//===-- RegUsageInfoCollector.cpp - Register Usage Information Collector --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This pass is required to take advantage of the interprocedural register /// allocation infrastructure. /// /// This pass is simple MachineFunction pass which collects register usage /// details by iterating through each physical registers and checking /// MRI::isPhysRegUsed() then creates a RegMask based on this details. /// The pass then stores this RegMask in PhysicalRegisterUsageInfo.cpp /// //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterUsageInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/CodeGen/TargetFrameLowering.h" using namespace llvm; #define DEBUG_TYPE "ip-regalloc" STATISTIC(NumCSROpt, "Number of functions optimized for callee saved registers"); namespace { class RegUsageInfoCollector : public MachineFunctionPass { public: RegUsageInfoCollector() : MachineFunctionPass(ID) { PassRegistry &Registry = *PassRegistry::getPassRegistry(); initializeRegUsageInfoCollectorPass(Registry); } StringRef getPassName() const override { return "Register Usage Information Collector Pass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; // Call determineCalleeSaves and then also set the bits for subregs and // fully saved superregs. static void computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF); static char ID; }; } // end of anonymous namespace char RegUsageInfoCollector::ID = 0; INITIALIZE_PASS_BEGIN(RegUsageInfoCollector, "RegUsageInfoCollector", "Register Usage Information Collector", false, false) INITIALIZE_PASS_DEPENDENCY(PhysicalRegisterUsageInfo) INITIALIZE_PASS_END(RegUsageInfoCollector, "RegUsageInfoCollector", "Register Usage Information Collector", false, false) FunctionPass *llvm::createRegUsageInfoCollector() { return new RegUsageInfoCollector(); } // TODO: Move to hook somwehere? // Return true if it is useful to track the used registers for IPRA / no CSR // optimizations. This is not useful for entry points, and computing the // register usage information is expensive. static bool isCallableFunction(const MachineFunction &MF) { switch (MF.getFunction().getCallingConv()) { case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_LS: case CallingConv::AMDGPU_KERNEL: return false; default: return true; } } bool RegUsageInfoCollector::runOnMachineFunction(MachineFunction &MF) { MachineRegisterInfo *MRI = &MF.getRegInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const LLVMTargetMachine &TM = MF.getTarget(); LLVM_DEBUG(dbgs() << " -------------------- " << getPassName() << " -------------------- \nFunction Name : " << MF.getName() << '\n'); // Analyzing the register usage may be expensive on some targets. if (!isCallableFunction(MF)) { LLVM_DEBUG(dbgs() << "Not analyzing non-callable function\n"); return false; } // If there are no callers, there's no point in computing more precise // register usage here. if (MF.getFunction().use_empty()) { LLVM_DEBUG(dbgs() << "Not analyzing function with no callers\n"); return false; } std::vector RegMask; // Compute the size of the bit vector to represent all the registers. // The bit vector is broken into 32-bit chunks, thus takes the ceil of // the number of registers divided by 32 for the size. unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs()); RegMask.resize(RegMaskSize, ~((uint32_t)0)); const Function &F = MF.getFunction(); PhysicalRegisterUsageInfo &PRUI = getAnalysis(); PRUI.setTargetMachine(TM); LLVM_DEBUG(dbgs() << "Clobbered Registers: "); BitVector SavedRegs; computeCalleeSavedRegs(SavedRegs, MF); const BitVector &UsedPhysRegsMask = MRI->getUsedPhysRegsMask(); auto SetRegAsDefined = [&RegMask] (unsigned Reg) { RegMask[Reg / 32] &= ~(1u << Reg % 32); }; // Some targets can clobber registers "inside" a call, typically in // linker-generated code. for (const MCPhysReg Reg : TRI->getIntraCallClobberedRegs(&MF)) for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) SetRegAsDefined(*AI); // Scan all the physical registers. When a register is defined in the current // function set it and all the aliasing registers as defined in the regmask. // FIXME: Rewrite to use regunits. for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) { // Don't count registers that are saved and restored. if (SavedRegs.test(PReg)) continue; // If a register is defined by an instruction mark it as defined together // with all it's unsaved aliases. if (!MRI->def_empty(PReg)) { for (MCRegAliasIterator AI(PReg, TRI, true); AI.isValid(); ++AI) if (!SavedRegs.test(*AI)) SetRegAsDefined(*AI); continue; } // If a register is in the UsedPhysRegsMask set then mark it as defined. // All clobbered aliases will also be in the set, so we can skip setting // as defined all the aliases here. if (UsedPhysRegsMask.test(PReg)) SetRegAsDefined(PReg); } if (TargetFrameLowering::isSafeForNoCSROpt(F) && MF.getSubtarget().getFrameLowering()->isProfitableForNoCSROpt(F)) { ++NumCSROpt; LLVM_DEBUG(dbgs() << MF.getName() << " function optimized for not having CSR.\n"); } LLVM_DEBUG( for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) { if (MachineOperand::clobbersPhysReg(&(RegMask[0]), PReg)) dbgs() << printReg(PReg, TRI) << " "; } dbgs() << " \n----------------------------------------\n"; ); PRUI.storeUpdateRegUsageInfo(F, RegMask); return false; } void RegUsageInfoCollector:: computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF) { const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); // Target will return the set of registers that it saves/restores as needed. SavedRegs.clear(); TFI.determineCalleeSaves(MF, SavedRegs); if (SavedRegs.none()) return; // Insert subregs. const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(&MF); for (unsigned i = 0; CSRegs[i]; ++i) { MCPhysReg Reg = CSRegs[i]; if (SavedRegs.test(Reg)) { // Save subregisters for (MCSubRegIterator SR(Reg, &TRI); SR.isValid(); ++SR) SavedRegs.set(*SR); } } }