//===-Config.h - LLVM Link Time Optimizer Configuration -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the lto::Config data structure, which allows clients to // configure LTO. // //===----------------------------------------------------------------------===// #ifndef LLVM_LTO_CONFIG_H #define LLVM_LTO_CONFIG_H #include "llvm/IR/DiagnosticInfo.h" #include "llvm/Support/CodeGen.h" #include "llvm/Target/TargetOptions.h" #include namespace llvm { class Error; class Module; class ModuleSummaryIndex; class raw_pwrite_stream; namespace lto { /// LTO configuration. A linker can configure LTO by setting fields in this data /// structure and passing it to the lto::LTO constructor. struct Config { std::string CPU; std::string Features; TargetOptions Options; std::vector MAttrs; Reloc::Model RelocModel = Reloc::PIC_; CodeModel::Model CodeModel = CodeModel::Default; CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default; unsigned OptLevel = 2; bool DisableVerify = false; /// Disable entirely the optimizer, including importing for ThinLTO bool CodeGenOnly = false; /// If this field is set, the set of passes run in the middle-end optimizer /// will be the one specified by the string. Only works with the new pass /// manager as the old one doesn't have this ability. std::string OptPipeline; // If this field is set, it has the same effect of specifying an AA pipeline // identified by the string. Only works with the new pass manager, in // conjunction OptPipeline. std::string AAPipeline; /// Setting this field will replace target triples in input files with this /// triple. std::string OverrideTriple; /// Setting this field will replace unspecified target triples in input files /// with this triple. std::string DefaultTriple; bool ShouldDiscardValueNames = true; DiagnosticHandlerFunction DiagHandler; /// If this field is set, LTO will write input file paths and symbol /// resolutions here in llvm-lto2 command line flag format. This can be /// used for testing and for running the LTO pipeline outside of the linker /// with llvm-lto2. std::unique_ptr ResolutionFile; /// The following callbacks deal with tasks, which normally represent the /// entire optimization and code generation pipeline for what will become a /// single native object file. Each task has a unique identifier between 0 and /// getMaxTasks()-1, which is supplied to the callback via the Task parameter. /// A task represents the entire pipeline for ThinLTO and regular /// (non-parallel) LTO, but a parallel code generation task will be split into /// N tasks before code generation, where N is the parallelism level. /// /// LTO may decide to stop processing a task at any time, for example if the /// module is empty or if a module hook (see below) returns false. For this /// reason, the client should not expect to receive exactly getMaxTasks() /// native object files. /// A module hook may be used by a linker to perform actions during the LTO /// pipeline. For example, a linker may use this function to implement /// -save-temps. If this function returns false, any further processing for /// that task is aborted. /// /// Module hooks must be thread safe with respect to the linker's internal /// data structures. A module hook will never be called concurrently from /// multiple threads with the same task ID, or the same module. /// /// Note that in out-of-process backend scenarios, none of the hooks will be /// called for ThinLTO tasks. typedef std::function ModuleHookFn; /// This module hook is called after linking (regular LTO) or loading /// (ThinLTO) the module, before modifying it. ModuleHookFn PreOptModuleHook; /// This hook is called after promoting any internal functions /// (ThinLTO-specific). ModuleHookFn PostPromoteModuleHook; /// This hook is called after internalizing the module. ModuleHookFn PostInternalizeModuleHook; /// This hook is called after importing from other modules (ThinLTO-specific). ModuleHookFn PostImportModuleHook; /// This module hook is called after optimization is complete. ModuleHookFn PostOptModuleHook; /// This module hook is called before code generation. It is similar to the /// PostOptModuleHook, but for parallel code generation it is called after /// splitting the module. ModuleHookFn PreCodeGenModuleHook; /// A combined index hook is called after all per-module indexes have been /// combined (ThinLTO-specific). It can be used to implement -save-temps for /// the combined index. /// /// If this function returns false, any further processing for ThinLTO tasks /// is aborted. /// /// It is called regardless of whether the backend is in-process, although it /// is not called from individual backend processes. typedef std::function CombinedIndexHookFn; CombinedIndexHookFn CombinedIndexHook; Config() {} // FIXME: Remove once MSVC can synthesize move ops. Config(Config &&X) : CPU(std::move(X.CPU)), Features(std::move(X.Features)), Options(std::move(X.Options)), MAttrs(std::move(X.MAttrs)), RelocModel(std::move(X.RelocModel)), CodeModel(std::move(X.CodeModel)), CGOptLevel(std::move(X.CGOptLevel)), OptLevel(std::move(X.OptLevel)), DisableVerify(std::move(X.DisableVerify)), OptPipeline(std::move(X.OptPipeline)), AAPipeline(std::move(X.AAPipeline)), OverrideTriple(std::move(X.OverrideTriple)), DefaultTriple(std::move(X.DefaultTriple)), ShouldDiscardValueNames(std::move(X.ShouldDiscardValueNames)), DiagHandler(std::move(X.DiagHandler)), ResolutionFile(std::move(X.ResolutionFile)), PreOptModuleHook(std::move(X.PreOptModuleHook)), PostPromoteModuleHook(std::move(X.PostPromoteModuleHook)), PostInternalizeModuleHook(std::move(X.PostInternalizeModuleHook)), PostImportModuleHook(std::move(X.PostImportModuleHook)), PostOptModuleHook(std::move(X.PostOptModuleHook)), PreCodeGenModuleHook(std::move(X.PreCodeGenModuleHook)), CombinedIndexHook(std::move(X.CombinedIndexHook)) {} // FIXME: Remove once MSVC can synthesize move ops. Config &operator=(Config &&X) { CPU = std::move(X.CPU); Features = std::move(X.Features); Options = std::move(X.Options); MAttrs = std::move(X.MAttrs); RelocModel = std::move(X.RelocModel); CodeModel = std::move(X.CodeModel); CGOptLevel = std::move(X.CGOptLevel); OptLevel = std::move(X.OptLevel); DisableVerify = std::move(X.DisableVerify); OptPipeline = std::move(X.OptPipeline); AAPipeline = std::move(X.AAPipeline); OverrideTriple = std::move(X.OverrideTriple); DefaultTriple = std::move(X.DefaultTriple); ShouldDiscardValueNames = std::move(X.ShouldDiscardValueNames); DiagHandler = std::move(X.DiagHandler); ResolutionFile = std::move(X.ResolutionFile); PreOptModuleHook = std::move(X.PreOptModuleHook); PostPromoteModuleHook = std::move(X.PostPromoteModuleHook); PostInternalizeModuleHook = std::move(X.PostInternalizeModuleHook); PostImportModuleHook = std::move(X.PostImportModuleHook); PostOptModuleHook = std::move(X.PostOptModuleHook); PreCodeGenModuleHook = std::move(X.PreCodeGenModuleHook); CombinedIndexHook = std::move(X.CombinedIndexHook); return *this; } /// This is a convenience function that configures this Config object to write /// temporary files named after the given OutputFileName for each of the LTO /// phases to disk. A client can use this function to implement -save-temps. /// /// FIXME: Temporary files derived from ThinLTO backends are currently named /// after the input file name, rather than the output file name, when /// UseInputModulePath is set to true. /// /// Specifically, it (1) sets each of the above module hooks and the combined /// index hook to a function that calls the hook function (if any) that was /// present in the appropriate field when the addSaveTemps function was /// called, and writes the module to a bitcode file with a name prefixed by /// the given output file name, and (2) creates a resolution file whose name /// is prefixed by the given output file name and sets ResolutionFile to its /// file handle. Error addSaveTemps(std::string OutputFileName, bool UseInputModulePath = false); }; /// A derived class of LLVMContext that initializes itself according to a given /// Config object. The purpose of this class is to tie ownership of the /// diagnostic handler to the context, as opposed to the Config object (which /// may be ephemeral). struct LTOLLVMContext : LLVMContext { static void funcDiagHandler(const DiagnosticInfo &DI, void *Context) { auto *Fn = static_cast(Context); (*Fn)(DI); } LTOLLVMContext(const Config &C) : DiagHandler(C.DiagHandler) { setDiscardValueNames(C.ShouldDiscardValueNames); enableDebugTypeODRUniquing(); setDiagnosticHandler(funcDiagHandler, &DiagHandler, true); } DiagnosticHandlerFunction DiagHandler; }; } } #endif