.find_as("c")->second); EXPECT_TRUE(map.find_as("d") == map.end()); } struct ContiguousDenseMapInfo { static inline unsigned getEmptyKey() { return ~0; } static inline unsigned getTombstoneKey() { return ~0U - 1; } static unsigned getHashValue(const unsigned& Val) { return Val; } static bool isEqual(const unsigned& LHS, const unsigned& RHS) { return LHS == RHS; } }; // Test that filling a small dense map with exactly the number of elements in // the map grows to have enough space for an empty bucket. TEST(DenseMapCustomTest, SmallDenseMapGrowTest) { SmallDenseMap map; // Add some number of elements, then delete a few to leave us some tombstones. // If we just filled the map with 32 elements we'd grow because of not enough // tombstones which masks the issue here. for (unsigned i = 0; i < 20; ++i) map[i] = i + 1; for (unsigned i = 0; i < 10; ++i) map.erase(i); for (unsigned i = 20; i < 32; ++i) map[i] = i + 1; // Size tests EXPECT_EQ(22u, map.size()); // Try to find an element which doesn't exist. There was a bug in // SmallDenseMap which led to a map with num elements == small capacity not // having an empty bucket any more. Finding an element not in the map would // therefore never terminate. EXPECT_TRUE(map.find(32) == map.end()); } TEST(DenseMapCustomTest, LargeSmallDenseMapCompaction) { SmallDenseMap map; // Fill to < 3/4 load. for (unsigned i = 0; i < 95; ++i) map[i] = i; // And erase, leaving behind tombstones. for (unsigned i = 0; i < 95; ++i) map.erase(i); // Fill further, so that less than 1/8 are empty, but still below 3/4 load. for (unsigned i = 95; i < 128; ++i) map[i] = i; EXPECT_EQ(33u, map.size()); // Similar to the previous test, check for a non-existing element, as an // indirect check that tombstones have been removed. EXPECT_TRUE(map.find(0) == map.end()); } TEST(DenseMapCustomTest, TryEmplaceTest) { DenseMap> Map; std::unique_ptr P(new int(2)); auto Try1 = Map.try_emplace(0, new int(1)); EXPECT_TRUE(Try1.second); auto Try2 = Map.try_emplace(0, std::move(P)); EXPECT_FALSE(Try2.second); EXPECT_EQ(Try1.first, Try2.first); EXPECT_NE(nullptr, P); } TEST(DenseMapCustomTest, ConstTest) { // Test that const pointers work okay for count and find, even when the // underlying map is a non-const pointer. DenseMap Map; int A; int *B = &A; const int *C = &A; Map.insert({B, 0}); EXPECT_EQ(Map.count(B), 1u); EXPECT_EQ(Map.count(C), 1u); EXPECT_NE(Map.find(B), Map.end()); EXPECT_NE(Map.find(C), Map.end()); } struct IncompleteStruct; TEST(DenseMapCustomTest, OpaquePointerKey) { // Test that we can use a pointer to an incomplete type as a DenseMap key. // This is an important build time optimization, since many classes have // DenseMap members. DenseMap Map; int Keys[3] = {0, 0, 0}; IncompleteStruct *K1 = reinterpret_cast(&Keys[0]); IncompleteStruct *K2 = reinterpret_cast(&Keys[1]); IncompleteStruct *K3 = reinterpret_cast(&Keys[2]); Map.insert({K1, 1}); Map.insert({K2, 2}); Map.insert({K3, 3}); EXPECT_EQ(Map.count(K1), 1u); EXPECT_EQ(Map[K1], 1); EXPECT_EQ(Map[K2], 2); EXPECT_EQ(Map[K3], 3); Map.clear(); EXPECT_EQ(Map.find(K1), Map.end()); EXPECT_EQ(Map.find(K2), Map.end()); EXPECT_EQ(Map.find(K3), Map.end()); } }