#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/JSON.h" #define DEBUG_TYPE "dwarfdump" using namespace llvm; using namespace object; /// This represents the number of categories of debug location coverage being /// calculated. The first category is the number of variables with 0% location /// coverage, but the last category is the number of variables with 100% /// location coverage. constexpr int NumOfCoverageCategories = 12; /// Holds statistics for one function (or other entity that has a PC range and /// contains variables, such as a compile unit). struct PerFunctionStats { /// Number of inlined instances of this function. unsigned NumFnInlined = 0; /// Number of inlined instances that have abstract origins. unsigned NumAbstractOrigins = 0; /// Number of variables and parameters with location across all inlined /// instances. unsigned TotalVarWithLoc = 0; /// Number of constants with location across all inlined instances. unsigned ConstantMembers = 0; /// List of all Variables and parameters in this function. StringSet<> VarsInFunction; /// Compile units also cover a PC range, but have this flag set to false. bool IsFunction = false; /// Verify function definition has PC addresses (for detecting when /// a function has been inlined everywhere). bool HasPCAddresses = false; /// Function has source location information. bool HasSourceLocation = false; /// Number of function parameters. unsigned NumParams = 0; /// Number of function parameters with source location. unsigned NumParamSourceLocations = 0; /// Number of function parameters with type. unsigned NumParamTypes = 0; /// Number of function parameters with a DW_AT_location. unsigned NumParamLocations = 0; /// Number of variables. unsigned NumVars = 0; /// Number of variables with source location. unsigned NumVarSourceLocations = 0; /// Number of variables with type. unsigned NumVarTypes = 0; /// Number of variables with DW_AT_location. unsigned NumVarLocations = 0; }; /// Holds accumulated global statistics about DIEs. struct GlobalStats { /// Total number of PC range bytes covered by DW_AT_locations. unsigned ScopeBytesCovered = 0; /// Total number of PC range bytes in each variable's enclosing scope, /// starting from the first definition of the variable. unsigned ScopeBytesFromFirstDefinition = 0; /// Total number of PC range bytes covered by DW_AT_locations with /// the debug entry values (DW_OP_entry_value). unsigned ScopeEntryValueBytesCovered = 0; /// Total number of PC range bytes covered by DW_AT_locations of /// formal parameters. unsigned ParamScopeBytesCovered = 0; /// Total number of PC range bytes in each variable's enclosing scope, /// starting from the first definition of the variable (only for parameters). unsigned ParamScopeBytesFromFirstDefinition = 0; /// Total number of PC range bytes covered by DW_AT_locations with /// the debug entry values (DW_OP_entry_value) (only for parameters). unsigned ParamScopeEntryValueBytesCovered = 0; /// Total number of PC range bytes covered by DW_AT_locations (only for local /// variables). unsigned VarScopeBytesCovered = 0; /// Total number of PC range bytes in each variable's enclosing scope, /// starting from the first definition of the variable (only for local /// variables). unsigned VarScopeBytesFromFirstDefinition = 0; /// Total number of PC range bytes covered by DW_AT_locations with /// the debug entry values (DW_OP_entry_value) (only for local variables). unsigned VarScopeEntryValueBytesCovered = 0; /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line). unsigned CallSiteEntries = 0; /// Total number of call site DIEs (DW_TAG_call_site). unsigned CallSiteDIEs = 0; /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter). unsigned CallSiteParamDIEs = 0; /// Total byte size of concrete functions. This byte size includes /// inline functions contained in the concrete functions. unsigned FunctionSize = 0; /// Total byte size of inlined functions. This is the total number of bytes /// for the top inline functions within concrete functions. This can help /// tune the inline settings when compiling to match user expectations. unsigned InlineFunctionSize = 0; }; /// Holds accumulated debug location statistics about local variables and /// formal parameters. struct LocationStats { /// Map the scope coverage decile to the number of variables in the decile. /// The first element of the array (at the index zero) represents the number /// of variables with the no debug location at all, but the last element /// in the vector represents the number of fully covered variables within /// its scope. std::vector VarParamLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// Map non debug entry values coverage. std::vector VarParamNonEntryValLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// The debug location statistics for formal parameters. std::vector ParamLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// Map non debug entry values coverage for formal parameters. std::vector ParamNonEntryValLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// The debug location statistics for local variables. std::vector VarLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// Map non debug entry values coverage for local variables. std::vector VarNonEntryValLocStats{ std::vector(NumOfCoverageCategories, 0)}; /// Total number of local variables and function parameters processed. unsigned NumVarParam = 0; /// Total number of formal parameters processed. unsigned NumParam = 0; /// Total number of local variables processed. unsigned NumVar = 0; }; /// Extract the low pc from a Die. static uint64_t getLowPC(DWARFDie Die) { auto RangesOrError = Die.getAddressRanges(); DWARFAddressRangesVector Ranges; if (RangesOrError) Ranges = RangesOrError.get(); else llvm::consumeError(RangesOrError.takeError()); if (Ranges.size()) return Ranges[0].LowPC; return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0); } /// Collect debug location statistics for one DIE. static void collectLocStats(uint64_t BytesCovered, uint64_t BytesInScope, std::vector &VarParamLocStats, std::vector &ParamLocStats, std::vector &VarLocStats, bool IsParam, bool IsLocalVar) { auto getCoverageBucket = [BytesCovered, BytesInScope]() -> unsigned { unsigned LocBucket = 100 * (double)BytesCovered / BytesInScope; if (LocBucket == 0) { // No debug location at all for the variable. return 0; } else if (LocBucket == 100 || BytesCovered > BytesInScope) { // Fully covered variable within its scope. return NumOfCoverageCategories - 1; } else { // Get covered range (e.g. 20%-29%). LocBucket /= 10; return LocBucket + 1; } }; unsigned CoverageBucket = getCoverageBucket(); VarParamLocStats[CoverageBucket]++; if (IsParam) ParamLocStats[CoverageBucket]++; else if (IsLocalVar) VarLocStats[CoverageBucket]++; } /// Collect debug info quality metrics for one DIE. static void collectStatsForDie(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix, std::string VarPrefix, uint64_t ScopeLowPC, uint64_t BytesInScope, uint32_t InlineDepth, StringMap &FnStatMap, GlobalStats &GlobalStats, LocationStats &LocStats) { bool HasLoc = false; bool HasSrcLoc = false; bool HasType = false; bool IsArtificial = false; uint64_t BytesCovered = 0; uint64_t BytesEntryValuesCovered = 0; uint64_t OffsetToFirstDefinition = 0; auto &FnStats = FnStatMap[FnPrefix]; bool IsParam = Die.getTag() == dwarf::DW_TAG_formal_parameter; bool IsLocalVar = Die.getTag() == dwarf::DW_TAG_variable; if (Die.getTag() == dwarf::DW_TAG_call_site || Die.getTag() == dwarf::DW_TAG_GNU_call_site) { GlobalStats.CallSiteDIEs++; return; } if (Die.getTag() == dwarf::DW_TAG_call_site_parameter || Die.getTag() == dwarf::DW_TAG_GNU_call_site_parameter) { GlobalStats.CallSiteParamDIEs++; return; } if (!IsParam && !IsLocalVar && Die.getTag() != dwarf::DW_TAG_member) { // Not a variable or constant member. return; } if (Die.findRecursively(dwarf::DW_AT_decl_file) && Die.findRecursively(dwarf::DW_AT_decl_line)) HasSrcLoc = true; if (Die.findRecursively(dwarf::DW_AT_type)) HasType = true; if (Die.find(dwarf::DW_AT_artificial)) IsArtificial = true; auto IsEntryValue = [&](ArrayRef D) -> bool { DWARFUnit *U = Die.getDwarfUnit(); DataExtractor Data(toStringRef(D), Die.getDwarfUnit()->getContext().isLittleEndian(), 0); DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize()); // Consider the expression containing the DW_OP_entry_value as // an entry value. return llvm::any_of(Expression, [](DWARFExpression::Operation &Op) { return Op.getCode() == dwarf::DW_OP_entry_value || Op.getCode() == dwarf::DW_OP_GNU_entry_value; }); }; if (Die.find(dwarf::DW_AT_const_value)) { // This catches constant members *and* variables. HasLoc = true; BytesCovered = BytesInScope; } else { if (Die.getTag() == dwarf::DW_TAG_member) { // Non-const member. return; } // Handle variables and function arguments. auto FormValue = Die.find(dwarf::DW_AT_location); HasLoc = FormValue.hasValue(); if (HasLoc) { // Get PC coverage. if (auto DebugLocOffset = FormValue->getAsSectionOffset()) { auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc(); if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) { for (auto Entry : List->Entries) { uint64_t BytesEntryCovered = Entry.End - Entry.Begin; BytesCovered += BytesEntryCovered; if (IsEntryValue(Entry.Loc)) BytesEntryValuesCovered += BytesEntryCovered; } if (List->Entries.size()) { uint64_t FirstDef = List->Entries[0].Begin; uint64_t UnitOfs = UnitLowPC; // Ranges sometimes start before the lexical scope. if (UnitOfs + FirstDef >= ScopeLowPC) OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC; // Or even after it. Count that as a failure. if (OffsetToFirstDefinition > BytesInScope) OffsetToFirstDefinition = 0; } } assert(BytesInScope); } else { // Assume the entire range is covered by a single location. BytesCovered = BytesInScope; } } } // Calculate the debug location statistics. if (BytesInScope) { LocStats.NumVarParam++; if (IsParam) LocStats.NumParam++; else if (IsLocalVar) LocStats.NumVar++; collectLocStats(BytesCovered, BytesInScope, LocStats.VarParamLocStats, LocStats.ParamLocStats, LocStats.VarLocStats, IsParam, IsLocalVar); // Non debug entry values coverage statistics. collectLocStats(BytesCovered - BytesEntryValuesCovered, BytesInScope, LocStats.VarParamNonEntryValLocStats, LocStats.ParamNonEntryValLocStats, LocStats.VarNonEntryValLocStats, IsParam, IsLocalVar); } // Collect PC range coverage data. if (DWARFDie D = Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin)) Die = D; // By using the variable name + the path through the lexical block tree, the // keys are consistent across duplicate abstract origins in different CUs. std::string VarName = StringRef(Die.getName(DINameKind::ShortName)); FnStats.VarsInFunction.insert(VarPrefix + VarName); if (BytesInScope) { FnStats.TotalVarWithLoc += (unsigned)HasLoc; // Adjust for the fact the variables often start their lifetime in the // middle of the scope. BytesInScope -= OffsetToFirstDefinition; // Turns out we have a lot of ranges that extend past the lexical scope. GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered); GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope; GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered; if (IsParam) { GlobalStats.ParamScopeBytesCovered += std::min(BytesInScope, BytesCovered); GlobalStats.ParamScopeBytesFromFirstDefinition += BytesInScope; GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered; } else if (IsLocalVar) { GlobalStats.VarScopeBytesCovered += std::min(BytesInScope, BytesCovered); GlobalStats.VarScopeBytesFromFirstDefinition += BytesInScope; GlobalStats.VarScopeEntryValueBytesCovered += BytesEntryValuesCovered; } assert(GlobalStats.ScopeBytesCovered <= GlobalStats.ScopeBytesFromFirstDefinition); } else if (Die.getTag() == dwarf::DW_TAG_member) { FnStats.ConstantMembers++; } else { FnStats.TotalVarWithLoc += (unsigned)HasLoc; } if (!IsArtificial) { if (IsParam) { FnStats.NumParams++; if (HasType) FnStats.NumParamTypes++; if (HasSrcLoc) FnStats.NumParamSourceLocations++; if (HasLoc) FnStats.NumParamLocations++; } else if (IsLocalVar) { FnStats.NumVars++; if (HasType) FnStats.NumVarTypes++; if (HasSrcLoc) FnStats.NumVarSourceLocations++; if (HasLoc) FnStats.NumVarLocations++; } } } /// Recursively collect debug info quality metrics. static void collectStatsRecursive(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix, std::string VarPrefix, uint64_t ScopeLowPC, uint64_t BytesInScope, uint32_t InlineDepth, StringMap &FnStatMap, GlobalStats &GlobalStats, LocationStats &LocStats) { // Handle any kind of lexical scope. const dwarf::Tag Tag = Die.getTag(); const bool IsFunction = Tag == dwarf::DW_TAG_subprogram; const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block; const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine; if (IsFunction || IsInlinedFunction || IsBlock) { // Reset VarPrefix when entering a new function. if (Die.getTag() == dwarf::DW_TAG_subprogram || Die.getTag() == dwarf::DW_TAG_inlined_subroutine) VarPrefix = "v"; // Ignore forward declarations. if (Die.find(dwarf::DW_AT_declaration)) return; // Check for call sites. if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line)) GlobalStats.CallSiteEntries++; // PC Ranges. auto RangesOrError = Die.getAddressRanges(); if (!RangesOrError) { llvm::consumeError(RangesOrError.takeError()); return; } auto Ranges = RangesOrError.get(); uint64_t BytesInThisScope = 0; for (auto Range : Ranges) BytesInThisScope += Range.HighPC - Range.LowPC; ScopeLowPC = getLowPC(Die); // Count the function. if (!IsBlock) { StringRef Name = Die.getName(DINameKind::LinkageName); if (Name.empty()) Name = Die.getName(DINameKind::ShortName); FnPrefix = Name; // Skip over abstract origins. if (Die.find(dwarf::DW_AT_inline)) return; // We've seen an (inlined) instance of this function. auto &FnStats = FnStatMap[Name]; if (IsInlinedFunction) { FnStats.NumFnInlined++; if (Die.findRecursively(dwarf::DW_AT_abstract_origin)) FnStats.NumAbstractOrigins++; } FnStats.IsFunction = true; if (BytesInThisScope && !IsInlinedFunction) FnStats.HasPCAddresses = true; std::string FnName = StringRef(Die.getName(DINameKind::ShortName)); if (Die.findRecursively(dwarf::DW_AT_decl_file) && Die.findRecursively(dwarf::DW_AT_decl_line)) FnStats.HasSourceLocation = true; } if (BytesInThisScope) { BytesInScope = BytesInThisScope; if (IsFunction) GlobalStats.FunctionSize += BytesInThisScope; else if (IsInlinedFunction && InlineDepth == 0) GlobalStats.InlineFunctionSize += BytesInThisScope; } } else { // Not a scope, visit the Die itself. It could be a variable. collectStatsForDie(Die, UnitLowPC, FnPrefix, VarPrefix, ScopeLowPC, BytesInScope, InlineDepth, FnStatMap, GlobalStats, LocStats); } // Set InlineDepth correctly for child recursion if (IsFunction) InlineDepth = 0; else if (IsInlinedFunction) ++InlineDepth; // Traverse children. unsigned LexicalBlockIndex = 0; DWARFDie Child = Die.getFirstChild(); while (Child) { std::string ChildVarPrefix = VarPrefix; if (Child.getTag() == dwarf::DW_TAG_lexical_block) ChildVarPrefix += toHex(LexicalBlockIndex++) + '.'; collectStatsRecursive(Child, UnitLowPC, FnPrefix, ChildVarPrefix, ScopeLowPC, BytesInScope, InlineDepth, FnStatMap, GlobalStats, LocStats); Child = Child.getSibling(); } } /// Print machine-readable output. /// The machine-readable format is single-line JSON output. /// \{ static void printDatum(raw_ostream &OS, const char *Key, json::Value Value) { OS << ",\"" << Key << "\":" << Value; LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); } static void printLocationStats(raw_ostream &OS, const char *Key, std::vector &LocationStats) { OS << ",\"" << Key << " with 0% of its scope covered\":" << LocationStats[0]; LLVM_DEBUG(llvm::dbgs() << Key << " with 0% of its scope covered: " << LocationStats[0] << '\n'); OS << ",\"" << Key << " with 1-9% of its scope covered\":" << LocationStats[1]; LLVM_DEBUG(llvm::dbgs() << Key << " with 1-9% of its scope covered: " << LocationStats[1] << '\n'); for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) { OS << ",\"" << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1 << "% of its scope covered\":" << LocationStats[i]; LLVM_DEBUG(llvm::dbgs() << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1 << "% of its scope covered: " << LocationStats[i]); } OS << ",\"" << Key << " with 100% of its scope covered\":" << LocationStats[NumOfCoverageCategories - 1]; LLVM_DEBUG(llvm::dbgs() << Key << " with 100% of its scope covered: " << LocationStats[NumOfCoverageCategories - 1]); } /// \} /// Collect debug info quality metrics for an entire DIContext. /// /// Do the impossible and reduce the quality of the debug info down to a few /// numbers. The idea is to condense the data into numbers that can be tracked /// over time to identify trends in newer compiler versions and gauge the effect /// of particular optimizations. The raw numbers themselves are not particularly /// useful, only the delta between compiling the same program with different /// compilers is. bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx, Twine Filename, raw_ostream &OS) { StringRef FormatName = Obj.getFileFormatName(); GlobalStats GlobalStats; LocationStats LocStats; StringMap Statistics; for (const auto &CU : static_cast(&DICtx)->compile_units()) if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) collectStatsRecursive(CUDie, getLowPC(CUDie), "/", "g", 0, 0, 0, Statistics, GlobalStats, LocStats); /// The version number should be increased every time the algorithm is changed /// (including bug fixes). New metrics may be added without increasing the /// version. unsigned Version = 3; unsigned VarParamTotal = 0; unsigned VarParamUnique = 0; unsigned VarParamWithLoc = 0; unsigned NumFunctions = 0; unsigned NumInlinedFunctions = 0; unsigned NumFuncsWithSrcLoc = 0; unsigned NumAbstractOrigins = 0; unsigned ParamTotal = 0; unsigned ParamWithType = 0; unsigned ParamWithLoc = 0; unsigned ParamWithSrcLoc = 0; unsigned VarTotal = 0; unsigned VarWithType = 0; unsigned VarWithSrcLoc = 0; unsigned VarWithLoc = 0; for (auto &Entry : Statistics) { PerFunctionStats &Stats = Entry.getValue(); unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined; // Count variables in concrete out-of-line functions and in global scope. if (Stats.HasPCAddresses || !Stats.IsFunction) TotalVars += Stats.VarsInFunction.size(); unsigned Constants = Stats.ConstantMembers; VarParamWithLoc += Stats.TotalVarWithLoc + Constants; VarParamTotal += TotalVars; VarParamUnique += Stats.VarsInFunction.size(); LLVM_DEBUG(for (auto &V : Stats.VarsInFunction) llvm::dbgs() << Entry.getKey() << ": " << V.getKey() << "\n"); NumFunctions += Stats.IsFunction; NumFuncsWithSrcLoc += Stats.HasSourceLocation; NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined; NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins; ParamTotal += Stats.NumParams; ParamWithType += Stats.NumParamTypes; ParamWithLoc += Stats.NumParamLocations; ParamWithSrcLoc += Stats.NumParamSourceLocations; VarTotal += Stats.NumVars; VarWithType += Stats.NumVarTypes; VarWithLoc += Stats.NumVarLocations; VarWithSrcLoc += Stats.NumVarSourceLocations; } // Print summary. OS.SetBufferSize(1024); OS << "{\"version\":" << Version; LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n"; llvm::dbgs() << "---------------------------------\n"); printDatum(OS, "file", Filename.str()); printDatum(OS, "format", FormatName); printDatum(OS, "source functions", NumFunctions); printDatum(OS, "source functions with location", NumFuncsWithSrcLoc); printDatum(OS, "inlined functions", NumInlinedFunctions); printDatum(OS, "inlined funcs with abstract origins", NumAbstractOrigins); printDatum(OS, "unique source variables", VarParamUnique); printDatum(OS, "source variables", VarParamTotal); printDatum(OS, "variables with location", VarParamWithLoc); printDatum(OS, "call site entries", GlobalStats.CallSiteEntries); printDatum(OS, "call site DIEs", GlobalStats.CallSiteDIEs); printDatum(OS, "call site parameter DIEs", GlobalStats.CallSiteParamDIEs); printDatum(OS, "scope bytes total", GlobalStats.ScopeBytesFromFirstDefinition); printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered); printDatum(OS, "entry value scope bytes covered", GlobalStats.ScopeEntryValueBytesCovered); printDatum(OS, "formal params scope bytes total", GlobalStats.ParamScopeBytesFromFirstDefinition); printDatum(OS, "formal params scope bytes covered", GlobalStats.ParamScopeBytesCovered); printDatum(OS, "formal params entry value scope bytes covered", GlobalStats.ParamScopeEntryValueBytesCovered); printDatum(OS, "vars scope bytes total", GlobalStats.VarScopeBytesFromFirstDefinition); printDatum(OS, "vars scope bytes covered", GlobalStats.VarScopeBytesCovered); printDatum(OS, "vars entry value scope bytes covered", GlobalStats.VarScopeEntryValueBytesCovered); printDatum(OS, "total function size", GlobalStats.FunctionSize); printDatum(OS, "total inlined function size", GlobalStats.InlineFunctionSize); printDatum(OS, "total formal params", ParamTotal); printDatum(OS, "formal params with source location", ParamWithSrcLoc); printDatum(OS, "formal params with type", ParamWithType); printDatum(OS, "formal params with binary location", ParamWithLoc); printDatum(OS, "total vars", VarTotal); printDatum(OS, "vars with source location", VarWithSrcLoc); printDatum(OS, "vars with type", VarWithType); printDatum(OS, "vars with binary location", VarWithLoc); printDatum(OS, "total variables procesed by location statistics", LocStats.NumVarParam); printLocationStats(OS, "variables", LocStats.VarParamLocStats); printLocationStats(OS, "variables (excluding the debug entry values)", LocStats.VarParamNonEntryValLocStats); printDatum(OS, "total params procesed by location statistics", LocStats.NumParam); printLocationStats(OS, "params", LocStats.ParamLocStats); printLocationStats(OS, "params (excluding the debug entry values)", LocStats.ParamNonEntryValLocStats); printDatum(OS, "total vars procesed by location statistics", LocStats.NumVar); printLocationStats(OS, "vars", LocStats.VarLocStats); printLocationStats(OS, "vars (excluding the debug entry values)", LocStats.ParamNonEntryValLocStats); OS << "}\n"; LLVM_DEBUG( llvm::dbgs() << "Total Availability: " << (int)std::round((VarParamWithLoc * 100.0) / VarParamTotal) << "%\n"; llvm::dbgs() << "PC Ranges covered: " << (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) / GlobalStats.ScopeBytesFromFirstDefinition) << "%\n"); return true; }