//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions // //===----------------------------------------------------------------------===// #include "llvm/AutoUpgrade.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/IntrinsicInst.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/IRBuilder.h" #include using namespace llvm; static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { assert(F && "Illegal to upgrade a non-existent Function."); // Get the Function's name. const std::string& Name = F->getName(); // Convenience const FunctionType *FTy = F->getFunctionType(); // Quickly eliminate it, if it's not a candidate. if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') return false; Module *M = F->getParent(); switch (Name[5]) { default: break; case 'a': // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss, // and atomics with default address spaces to their new names to their new // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32) if (Name.compare(5,7,"atomic.",7) == 0) { if (Name.compare(12,3,"lcs",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.compare(12,3,"las",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.load.add"+Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.compare(12,3,"lss",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.load.sub"+Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.rfind(".p") == std::string::npos) { // We don't have an address space qualifier so this has be upgraded // to the new name. Copy the type name at the end of the intrinsic // and add to it std::string::size_type delim = Name.find_last_of('.'); assert(delim != std::string::npos && "can not find type"); F->setName(Name + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } } else if (Name.compare(5, 9, "arm.neon.", 9) == 0) { if (((Name.compare(14, 5, "vmovl", 5) == 0 || Name.compare(14, 5, "vaddl", 5) == 0 || Name.compare(14, 5, "vsubl", 5) == 0 || Name.compare(14, 5, "vaddw", 5) == 0 || Name.compare(14, 5, "vsubw", 5) == 0 || Name.compare(14, 5, "vmlal", 5) == 0 || Name.compare(14, 5, "vmlsl", 5) == 0 || Name.compare(14, 5, "vabdl", 5) == 0 || Name.compare(14, 5, "vabal", 5) == 0) && (Name.compare(19, 2, "s.", 2) == 0 || Name.compare(19, 2, "u.", 2) == 0)) || (Name.compare(14, 4, "vaba", 4) == 0 && (Name.compare(18, 2, "s.", 2) == 0 || Name.compare(18, 2, "u.", 2) == 0)) || (Name.compare(14, 6, "vmovn.", 6) == 0)) { // Calls to these are transformed into IR without intrinsics. NewFn = 0; return true; } // Old versions of NEON ld/st intrinsics are missing alignment arguments. bool isVLd = (Name.compare(14, 3, "vld", 3) == 0); bool isVSt = (Name.compare(14, 3, "vst", 3) == 0); if (isVLd || isVSt) { unsigned NumVecs = Name.at(17) - '0'; if (NumVecs == 0 || NumVecs > 4) return false; bool isLaneOp = (Name.compare(18, 5, "lane.", 5) == 0); if (!isLaneOp && Name.at(18) != '.') return false; unsigned ExpectedArgs = 2; // for the address and alignment if (isVSt || isLaneOp) ExpectedArgs += NumVecs; if (isLaneOp) ExpectedArgs += 1; // for the lane number unsigned NumP = FTy->getNumParams(); if (NumP != ExpectedArgs - 1) return false; // Change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. F->setName(""); // One argument is missing: add the alignment argument. std::vector NewParams; for (unsigned p = 0; p < NumP; ++p) NewParams.push_back(FTy->getParamType(p)); NewParams.push_back(Type::getInt32Ty(F->getContext())); FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewParams, false); NewFn = cast(M->getOrInsertFunction(Name, NewFTy)); return true; } } break; case 'b': // This upgrades the name of the llvm.bswap intrinsic function to only use // a single type name for overloading. We only care about the old format // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being // a '.' after 'bswap.' if (Name.compare(5,6,"bswap.",6) == 0) { std::string::size_type delim = Name.find('.',11); if (delim != std::string::npos) { // Construct the new name as 'llvm.bswap' + '.i*' F->setName(Name.substr(0,10)+Name.substr(delim)); NewFn = F; return true; } } break; case 'c': // We only want to fix the 'llvm.ct*' intrinsics which do not have the // correct return type, so we check for the name, and then check if the // return type does not match the parameter type. if ( (Name.compare(5,5,"ctpop",5) == 0 || Name.compare(5,4,"ctlz",4) == 0 || Name.compare(5,4,"cttz",4) == 0) && FTy->getReturnType() != FTy->getParamType(0)) { // We first need to change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. We // arbitrarily unique it here allowing us to construct a correctly named // and typed function below. F->setName(""); // Now construct the new intrinsic with the correct name and type. We // leave the old function around in order to query its type, whatever it // may be, and correctly convert up to the new type. NewFn = cast(M->getOrInsertFunction(Name, FTy->getParamType(0), FTy->getParamType(0), (Type *)0)); return true; } break; case 'e': // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector. if (Name.compare("llvm.eh.selector.i32") == 0) { F->setName("llvm.eh.selector"); NewFn = F; return true; } // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for. if (Name.compare("llvm.eh.typeid.for.i32") == 0) { F->setName("llvm.eh.typeid.for"); NewFn = F; return true; } // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector. if (Name.compare("llvm.eh.selector.i64") == 0) { NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector); return true; } // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for. if (Name.compare("llvm.eh.typeid.for.i64") == 0) { NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for); return true; } break; case 'm': { // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the // new format that allows overloading the pointer for different address // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16) const char* NewFnName = NULL; if (Name.compare(5,8,"memcpy.i",8) == 0) { if (Name[13] == '8') NewFnName = "llvm.memcpy.p0i8.p0i8.i8"; else if (Name.compare(13,2,"16") == 0) NewFnName = "llvm.memcpy.p0i8.p0i8.i16"; else if (Name.compare(13,2,"32") == 0) NewFnName = "llvm.memcpy.p0i8.p0i8.i32"; else if (Name.compare(13,2,"64") == 0) NewFnName = "llvm.memcpy.p0i8.p0i8.i64"; } else if (Name.compare(5,9,"memmove.i",9) == 0) { if (Name[14] == '8') NewFnName = "llvm.memmove.p0i8.p0i8.i8"; else if (Name.compare(14,2,"16") == 0) NewFnName = "llvm.memmove.p0i8.p0i8.i16"; else if (Name.compare(14,2,"32") == 0) NewFnName = "llvm.memmove.p0i8.p0i8.i32"; else if (Name.compare(14,2,"64") == 0) NewFnName = "llvm.memmove.p0i8.p0i8.i64"; } else if (Name.compare(5,8,"memset.i",8) == 0) { if (Name[13] == '8') NewFnName = "llvm.memset.p0i8.i8"; else if (Name.compare(13,2,"16") == 0) NewFnName = "llvm.memset.p0i8.i16"; else if (Name.compare(13,2,"32") == 0) NewFnName = "llvm.memset.p0i8.i32"; else if (Name.compare(13,2,"64") == 0) NewFnName = "llvm.memset.p0i8.i64"; } if (NewFnName) { NewFn = cast(M->getOrInsertFunction(NewFnName, FTy->getReturnType(), FTy->getParamType(0), FTy->getParamType(1), FTy->getParamType(2), FTy->getParamType(3), Type::getInt1Ty(F->getContext()), (Type *)0)); return true; } break; } case 'p': // This upgrades the llvm.part.select overloaded intrinsic names to only // use one type specifier in the name. We only care about the old format // 'llvm.part.select.i*.i*', and solve as above with bswap. if (Name.compare(5,12,"part.select.",12) == 0) { std::string::size_type delim = Name.find('.',17); if (delim != std::string::npos) { // Construct a new name as 'llvm.part.select' + '.i*' F->setName(Name.substr(0,16)+Name.substr(delim)); NewFn = F; return true; } break; } // This upgrades the llvm.part.set intrinsics similarly as above, however // we care about 'llvm.part.set.i*.i*.i*', but only the first two types // must match. There is an additional type specifier after these two // matching types that we must retain when upgrading. Thus, we require // finding 2 periods, not just one, after the intrinsic name. if (Name.compare(5,9,"part.set.",9) == 0) { std::string::size_type delim = Name.find('.',14); if (delim != std::string::npos && Name.find('.',delim+1) != std::string::npos) { // Construct a new name as 'llvm.part.select' + '.i*.i*' F->setName(Name.substr(0,13)+Name.substr(delim)); NewFn = F; return true; } break; } break; case 'x': // This fixes all MMX shift intrinsic instructions to take a // x86_mmx instead of a v1i64, v2i32, v4i16, or v8i8. if (Name.compare(5, 8, "x86.mmx.", 8) == 0) { const Type *X86_MMXTy = VectorType::getX86_MMXTy(FTy->getContext()); if (Name.compare(13, 4, "padd", 4) == 0 || Name.compare(13, 4, "psub", 4) == 0 || Name.compare(13, 4, "pmul", 4) == 0 || Name.compare(13, 5, "pmadd", 5) == 0 || Name.compare(13, 4, "pand", 4) == 0 || Name.compare(13, 3, "por", 3) == 0 || Name.compare(13, 4, "pxor", 4) == 0 || Name.compare(13, 4, "pavg", 4) == 0 || Name.compare(13, 4, "pmax", 4) == 0 || Name.compare(13, 4, "pmin", 4) == 0 || Name.compare(13, 4, "psad", 4) == 0 || Name.compare(13, 4, "psll", 4) == 0 || Name.compare(13, 4, "psrl", 4) == 0 || Name.compare(13, 4, "psra", 4) == 0 || Name.compare(13, 4, "pack", 4) == 0 || Name.compare(13, 6, "punpck", 6) == 0 || Name.compare(13, 4, "pcmp", 4) == 0) { assert(FTy->getNumParams() == 2 && "MMX intrinsic takes 2 args!"); const Type *SecondParamTy = X86_MMXTy; if (Name.compare(13, 5, "pslli", 5) == 0 || Name.compare(13, 5, "psrli", 5) == 0 || Name.compare(13, 5, "psrai", 5) == 0) SecondParamTy = FTy->getParamType(1); // Don't do anything if it has the correct types. if (FTy->getReturnType() == X86_MMXTy && FTy->getParamType(0) == X86_MMXTy && FTy->getParamType(1) == SecondParamTy) break; // We first need to change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. We // arbitrarily unique it here allowing us to construct a correctly named // and typed function below. F->setName(""); // Now construct the new intrinsic with the correct name and type. We // leave the old function around in order to query its type, whatever it // may be, and correctly convert up to the new type. NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, X86_MMXTy, SecondParamTy, (Type*)0)); return true; } if (Name.compare(13, 8, "maskmovq", 8) == 0) { // Don't do anything if it has the correct types. if (FTy->getParamType(0) == X86_MMXTy && FTy->getParamType(1) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), X86_MMXTy, X86_MMXTy, FTy->getParamType(2), (Type*)0)); return true; } if (Name.compare(13, 8, "pmovmskb", 8) == 0) { if (FTy->getParamType(0) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), X86_MMXTy, (Type*)0)); return true; } if (Name.compare(13, 5, "movnt", 5) == 0) { if (FTy->getParamType(1) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), FTy->getParamType(0), X86_MMXTy, (Type*)0)); return true; } if (Name.compare(13, 7, "palignr", 7) == 0) { if (FTy->getReturnType() == X86_MMXTy && FTy->getParamType(0) == X86_MMXTy && FTy->getParamType(1) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, X86_MMXTy, X86_MMXTy, FTy->getParamType(2), (Type*)0)); return true; } if (Name.compare(13, 5, "pextr", 5) == 0) { if (FTy->getParamType(0) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), X86_MMXTy, FTy->getParamType(1), (Type*)0)); return true; } if (Name.compare(13, 5, "pinsr", 5) == 0) { if (FTy->getReturnType() == X86_MMXTy && FTy->getParamType(0) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, X86_MMXTy, FTy->getParamType(1), FTy->getParamType(2), (Type*)0)); return true; } if (Name.compare(13, 12, "cvtsi32.si64", 12) == 0) { if (FTy->getReturnType() == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, FTy->getParamType(0), (Type*)0)); return true; } if (Name.compare(13, 12, "cvtsi64.si32", 12) == 0) { if (FTy->getParamType(0) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), X86_MMXTy, (Type*)0)); return true; } if (Name.compare(13, 8, "vec.init", 8) == 0) { if (FTy->getReturnType() == X86_MMXTy) break; F->setName(""); if (Name.compare(21, 2, ".b", 2) == 0) NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, FTy->getParamType(0), FTy->getParamType(1), FTy->getParamType(2), FTy->getParamType(3), FTy->getParamType(4), FTy->getParamType(5), FTy->getParamType(6), FTy->getParamType(7), (Type*)0)); else if (Name.compare(21, 2, ".w", 2) == 0) NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, FTy->getParamType(0), FTy->getParamType(1), FTy->getParamType(2), FTy->getParamType(3), (Type*)0)); else if (Name.compare(21, 2, ".d", 2) == 0) NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, FTy->getParamType(0), FTy->getParamType(1), (Type*)0)); return true; } if (Name.compare(13, 9, "vec.ext.d", 9) == 0) { if (FTy->getReturnType() == X86_MMXTy && FTy->getParamType(0) == X86_MMXTy) break; F->setName(""); NewFn = cast(M->getOrInsertFunction(Name, X86_MMXTy, X86_MMXTy, FTy->getParamType(1), (Type*)0)); return true; } if (Name.compare(13, 9, "emms", 4) == 0 || Name.compare(13, 9, "femms", 5) == 0) { NewFn = 0; break; } // We really shouldn't get here ever. assert(0 && "Invalid MMX intrinsic!"); break; } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 || Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 || Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 || Name.compare(5,15,"x86.sse2.movs.d",15) == 0 || Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 || Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 || Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 || Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 || Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) { // Calls to these intrinsics are transformed into ShuffleVector's. NewFn = 0; return true; } else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) { // Calls to these intrinsics are transformed into vector multiplies. NewFn = 0; return true; } else if (Name.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 || Name.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) { // Calls to these intrinsics are transformed into vector shuffles, shifts, // or 0. NewFn = 0; return true; } else if (Name.compare(5, 16, "x86.sse.loadu.ps", 16) == 0 || Name.compare(5, 17, "x86.sse2.loadu.dq", 17) == 0 || Name.compare(5, 17, "x86.sse2.loadu.pd", 17) == 0) { // Calls to these instructions are transformed into unaligned loads. NewFn = 0; return true; } else if (Name.compare(5, 17, "x86.ssse3.pshuf.w", 17) == 0) { // This is an SSE/MMX instruction. const Type *X86_MMXTy = VectorType::getX86_MMXTy(FTy->getContext()); NewFn = cast(M->getOrInsertFunction("llvm.x86.sse.pshuf.w", X86_MMXTy, X86_MMXTy, Type::getInt8Ty(F->getContext()), (Type*)0)); return true; } break; } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { NewFn = 0; bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (unsigned id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id)); return Upgraded; } bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) { StringRef Name(GV->getName()); // We are only upgrading one symbol here. if (Name == ".llvm.eh.catch.all.value") { GV->setName("llvm.eh.catch.all.value"); return true; } return false; } /// ExtendNEONArgs - For NEON "long" and "wide" operations, where the results /// have vector elements twice as big as one or both source operands, do the /// sign- or zero-extension that used to be handled by intrinsics. The /// extended values are returned via V0 and V1. static void ExtendNEONArgs(CallInst *CI, Value *Arg0, Value *Arg1, Value *&V0, Value *&V1) { Function *F = CI->getCalledFunction(); const std::string& Name = F->getName(); bool isLong = (Name.at(18) == 'l'); bool isSigned = (Name.at(19) == 's'); if (isSigned) { if (isLong) V0 = new SExtInst(Arg0, CI->getType(), "", CI); else V0 = Arg0; V1 = new SExtInst(Arg1, CI->getType(), "", CI); } else { if (isLong) V0 = new ZExtInst(Arg0, CI->getType(), "", CI); else V0 = Arg0; V1 = new ZExtInst(Arg1, CI->getType(), "", CI); } } /// CallVABD - As part of expanding a call to one of the old NEON vabdl, vaba, /// or vabal intrinsics, construct a call to a vabd intrinsic. Examine the /// name of the old intrinsic to determine whether to use a signed or unsigned /// vabd intrinsic. Get the type from the old call instruction, adjusted for /// half-size vector elements if the old intrinsic was vabdl or vabal. static Instruction *CallVABD(CallInst *CI, Value *Arg0, Value *Arg1) { Function *F = CI->getCalledFunction(); const std::string& Name = F->getName(); bool isLong = (Name.at(18) == 'l'); bool isSigned = (Name.at(isLong ? 19 : 18) == 's'); Intrinsic::ID intID; if (isSigned) intID = Intrinsic::arm_neon_vabds; else intID = Intrinsic::arm_neon_vabdu; const Type *Ty = CI->getType(); if (isLong) Ty = VectorType::getTruncatedElementVectorType(cast(Ty)); Function *VABD = Intrinsic::getDeclaration(F->getParent(), intID, &Ty, 1); Value *Operands[2]; Operands[0] = Arg0; Operands[1] = Arg1; return CallInst::Create(VABD, Operands, Operands+2, "upgraded."+CI->getName(), CI); } /// ConstructNewCallInst - Construct a new CallInst with the signature of NewFn. static void ConstructNewCallInst(Function *NewFn, CallInst *OldCI, Value **Operands, unsigned NumOps, bool AssignName = true) { // Construct a new CallInst. CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands + NumOps, AssignName ? "upgraded." + OldCI->getName() : "", OldCI); NewCI->setTailCall(OldCI->isTailCall()); NewCI->setCallingConv(OldCI->getCallingConv()); // Handle any uses of the old CallInst. If the type has changed, add a cast. if (!OldCI->use_empty()) { if (OldCI->getType() != NewCI->getType()) { Function *OldFn = OldCI->getCalledFunction(); CastInst *RetCast = CastInst::Create(CastInst::getCastOpcode(NewCI, true, OldFn->getReturnType(), true), NewCI, OldFn->getReturnType(), NewCI->getName(),OldCI); // Replace all uses of the old call with the new cast which has the // correct type. OldCI->replaceAllUsesWith(RetCast); } else { OldCI->replaceAllUsesWith(NewCI); } } // Clean up the old call now that it has been completely upgraded. OldCI->eraseFromParent(); } // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the // upgraded intrinsic. All argument and return casting must be provided in // order to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { Function *F = CI->getCalledFunction(); LLVMContext &C = CI->getContext(); ImmutableCallSite CS(CI); assert(F && "CallInst has no function associated with it."); if (!NewFn) { // Get the Function's name. const std::string& Name = F->getName(); // Upgrade ARM NEON intrinsics. if (Name.compare(5, 9, "arm.neon.", 9) == 0) { Instruction *NewI; Value *V0, *V1; if (Name.compare(14, 7, "vmovls.", 7) == 0) { NewI = new SExtInst(CI->getArgOperand(0), CI->getType(), "upgraded." + CI->getName(), CI); } else if (Name.compare(14, 7, "vmovlu.", 7) == 0) { NewI = new ZExtInst(CI->getArgOperand(0), CI->getType(), "upgraded." + CI->getName(), CI); } else if (Name.compare(14, 4, "vadd", 4) == 0) { ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); NewI = BinaryOperator::CreateAdd(V0, V1, "upgraded."+CI->getName(), CI); } else if (Name.compare(14, 4, "vsub", 4) == 0) { ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); NewI = BinaryOperator::CreateSub(V0, V1,"upgraded."+CI->getName(),CI); } else if (Name.compare(14, 4, "vmul", 4) == 0) { ExtendNEONArgs(CI, CI->getArgOperand(0), CI->getArgOperand(1), V0, V1); NewI = BinaryOperator::CreateMul(V0, V1,"upgraded."+CI->getName(),CI); } else if (Name.compare(14, 4, "vmla", 4) == 0) { ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1); Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI); NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), MulI, "upgraded."+CI->getName(), CI); } else if (Name.compare(14, 4, "vmls", 4) == 0) { ExtendNEONArgs(CI, CI->getArgOperand(1), CI->getArgOperand(2), V0, V1); Instruction *MulI = BinaryOperator::CreateMul(V0, V1, "", CI); NewI = BinaryOperator::CreateSub(CI->getArgOperand(0), MulI, "upgraded."+CI->getName(), CI); } else if (Name.compare(14, 4, "vabd", 4) == 0) { NewI = CallVABD(CI, CI->getArgOperand(0), CI->getArgOperand(1)); NewI = new ZExtInst(NewI, CI->getType(), "upgraded."+CI->getName(), CI); } else if (Name.compare(14, 4, "vaba", 4) == 0) { NewI = CallVABD(CI, CI->getArgOperand(1), CI->getArgOperand(2)); if (Name.at(18) == 'l') NewI = new ZExtInst(NewI, CI->getType(), "", CI); NewI = BinaryOperator::CreateAdd(CI->getArgOperand(0), NewI, "upgraded."+CI->getName(), CI); } else if (Name.compare(14, 6, "vmovn.", 6) == 0) { NewI = new TruncInst(CI->getArgOperand(0), CI->getType(), "upgraded." + CI->getName(), CI); } else { llvm_unreachable("Unknown arm.neon function for CallInst upgrade."); } // Replace any uses of the old CallInst. if (!CI->use_empty()) CI->replaceAllUsesWith(NewI); CI->eraseFromParent(); return; } bool isLoadH = false, isLoadL = false, isMovL = false; bool isMovSD = false, isShufPD = false; bool isUnpckhPD = false, isUnpcklPD = false; bool isPunpckhQPD = false, isPunpcklQPD = false; if (F->getName() == "llvm.x86.sse2.loadh.pd") isLoadH = true; else if (F->getName() == "llvm.x86.sse2.loadl.pd") isLoadL = true; else if (F->getName() == "llvm.x86.sse2.movl.dq") isMovL = true; else if (F->getName() == "llvm.x86.sse2.movs.d") isMovSD = true; else if (F->getName() == "llvm.x86.sse2.shuf.pd") isShufPD = true; else if (F->getName() == "llvm.x86.sse2.unpckh.pd") isUnpckhPD = true; else if (F->getName() == "llvm.x86.sse2.unpckl.pd") isUnpcklPD = true; else if (F->getName() == "llvm.x86.sse2.punpckh.qdq") isPunpckhQPD = true; else if (F->getName() == "llvm.x86.sse2.punpckl.qdq") isPunpcklQPD = true; if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD || isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { std::vector Idxs; Value *Op0 = CI->getArgOperand(0); ShuffleVectorInst *SI = NULL; if (isLoadH || isLoadL) { Value *Op1 = UndefValue::get(Op0->getType()); Value *Addr = new BitCastInst(CI->getArgOperand(1), Type::getDoublePtrTy(C), "upgraded.", CI); Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI); Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0); Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI); if (isLoadH) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); } else { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); } Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } else if (isMovL) { Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0); Idxs.push_back(Zero); Idxs.push_back(Zero); Idxs.push_back(Zero); Idxs.push_back(Zero); Value *ZeroV = ConstantVector::get(Idxs); Idxs.clear(); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI); } else if (isMovSD || isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { Value *Op1 = CI->getArgOperand(1); if (isMovSD) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); } else if (isUnpckhPD || isPunpckhQPD) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); } else { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); } Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } else if (isShufPD) { Value *Op1 = CI->getArgOperand(1); unsigned MaskVal = cast(CI->getArgOperand(2))->getZExtValue(); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), ((MaskVal >> 1) & 1)+2)); Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } assert(SI && "Unexpected!"); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(SI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.sse41.pmulld") { // Upgrade this set of intrinsics into vector multiplies. Instruction *Mul = BinaryOperator::CreateMul(CI->getArgOperand(0), CI->getArgOperand(1), CI->getName(), CI); // Fix up all the uses with our new multiply. if (!CI->use_empty()) CI->replaceAllUsesWith(Mul); // Remove upgraded multiply. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.ssse3.palign.r") { Value *Op1 = CI->getArgOperand(0); Value *Op2 = CI->getArgOperand(1); Value *Op3 = CI->getArgOperand(2); unsigned shiftVal = cast(Op3)->getZExtValue(); Value *Rep; IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); // If palignr is shifting the pair of input vectors less than 9 bytes, // emit a shuffle instruction. if (shiftVal <= 8) { const Type *IntTy = Type::getInt32Ty(C); const Type *EltTy = Type::getInt8Ty(C); const Type *VecTy = VectorType::get(EltTy, 8); Op2 = Builder.CreateBitCast(Op2, VecTy); Op1 = Builder.CreateBitCast(Op1, VecTy); llvm::SmallVector Indices; for (unsigned i = 0; i != 8; ++i) Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); Value *SV = ConstantVector::get(Indices); Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); Rep = Builder.CreateBitCast(Rep, F->getReturnType()); } // If palignr is shifting the pair of input vectors more than 8 but less // than 16 bytes, emit a logical right shift of the destination. else if (shiftVal < 16) { // MMX has these as 1 x i64 vectors for some odd optimization reasons. const Type *EltTy = Type::getInt64Ty(C); const Type *VecTy = VectorType::get(EltTy, 1); Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); Op2 = ConstantInt::get(VecTy, (shiftVal-8) * 8); // create i32 constant Function *I = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_mmx_psrl_q); Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); } // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. else { Rep = Constant::getNullValue(F->getReturnType()); } // Replace any uses with our new instruction. if (!CI->use_empty()) CI->replaceAllUsesWith(Rep); // Remove upgraded instruction. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.ssse3.palign.r.128") { Value *Op1 = CI->getArgOperand(0); Value *Op2 = CI->getArgOperand(1); Value *Op3 = CI->getArgOperand(2); unsigned shiftVal = cast(Op3)->getZExtValue(); Value *Rep; IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); // If palignr is shifting the pair of input vectors less than 17 bytes, // emit a shuffle instruction. if (shiftVal <= 16) { const Type *IntTy = Type::getInt32Ty(C); const Type *EltTy = Type::getInt8Ty(C); const Type *VecTy = VectorType::get(EltTy, 16); Op2 = Builder.CreateBitCast(Op2, VecTy); Op1 = Builder.CreateBitCast(Op1, VecTy); llvm::SmallVector Indices; for (unsigned i = 0; i != 16; ++i) Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); Value *SV = ConstantVector::get(Indices); Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); Rep = Builder.CreateBitCast(Rep, F->getReturnType()); } // If palignr is shifting the pair of input vectors more than 16 but less // than 32 bytes, emit a logical right shift of the destination. else if (shiftVal < 32) { const Type *EltTy = Type::getInt64Ty(C); const Type *VecTy = VectorType::get(EltTy, 2); const Type *IntTy = Type::getInt32Ty(C); Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); Op2 = ConstantInt::get(IntTy, (shiftVal-16) * 8); // create i32 constant Function *I = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse2_psrl_dq); Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); } // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. else { Rep = Constant::getNullValue(F->getReturnType()); } // Replace any uses with our new instruction. if (!CI->use_empty()) CI->replaceAllUsesWith(Rep); // Remove upgraded instruction. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.sse.loadu.ps" || F->getName() == "llvm.x86.sse2.loadu.dq" || F->getName() == "llvm.x86.sse2.loadu.pd") { // Convert to a native, unaligned load. const Type *VecTy = CI->getType(); const Type *IntTy = IntegerType::get(C, 128); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); Value *BC = Builder.CreateBitCast(CI->getArgOperand(0), PointerType::getUnqual(IntTy), "cast"); LoadInst *LI = Builder.CreateLoad(BC, CI->getName()); LI->setAlignment(1); // Unaligned load. BC = Builder.CreateBitCast(LI, VecTy, "new.cast"); // Fix up all the uses with our new load. if (!CI->use_empty()) CI->replaceAllUsesWith(BC); // Remove intrinsic. CI->eraseFromParent(); } else { llvm_unreachable("Unknown function for CallInst upgrade."); } return; } switch (NewFn->getIntrinsicID()) { default: llvm_unreachable("Unknown function for CallInst upgrade."); case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { // Add a default alignment argument of 1. SmallVector Operands(CS.arg_begin(), CS.arg_end()); Operands.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(NewCI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); break; } case Intrinsic::x86_mmx_padd_b: case Intrinsic::x86_mmx_padd_w: case Intrinsic::x86_mmx_padd_d: case Intrinsic::x86_mmx_padd_q: case Intrinsic::x86_mmx_padds_b: case Intrinsic::x86_mmx_padds_w: case Intrinsic::x86_mmx_paddus_b: case Intrinsic::x86_mmx_paddus_w: case Intrinsic::x86_mmx_psub_b: case Intrinsic::x86_mmx_psub_w: case Intrinsic::x86_mmx_psub_d: case Intrinsic::x86_mmx_psub_q: case Intrinsic::x86_mmx_psubs_b: case Intrinsic::x86_mmx_psubs_w: case Intrinsic::x86_mmx_psubus_b: case Intrinsic::x86_mmx_psubus_w: case Intrinsic::x86_mmx_pmulh_w: case Intrinsic::x86_mmx_pmull_w: case Intrinsic::x86_mmx_pmulhu_w: case Intrinsic::x86_mmx_pmulu_dq: case Intrinsic::x86_mmx_pmadd_wd: case Intrinsic::x86_mmx_pand: case Intrinsic::x86_mmx_pandn: case Intrinsic::x86_mmx_por: case Intrinsic::x86_mmx_pxor: case Intrinsic::x86_mmx_pavg_b: case Intrinsic::x86_mmx_pavg_w: case Intrinsic::x86_mmx_pmaxu_b: case Intrinsic::x86_mmx_pmaxs_w: case Intrinsic::x86_mmx_pminu_b: case Intrinsic::x86_mmx_pmins_w: case Intrinsic::x86_mmx_psad_bw: case Intrinsic::x86_mmx_psll_w: case Intrinsic::x86_mmx_psll_d: case Intrinsic::x86_mmx_psll_q: case Intrinsic::x86_mmx_pslli_w: case Intrinsic::x86_mmx_pslli_d: case Intrinsic::x86_mmx_pslli_q: case Intrinsic::x86_mmx_psrl_w: case Intrinsic::x86_mmx_psrl_d: case Intrinsic::x86_mmx_psrl_q: case Intrinsic::x86_mmx_psrli_w: case Intrinsic::x86_mmx_psrli_d: case Intrinsic::x86_mmx_psrli_q: case Intrinsic::x86_mmx_psra_w: case Intrinsic::x86_mmx_psra_d: case Intrinsic::x86_mmx_psrai_w: case Intrinsic::x86_mmx_psrai_d: case Intrinsic::x86_mmx_packsswb: case Intrinsic::x86_mmx_packssdw: case Intrinsic::x86_mmx_packuswb: case Intrinsic::x86_mmx_punpckhbw: case Intrinsic::x86_mmx_punpckhwd: case Intrinsic::x86_mmx_punpckhdq: case Intrinsic::x86_mmx_punpcklbw: case Intrinsic::x86_mmx_punpcklwd: case Intrinsic::x86_mmx_punpckldq: case Intrinsic::x86_mmx_pcmpeq_b: case Intrinsic::x86_mmx_pcmpeq_w: case Intrinsic::x86_mmx_pcmpeq_d: case Intrinsic::x86_mmx_pcmpgt_b: case Intrinsic::x86_mmx_pcmpgt_w: case Intrinsic::x86_mmx_pcmpgt_d: { Value *Operands[2]; // Cast the operand to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); switch (NewFn->getIntrinsicID()) { default: // Cast to the X86 MMX type. Operands[1] = new BitCastInst(CI->getArgOperand(1), NewFn->getFunctionType()->getParamType(1), "upgraded.", CI); break; case Intrinsic::x86_mmx_pslli_w: case Intrinsic::x86_mmx_pslli_d: case Intrinsic::x86_mmx_pslli_q: case Intrinsic::x86_mmx_psrli_w: case Intrinsic::x86_mmx_psrli_d: case Intrinsic::x86_mmx_psrli_q: case Intrinsic::x86_mmx_psrai_w: case Intrinsic::x86_mmx_psrai_d: // These take an i32 as their second parameter. Operands[1] = CI->getArgOperand(1); break; } ConstructNewCallInst(NewFn, CI, Operands, 2); break; } case Intrinsic::x86_mmx_maskmovq: { Value *Operands[3]; // Cast the operands to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); Operands[1] = new BitCastInst(CI->getArgOperand(1), NewFn->getFunctionType()->getParamType(1), "upgraded.", CI); Operands[2] = CI->getArgOperand(2); ConstructNewCallInst(NewFn, CI, Operands, 3, false); break; } case Intrinsic::x86_mmx_pmovmskb: { Value *Operands[1]; // Cast the operand to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); ConstructNewCallInst(NewFn, CI, Operands, 1); break; } case Intrinsic::x86_mmx_movnt_dq: { Value *Operands[2]; Operands[0] = CI->getArgOperand(0); // Cast the operand to the X86 MMX type. Operands[1] = new BitCastInst(CI->getArgOperand(1), NewFn->getFunctionType()->getParamType(1), "upgraded.", CI); ConstructNewCallInst(NewFn, CI, Operands, 2, false); break; } case Intrinsic::x86_mmx_palignr_b: { Value *Operands[3]; // Cast the operands to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); Operands[1] = new BitCastInst(CI->getArgOperand(1), NewFn->getFunctionType()->getParamType(1), "upgraded.", CI); Operands[2] = CI->getArgOperand(2); ConstructNewCallInst(NewFn, CI, Operands, 3); break; } case Intrinsic::x86_mmx_pextr_w: { Value *Operands[2]; // Cast the operands to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); Operands[1] = CI->getArgOperand(1); ConstructNewCallInst(NewFn, CI, Operands, 2); break; } case Intrinsic::x86_mmx_pinsr_w: { Value *Operands[3]; // Cast the operands to the X86 MMX type. Operands[0] = new BitCastInst(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded.", CI); Operands[1] = CI->getArgOperand(1); Operands[2] = CI->getArgOperand(2); ConstructNewCallInst(NewFn, CI, Operands, 3); break; } case Intrinsic::x86_sse_pshuf_w: { IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); // Cast the operand to the X86 MMX type. Value *Operands[2]; Operands[0] = Builder.CreateBitCast(CI->getArgOperand(0), NewFn->getFunctionType()->getParamType(0), "upgraded."); Operands[1] = Builder.CreateTrunc(CI->getArgOperand(1), Type::getInt8Ty(C), "upgraded."); ConstructNewCallInst(NewFn, CI, Operands, 2); break; } case Intrinsic::ctlz: case Intrinsic::ctpop: case Intrinsic::cttz: { // Build a small vector of the original arguments. SmallVector Operands(CS.arg_begin(), CS.arg_end()); // Construct a new CallInst CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), "upgraded."+CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) { // Check for sign extend parameter attributes on the return values. bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt); bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt); // Construct an appropriate cast from the new return type to the old. CastInst *RetCast = CastInst::Create( CastInst::getCastOpcode(NewCI, SrcSExt, F->getReturnType(), DestSExt), NewCI, F->getReturnType(), NewCI->getName(), CI); NewCI->moveBefore(RetCast); // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(RetCast); } // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); } break; case Intrinsic::eh_selector: case Intrinsic::eh_typeid_for: { // Only the return type changed. SmallVector Operands(CS.arg_begin(), CS.arg_end()); CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), "upgraded." + CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) { // Construct an appropriate cast from the new return type to the old. CastInst *RetCast = CastInst::Create(CastInst::getCastOpcode(NewCI, true, F->getReturnType(), true), NewCI, F->getReturnType(), NewCI->getName(), CI); CI->replaceAllUsesWith(RetCast); } CI->eraseFromParent(); } break; case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: { // Add isVolatile const llvm::Type *I1Ty = llvm::Type::getInt1Ty(CI->getContext()); Value *Operands[5] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3), llvm::ConstantInt::get(I1Ty, 0) }; CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+5, CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(NewCI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); break; } } } // This tests each Function to determine if it needs upgrading. When we find // one we are interested in, we then upgrade all calls to reflect the new // function. void llvm::UpgradeCallsToIntrinsic(Function* F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Upgrade the function and check if it is a totaly new function. Function* NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { if (NewFn != F) { // Replace all uses to the old function with the new one if necessary. for (Value::use_iterator UI = F->use_begin(), UE = F->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, NewFn); } // Remove old function, no longer used, from the module. F->eraseFromParent(); } } } /// This function strips all debug info intrinsics, except for llvm.dbg.declare. /// If an llvm.dbg.declare intrinsic is invalid, then this function simply /// strips that use. void llvm::CheckDebugInfoIntrinsics(Module *M) { if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) { while (!FuncStart->use_empty()) { CallInst *CI = cast(FuncStart->use_back()); CI->eraseFromParent(); } FuncStart->eraseFromParent(); } if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) { while (!StopPoint->use_empty()) { CallInst *CI = cast(StopPoint->use_back()); CI->eraseFromParent(); } StopPoint->eraseFromParent(); } if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) { while (!RegionStart->use_empty()) { CallInst *CI = cast(RegionStart->use_back()); CI->eraseFromParent(); } RegionStart->eraseFromParent(); } if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) { while (!RegionEnd->use_empty()) { CallInst *CI = cast(RegionEnd->use_back()); CI->eraseFromParent(); } RegionEnd->eraseFromParent(); } if (Function *Declare = M->getFunction("llvm.dbg.declare")) { if (!Declare->use_empty()) { DbgDeclareInst *DDI = cast(Declare->use_back()); if (!isa(DDI->getArgOperand(0)) || !isa(DDI->getArgOperand(1))) { while (!Declare->use_empty()) { CallInst *CI = cast(Declare->use_back()); CI->eraseFromParent(); } Declare->eraseFromParent(); } } } }