//===- MIRPrinter.cpp - MIR serialization format printer ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the class that prints out the LLVM IR and machine // functions using the MIR serialization format. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MIRPrinter.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/MIRYamlMapping.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/IR/Value.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/LowLevelTypeImpl.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include #include using namespace llvm; static cl::opt SimplifyMIR( "simplify-mir", cl::Hidden, cl::desc("Leave out unnecessary information when printing MIR")); namespace { /// This structure describes how to print out stack object references. struct FrameIndexOperand { std::string Name; unsigned ID; bool IsFixed; FrameIndexOperand(StringRef Name, unsigned ID, bool IsFixed) : Name(Name.str()), ID(ID), IsFixed(IsFixed) {} /// Return an ordinary stack object reference. static FrameIndexOperand create(StringRef Name, unsigned ID) { return FrameIndexOperand(Name, ID, /*IsFixed=*/false); } /// Return a fixed stack object reference. static FrameIndexOperand createFixed(unsigned ID) { return FrameIndexOperand("", ID, /*IsFixed=*/true); } }; } // end anonymous namespace namespace llvm { /// This class prints out the machine functions using the MIR serialization /// format. class MIRPrinter { raw_ostream &OS; DenseMap RegisterMaskIds; /// Maps from stack object indices to operand indices which will be used when /// printing frame index machine operands. DenseMap StackObjectOperandMapping; public: MIRPrinter(raw_ostream &OS) : OS(OS) {} void print(const MachineFunction &MF); void convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI); void convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI, const MachineFrameInfo &MFI); void convert(yaml::MachineFunction &MF, const MachineConstantPool &ConstantPool); void convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI, const MachineJumpTableInfo &JTI); void convertStackObjects(yaml::MachineFunction &YMF, const MachineFunction &MF, ModuleSlotTracker &MST); void convertCallSiteObjects(yaml::MachineFunction &YMF, const MachineFunction &MF, ModuleSlotTracker &MST); private: void initRegisterMaskIds(const MachineFunction &MF); }; /// This class prints out the machine instructions using the MIR serialization /// format. class MIPrinter { raw_ostream &OS; ModuleSlotTracker &MST; const DenseMap &RegisterMaskIds; const DenseMap &StackObjectOperandMapping; /// Synchronization scope names registered with LLVMContext. SmallVector SSNs; bool canPredictBranchProbabilities(const MachineBasicBlock &MBB) const; bool canPredictSuccessors(const MachineBasicBlock &MBB) const; public: MIPrinter(raw_ostream &OS, ModuleSlotTracker &MST, const DenseMap &RegisterMaskIds, const DenseMap &StackObjectOperandMapping) : OS(OS), MST(MST), RegisterMaskIds(RegisterMaskIds), StackObjectOperandMapping(StackObjectOperandMapping) {} void print(const MachineBasicBlock &MBB); void print(const MachineInstr &MI); void printStackObjectReference(int FrameIndex); void print(const MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo *TRI, bool ShouldPrintRegisterTies, LLT TypeToPrint, bool PrintDef = true); }; } // end namespace llvm namespace llvm { namespace yaml { /// This struct serializes the LLVM IR module. template <> struct BlockScalarTraits { static void output(const Module &Mod, void *Ctxt, raw_ostream &OS) { Mod.print(OS, nullptr); } static StringRef input(StringRef Str, void *Ctxt, Module &Mod) { llvm_unreachable("LLVM Module is supposed to be parsed separately"); return ""; } }; } // end namespace yaml } // end namespace llvm static void printRegMIR(unsigned Reg, yaml::StringValue &Dest, const TargetRegisterInfo *TRI) { raw_string_ostream OS(Dest.Value); OS << printReg(Reg, TRI); } void MIRPrinter::print(const MachineFunction &MF) { initRegisterMaskIds(MF); yaml::MachineFunction YamlMF; YamlMF.Name = MF.getName(); YamlMF.Alignment = MF.getAlignment().value(); YamlMF.ExposesReturnsTwice = MF.exposesReturnsTwice(); YamlMF.HasWinCFI = MF.hasWinCFI(); YamlMF.Legalized = MF.getProperties().hasProperty( MachineFunctionProperties::Property::Legalized); YamlMF.RegBankSelected = MF.getProperties().hasProperty( MachineFunctionProperties::Property::RegBankSelected); YamlMF.Selected = MF.getProperties().hasProperty( MachineFunctionProperties::Property::Selected); YamlMF.FailedISel = MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel); convert(YamlMF, MF.getRegInfo(), MF.getSubtarget().getRegisterInfo()); ModuleSlotTracker MST(MF.getFunction().getParent()); MST.incorporateFunction(MF.getFunction()); convert(MST, YamlMF.FrameInfo, MF.getFrameInfo()); convertStackObjects(YamlMF, MF, MST); convertCallSiteObjects(YamlMF, MF, MST); if (const auto *ConstantPool = MF.getConstantPool()) convert(YamlMF, *ConstantPool); if (const auto *JumpTableInfo = MF.getJumpTableInfo()) convert(MST, YamlMF.JumpTableInfo, *JumpTableInfo); const TargetMachine &TM = MF.getTarget(); YamlMF.MachineFuncInfo = std::unique_ptr(TM.convertFuncInfoToYAML(MF)); raw_string_ostream StrOS(YamlMF.Body.Value.Value); bool IsNewlineNeeded = false; for (const auto &MBB : MF) { if (IsNewlineNeeded) StrOS << "\n"; MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .print(MBB); IsNewlineNeeded = true; } StrOS.flush(); yaml::Output Out(OS); if (!SimplifyMIR) Out.setWriteDefaultValues(true); Out << YamlMF; } static void printCustomRegMask(const uint32_t *RegMask, raw_ostream &OS, const TargetRegisterInfo *TRI) { assert(RegMask && "Can't print an empty register mask"); OS << StringRef("CustomRegMask("); bool IsRegInRegMaskFound = false; for (int I = 0, E = TRI->getNumRegs(); I < E; I++) { // Check whether the register is asserted in regmask. if (RegMask[I / 32] & (1u << (I % 32))) { if (IsRegInRegMaskFound) OS << ','; OS << printReg(I, TRI); IsRegInRegMaskFound = true; } } OS << ')'; } static void printRegClassOrBank(unsigned Reg, yaml::StringValue &Dest, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI) { raw_string_ostream OS(Dest.Value); OS << printRegClassOrBank(Reg, RegInfo, TRI); } template static void printStackObjectDbgInfo(const MachineFunction::VariableDbgInfo &DebugVar, T &Object, ModuleSlotTracker &MST) { std::array Outputs{{&Object.DebugVar.Value, &Object.DebugExpr.Value, &Object.DebugLoc.Value}}; std::array Metas{{DebugVar.Var, DebugVar.Expr, DebugVar.Loc}}; for (unsigned i = 0; i < 3; ++i) { raw_string_ostream StrOS(*Outputs[i]); Metas[i]->printAsOperand(StrOS, MST); } } void MIRPrinter::convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI) { MF.TracksRegLiveness = RegInfo.tracksLiveness(); // Print the virtual register definitions. for (unsigned I = 0, E = RegInfo.getNumVirtRegs(); I < E; ++I) { unsigned Reg = Register::index2VirtReg(I); yaml::VirtualRegisterDefinition VReg; VReg.ID = I; if (RegInfo.getVRegName(Reg) != "") continue; ::printRegClassOrBank(Reg, VReg.Class, RegInfo, TRI); unsigned PreferredReg = RegInfo.getSimpleHint(Reg); if (PreferredReg) printRegMIR(PreferredReg, VReg.PreferredRegister, TRI); MF.VirtualRegisters.push_back(VReg); } // Print the live ins. for (std::pair LI : RegInfo.liveins()) { yaml::MachineFunctionLiveIn LiveIn; printRegMIR(LI.first, LiveIn.Register, TRI); if (LI.second) printRegMIR(LI.second, LiveIn.VirtualRegister, TRI); MF.LiveIns.push_back(LiveIn); } // Prints the callee saved registers. if (RegInfo.isUpdatedCSRsInitialized()) { const MCPhysReg *CalleeSavedRegs = RegInfo.getCalleeSavedRegs(); std::vector CalleeSavedRegisters; for (const MCPhysReg *I = CalleeSavedRegs; *I; ++I) { yaml::FlowStringValue Reg; printRegMIR(*I, Reg, TRI); CalleeSavedRegisters.push_back(Reg); } MF.CalleeSavedRegisters = CalleeSavedRegisters; } } void MIRPrinter::convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI, const MachineFrameInfo &MFI) { YamlMFI.IsFrameAddressTaken = MFI.isFrameAddressTaken(); YamlMFI.IsReturnAddressTaken = MFI.isReturnAddressTaken(); YamlMFI.HasStackMap = MFI.hasStackMap(); YamlMFI.HasPatchPoint = MFI.hasPatchPoint(); YamlMFI.StackSize = MFI.getStackSize(); YamlMFI.OffsetAdjustment = MFI.getOffsetAdjustment(); YamlMFI.MaxAlignment = MFI.getMaxAlignment(); YamlMFI.AdjustsStack = MFI.adjustsStack(); YamlMFI.HasCalls = MFI.hasCalls(); YamlMFI.MaxCallFrameSize = MFI.isMaxCallFrameSizeComputed() ? MFI.getMaxCallFrameSize() : ~0u; YamlMFI.CVBytesOfCalleeSavedRegisters = MFI.getCVBytesOfCalleeSavedRegisters(); YamlMFI.HasOpaqueSPAdjustment = MFI.hasOpaqueSPAdjustment(); YamlMFI.HasVAStart = MFI.hasVAStart(); YamlMFI.HasMustTailInVarArgFunc = MFI.hasMustTailInVarArgFunc(); YamlMFI.LocalFrameSize = MFI.getLocalFrameSize(); if (MFI.getSavePoint()) { raw_string_ostream StrOS(YamlMFI.SavePoint.Value); StrOS << printMBBReference(*MFI.getSavePoint()); } if (MFI.getRestorePoint()) { raw_string_ostream StrOS(YamlMFI.RestorePoint.Value); StrOS << printMBBReference(*MFI.getRestorePoint()); } } void MIRPrinter::convertStackObjects(yaml::MachineFunction &YMF, const MachineFunction &MF, ModuleSlotTracker &MST) { const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); // Process fixed stack objects. unsigned ID = 0; for (int I = MFI.getObjectIndexBegin(); I < 0; ++I, ++ID) { if (MFI.isDeadObjectIndex(I)) continue; yaml::FixedMachineStackObject YamlObject; YamlObject.ID = ID; YamlObject.Type = MFI.isSpillSlotObjectIndex(I) ? yaml::FixedMachineStackObject::SpillSlot : yaml::FixedMachineStackObject::DefaultType; YamlObject.Offset = MFI.getObjectOffset(I); YamlObject.Size = MFI.getObjectSize(I); YamlObject.Alignment = MFI.getObjectAlignment(I); YamlObject.StackID = (TargetStackID::Value)MFI.getStackID(I); YamlObject.IsImmutable = MFI.isImmutableObjectIndex(I); YamlObject.IsAliased = MFI.isAliasedObjectIndex(I); YMF.FixedStackObjects.push_back(YamlObject); StackObjectOperandMapping.insert( std::make_pair(I, FrameIndexOperand::createFixed(ID))); } // Process ordinary stack objects. ID = 0; for (int I = 0, E = MFI.getObjectIndexEnd(); I < E; ++I, ++ID) { if (MFI.isDeadObjectIndex(I)) continue; yaml::MachineStackObject YamlObject; YamlObject.ID = ID; if (const auto *Alloca = MFI.getObjectAllocation(I)) YamlObject.Name.Value = Alloca->hasName() ? Alloca->getName() : ""; YamlObject.Type = MFI.isSpillSlotObjectIndex(I) ? yaml::MachineStackObject::SpillSlot : MFI.isVariableSizedObjectIndex(I) ? yaml::MachineStackObject::VariableSized : yaml::MachineStackObject::DefaultType; YamlObject.Offset = MFI.getObjectOffset(I); YamlObject.Size = MFI.getObjectSize(I); YamlObject.Alignment = MFI.getObjectAlignment(I); YamlObject.StackID = (TargetStackID::Value)MFI.getStackID(I); YMF.StackObjects.push_back(YamlObject); StackObjectOperandMapping.insert(std::make_pair( I, FrameIndexOperand::create(YamlObject.Name.Value, ID))); } for (const auto &CSInfo : MFI.getCalleeSavedInfo()) { if (!CSInfo.isSpilledToReg() && MFI.isDeadObjectIndex(CSInfo.getFrameIdx())) continue; yaml::StringValue Reg; printRegMIR(CSInfo.getReg(), Reg, TRI); if (!CSInfo.isSpilledToReg()) { auto StackObjectInfo = StackObjectOperandMapping.find(CSInfo.getFrameIdx()); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; if (StackObject.IsFixed) { YMF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg; YMF.FixedStackObjects[StackObject.ID].CalleeSavedRestored = CSInfo.isRestored(); } else { YMF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg; YMF.StackObjects[StackObject.ID].CalleeSavedRestored = CSInfo.isRestored(); } } } for (unsigned I = 0, E = MFI.getLocalFrameObjectCount(); I < E; ++I) { auto LocalObject = MFI.getLocalFrameObjectMap(I); auto StackObjectInfo = StackObjectOperandMapping.find(LocalObject.first); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; assert(!StackObject.IsFixed && "Expected a locally mapped stack object"); YMF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second; } // Print the stack object references in the frame information class after // converting the stack objects. if (MFI.hasStackProtectorIndex()) { raw_string_ostream StrOS(YMF.FrameInfo.StackProtector.Value); MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .printStackObjectReference(MFI.getStackProtectorIndex()); } // Print the debug variable information. for (const MachineFunction::VariableDbgInfo &DebugVar : MF.getVariableDbgInfo()) { auto StackObjectInfo = StackObjectOperandMapping.find(DebugVar.Slot); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; if (StackObject.IsFixed) { auto &Object = YMF.FixedStackObjects[StackObject.ID]; printStackObjectDbgInfo(DebugVar, Object, MST); } else { auto &Object = YMF.StackObjects[StackObject.ID]; printStackObjectDbgInfo(DebugVar, Object, MST); } } } void MIRPrinter::convertCallSiteObjects(yaml::MachineFunction &YMF, const MachineFunction &MF, ModuleSlotTracker &MST) { const auto *TRI = MF.getSubtarget().getRegisterInfo(); for (auto CSInfo : MF.getCallSitesInfo()) { yaml::CallSiteInfo YmlCS; yaml::CallSiteInfo::MachineInstrLoc CallLocation; // Prepare instruction position. MachineBasicBlock::const_instr_iterator CallI = CSInfo.first->getIterator(); CallLocation.BlockNum = CallI->getParent()->getNumber(); // Get call instruction offset from the beginning of block. CallLocation.Offset = std::distance(CallI->getParent()->instr_begin(), CallI); YmlCS.CallLocation = CallLocation; // Construct call arguments and theirs forwarding register info. for (auto ArgReg : CSInfo.second) { yaml::CallSiteInfo::ArgRegPair YmlArgReg; YmlArgReg.ArgNo = ArgReg.ArgNo; printRegMIR(ArgReg.Reg, YmlArgReg.Reg, TRI); YmlCS.ArgForwardingRegs.emplace_back(YmlArgReg); } YMF.CallSitesInfo.push_back(YmlCS); } // Sort call info by position of call instructions. llvm::sort(YMF.CallSitesInfo.begin(), YMF.CallSitesInfo.end(), [](yaml::CallSiteInfo A, yaml::CallSiteInfo B) { if (A.CallLocation.BlockNum == B.CallLocation.BlockNum) return A.CallLocation.Offset < B.CallLocation.Offset; return A.CallLocation.BlockNum < B.CallLocation.BlockNum; }); } void MIRPrinter::convert(yaml::MachineFunction &MF, const MachineConstantPool &ConstantPool) { unsigned ID = 0; for (const MachineConstantPoolEntry &Constant : ConstantPool.getConstants()) { std::string Str; raw_string_ostream StrOS(Str); if (Constant.isMachineConstantPoolEntry()) { Constant.Val.MachineCPVal->print(StrOS); } else { Constant.Val.ConstVal->printAsOperand(StrOS); } yaml::MachineConstantPoolValue YamlConstant; YamlConstant.ID = ID++; YamlConstant.Value = StrOS.str(); YamlConstant.Alignment = Constant.getAlignment(); YamlConstant.IsTargetSpecific = Constant.isMachineConstantPoolEntry(); MF.Constants.push_back(YamlConstant); } } void MIRPrinter::convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI, const MachineJumpTableInfo &JTI) { YamlJTI.Kind = JTI.getEntryKind(); unsigned ID = 0; for (const auto &Table : JTI.getJumpTables()) { std::string Str; yaml::MachineJumpTable::Entry Entry; Entry.ID = ID++; for (const auto *MBB : Table.MBBs) { raw_string_ostream StrOS(Str); StrOS << printMBBReference(*MBB); Entry.Blocks.push_back(StrOS.str()); Str.clear(); } YamlJTI.Entries.push_back(Entry); } } void MIRPrinter::initRegisterMaskIds(const MachineFunction &MF) { const auto *TRI = MF.getSubtarget().getRegisterInfo(); unsigned I = 0; for (const uint32_t *Mask : TRI->getRegMasks()) RegisterMaskIds.insert(std::make_pair(Mask, I++)); } void llvm::guessSuccessors(const MachineBasicBlock &MBB, SmallVectorImpl &Result, bool &IsFallthrough) { SmallPtrSet Seen; for (const MachineInstr &MI : MBB) { if (MI.isPHI()) continue; for (const MachineOperand &MO : MI.operands()) { if (!MO.isMBB()) continue; MachineBasicBlock *Succ = MO.getMBB(); auto RP = Seen.insert(Succ); if (RP.second) Result.push_back(Succ); } } MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); IsFallthrough = I == MBB.end() || !I->isBarrier(); } bool MIPrinter::canPredictBranchProbabilities(const MachineBasicBlock &MBB) const { if (MBB.succ_size() <= 1) return true; if (!MBB.hasSuccessorProbabilities()) return true; SmallVector Normalized(MBB.Probs.begin(), MBB.Probs.end()); BranchProbability::normalizeProbabilities(Normalized.begin(), Normalized.end()); SmallVector Equal(Normalized.size()); BranchProbability::normalizeProbabilities(Equal.begin(), Equal.end()); return std::equal(Normalized.begin(), Normalized.end(), Equal.begin()); } bool MIPrinter::canPredictSuccessors(const MachineBasicBlock &MBB) const { SmallVector GuessedSuccs; bool GuessedFallthrough; guessSuccessors(MBB, GuessedSuccs, GuessedFallthrough); if (GuessedFallthrough) { const MachineFunction &MF = *MBB.getParent(); MachineFunction::const_iterator NextI = std::next(MBB.getIterator()); if (NextI != MF.end()) { MachineBasicBlock *Next = const_cast(&*NextI); if (!is_contained(GuessedSuccs, Next)) GuessedSuccs.push_back(Next); } } if (GuessedSuccs.size() != MBB.succ_size()) return false; return std::equal(MBB.succ_begin(), MBB.succ_end(), GuessedSuccs.begin()); } void MIPrinter::print(const MachineBasicBlock &MBB) { assert(MBB.getNumber() >= 0 && "Invalid MBB number"); OS << "bb." << MBB.getNumber(); bool HasAttributes = false; if (const auto *BB = MBB.getBasicBlock()) { if (BB->hasName()) { OS << "." << BB->getName(); } else { HasAttributes = true; OS << " ("; int Slot = MST.getLocalSlot(BB); if (Slot == -1) OS << ""; else OS << (Twine("%ir-block.") + Twine(Slot)).str(); } } if (MBB.hasAddressTaken()) { OS << (HasAttributes ? ", " : " ("); OS << "address-taken"; HasAttributes = true; } if (MBB.isEHPad()) { OS << (HasAttributes ? ", " : " ("); OS << "landing-pad"; HasAttributes = true; } if (MBB.getLogAlignment()) { OS << (HasAttributes ? ", " : " ("); OS << "align " << (1UL << MBB.getLogAlignment()); HasAttributes = true; } if (HasAttributes) OS << ")"; OS << ":\n"; bool HasLineAttributes = false; // Print the successors bool canPredictProbs = canPredictBranchProbabilities(MBB); // Even if the list of successors is empty, if we cannot guess it, // we need to print it to tell the parser that the list is empty. // This is needed, because MI model unreachable as empty blocks // with an empty successor list. If the parser would see that // without the successor list, it would guess the code would // fallthrough. if ((!MBB.succ_empty() && !SimplifyMIR) || !canPredictProbs || !canPredictSuccessors(MBB)) { OS.indent(2) << "successors: "; for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) { if (I != MBB.succ_begin()) OS << ", "; OS << printMBBReference(**I); if (!SimplifyMIR || !canPredictProbs) OS << '(' << format("0x%08" PRIx32, MBB.getSuccProbability(I).getNumerator()) << ')'; } OS << "\n"; HasLineAttributes = true; } // Print the live in registers. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); if (MRI.tracksLiveness() && !MBB.livein_empty()) { const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); OS.indent(2) << "liveins: "; bool First = true; for (const auto &LI : MBB.liveins()) { if (!First) OS << ", "; First = false; OS << printReg(LI.PhysReg, &TRI); if (!LI.LaneMask.all()) OS << ":0x" << PrintLaneMask(LI.LaneMask); } OS << "\n"; HasLineAttributes = true; } if (HasLineAttributes) OS << "\n"; bool IsInBundle = false; for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) { const MachineInstr &MI = *I; if (IsInBundle && !MI.isInsideBundle()) { OS.indent(2) << "}\n"; IsInBundle = false; } OS.indent(IsInBundle ? 4 : 2); print(MI); if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { OS << " {"; IsInBundle = true; } OS << "\n"; } if (IsInBundle) OS.indent(2) << "}\n"; } void MIPrinter::print(const MachineInstr &MI) { const auto *MF = MI.getMF(); const auto &MRI = MF->getRegInfo(); const auto &SubTarget = MF->getSubtarget(); const auto *TRI = SubTarget.getRegisterInfo(); assert(TRI && "Expected target register info"); const auto *TII = SubTarget.getInstrInfo(); assert(TII && "Expected target instruction info"); if (MI.isCFIInstruction()) assert(MI.getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); SmallBitVector PrintedTypes(8); bool ShouldPrintRegisterTies = MI.hasComplexRegisterTies(); unsigned I = 0, E = MI.getNumOperands(); for (; I < E && MI.getOperand(I).isReg() && MI.getOperand(I).isDef() && !MI.getOperand(I).isImplicit(); ++I) { if (I) OS << ", "; print(MI, I, TRI, ShouldPrintRegisterTies, MI.getTypeToPrint(I, PrintedTypes, MRI), /*PrintDef=*/false); } if (I) OS << " = "; if (MI.getFlag(MachineInstr::FrameSetup)) OS << "frame-setup "; if (MI.getFlag(MachineInstr::FrameDestroy)) OS << "frame-destroy "; if (MI.getFlag(MachineInstr::FmNoNans)) OS << "nnan "; if (MI.getFlag(MachineInstr::FmNoInfs)) OS << "ninf "; if (MI.getFlag(MachineInstr::FmNsz)) OS << "nsz "; if (MI.getFlag(MachineInstr::FmArcp)) OS << "arcp "; if (MI.getFlag(MachineInstr::FmContract)) OS << "contract "; if (MI.getFlag(MachineInstr::FmAfn)) OS << "afn "; if (MI.getFlag(MachineInstr::FmReassoc)) OS << "reassoc "; if (MI.getFlag(MachineInstr::NoUWrap)) OS << "nuw "; if (MI.getFlag(MachineInstr::NoSWrap)) OS << "nsw "; if (MI.getFlag(MachineInstr::IsExact)) OS << "exact "; if (MI.getFlag(MachineInstr::FPExcept)) OS << "fpexcept "; OS << TII->getName(MI.getOpcode()); if (I < E) OS << ' '; bool NeedComma = false; for (; I < E; ++I) { if (NeedComma) OS << ", "; print(MI, I, TRI, ShouldPrintRegisterTies, MI.getTypeToPrint(I, PrintedTypes, MRI)); NeedComma = true; } // Print any optional symbols attached to this instruction as-if they were // operands. if (MCSymbol *PreInstrSymbol = MI.getPreInstrSymbol()) { if (NeedComma) OS << ','; OS << " pre-instr-symbol "; MachineOperand::printSymbol(OS, *PreInstrSymbol); NeedComma = true; } if (MCSymbol *PostInstrSymbol = MI.getPostInstrSymbol()) { if (NeedComma) OS << ','; OS << " post-instr-symbol "; MachineOperand::printSymbol(OS, *PostInstrSymbol); NeedComma = true; } if (const DebugLoc &DL = MI.getDebugLoc()) { if (NeedComma) OS << ','; OS << " debug-location "; DL->printAsOperand(OS, MST); } if (!MI.memoperands_empty()) { OS << " :: "; const LLVMContext &Context = MF->getFunction().getContext(); const MachineFrameInfo &MFI = MF->getFrameInfo(); bool NeedComma = false; for (const auto *Op : MI.memoperands()) { if (NeedComma) OS << ", "; Op->print(OS, MST, SSNs, Context, &MFI, TII); NeedComma = true; } } } void MIPrinter::printStackObjectReference(int FrameIndex) { auto ObjectInfo = StackObjectOperandMapping.find(FrameIndex); assert(ObjectInfo != StackObjectOperandMapping.end() && "Invalid frame index"); const FrameIndexOperand &Operand = ObjectInfo->second; MachineOperand::printStackObjectReference(OS, Operand.ID, Operand.IsFixed, Operand.Name); } void MIPrinter::print(const MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo *TRI, bool ShouldPrintRegisterTies, LLT TypeToPrint, bool PrintDef) { const MachineOperand &Op = MI.getOperand(OpIdx); switch (Op.getType()) { case MachineOperand::MO_Immediate: if (MI.isOperandSubregIdx(OpIdx)) { MachineOperand::printTargetFlags(OS, Op); MachineOperand::printSubRegIdx(OS, Op.getImm(), TRI); break; } LLVM_FALLTHROUGH; case MachineOperand::MO_Register: case MachineOperand::MO_CImmediate: case MachineOperand::MO_FPImmediate: case MachineOperand::MO_MachineBasicBlock: case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_TargetIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_RegisterLiveOut: case MachineOperand::MO_Metadata: case MachineOperand::MO_MCSymbol: case MachineOperand::MO_CFIIndex: case MachineOperand::MO_IntrinsicID: case MachineOperand::MO_Predicate: case MachineOperand::MO_BlockAddress: case MachineOperand::MO_ShuffleMask: { unsigned TiedOperandIdx = 0; if (ShouldPrintRegisterTies && Op.isReg() && Op.isTied() && !Op.isDef()) TiedOperandIdx = Op.getParent()->findTiedOperandIdx(OpIdx); const TargetIntrinsicInfo *TII = MI.getMF()->getTarget().getIntrinsicInfo(); Op.print(OS, MST, TypeToPrint, PrintDef, /*IsStandalone=*/false, ShouldPrintRegisterTies, TiedOperandIdx, TRI, TII); break; } case MachineOperand::MO_FrameIndex: printStackObjectReference(Op.getIndex()); break; case MachineOperand::MO_RegisterMask: { auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask()); if (RegMaskInfo != RegisterMaskIds.end()) OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower(); else printCustomRegMask(Op.getRegMask(), OS, TRI); break; } } } void llvm::printMIR(raw_ostream &OS, const Module &M) { yaml::Output Out(OS); Out << const_cast(M); } void llvm::printMIR(raw_ostream &OS, const MachineFunction &MF) { MIRPrinter Printer(OS); Printer.print(MF); }