//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; static cl::opt DisableHazardRecognizer( "disable-sched-hazard", cl::Hidden, cl::init(false), cl::desc("Disable hazard detection during preRA scheduling")); TargetInstrInfo::~TargetInstrInfo() { } const TargetRegisterClass* TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const { if (OpNum >= MCID.getNumOperands()) return nullptr; short RegClass = MCID.OpInfo[OpNum].RegClass; if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) return TRI->getPointerRegClass(MF, RegClass); // Instructions like INSERT_SUBREG do not have fixed register classes. if (RegClass < 0) return nullptr; // Otherwise just look it up normally. return TRI->getRegClass(RegClass); } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { llvm_unreachable("Target didn't implement insertNoop!"); } /// insertNoops - Insert noops into the instruction stream at the specified /// point. void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const { for (unsigned i = 0; i < Quantity; ++i) insertNoop(MBB, MI); } static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { return strncmp(Str, MAI.getCommentString().data(), MAI.getCommentString().size()) == 0; } /// Measure the specified inline asm to determine an approximation of its /// length. /// Comments (which run till the next SeparatorString or newline) do not /// count as an instruction. /// Any other non-whitespace text is considered an instruction, with /// multiple instructions separated by SeparatorString or newlines. /// Variable-length instructions are not handled here; this function /// may be overloaded in the target code to do that. /// We implement a special case of the .space directive which takes only a /// single integer argument in base 10 that is the size in bytes. This is a /// restricted form of the GAS directive in that we only interpret /// simple--i.e. not a logical or arithmetic expression--size values without /// the optional fill value. This is primarily used for creating arbitrary /// sized inline asm blocks for testing purposes. unsigned TargetInstrInfo::getInlineAsmLength( const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { // Count the number of instructions in the asm. bool AtInsnStart = true; unsigned Length = 0; const unsigned MaxInstLength = MAI.getMaxInstLength(STI); for (; *Str; ++Str) { if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), strlen(MAI.getSeparatorString())) == 0) { AtInsnStart = true; } else if (isAsmComment(Str, MAI)) { // Stop counting as an instruction after a comment until the next // separator. AtInsnStart = false; } if (AtInsnStart && !isSpace(static_cast(*Str))) { unsigned AddLength = MaxInstLength; if (strncmp(Str, ".space", 6) == 0) { char *EStr; int SpaceSize; SpaceSize = strtol(Str + 6, &EStr, 10); SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; while (*EStr != '\n' && isSpace(static_cast(*EStr))) ++EStr; if (*EStr == '\0' || *EStr == '\n' || isAsmComment(EStr, MAI)) // Successfully parsed .space argument AddLength = SpaceSize; } Length += AddLength; AtInsnStart = false; } } return Length; } /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything /// after it, replacing it with an unconditional branch to NewDest. void TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const { MachineBasicBlock *MBB = Tail->getParent(); // Remove all the old successors of MBB from the CFG. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_begin()); // Save off the debug loc before erasing the instruction. DebugLoc DL = Tail->getDebugLoc(); // Update call site info and remove all the dead instructions // from the end of MBB. while (Tail != MBB->end()) { auto MI = Tail++; if (MI->shouldUpdateCallSiteInfo()) MBB->getParent()->eraseCallSiteInfo(&*MI); MBB->erase(MI); } // If MBB isn't immediately before MBB, insert a branch to it. if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) insertBranch(*MBB, NewDest, nullptr, SmallVector(), DL); MBB->addSuccessor(NewDest); } MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned Idx1, unsigned Idx2) const { const MCInstrDesc &MCID = MI.getDesc(); bool HasDef = MCID.getNumDefs(); if (HasDef && !MI.getOperand(0).isReg()) // No idea how to commute this instruction. Target should implement its own. return nullptr; unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && "This only knows how to commute register operands so far"); Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); Register Reg1 = MI.getOperand(Idx1).getReg(); Register Reg2 = MI.getOperand(Idx2).getReg(); unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); bool Reg1IsKill = MI.getOperand(Idx1).isKill(); bool Reg2IsKill = MI.getOperand(Idx2).isKill(); bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); // Avoid calling isRenamable for virtual registers since we assert that // renamable property is only queried/set for physical registers. bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1) ? MI.getOperand(Idx1).isRenamable() : false; bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2) ? MI.getOperand(Idx2).isRenamable() : false; // If destination is tied to either of the commuted source register, then // it must be updated. if (HasDef && Reg0 == Reg1 && MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { Reg2IsKill = false; Reg0 = Reg2; SubReg0 = SubReg2; } else if (HasDef && Reg0 == Reg2 && MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { Reg1IsKill = false; Reg0 = Reg1; SubReg0 = SubReg1; } MachineInstr *CommutedMI = nullptr; if (NewMI) { // Create a new instruction. MachineFunction &MF = *MI.getMF(); CommutedMI = MF.CloneMachineInstr(&MI); } else { CommutedMI = &MI; } if (HasDef) { CommutedMI->getOperand(0).setReg(Reg0); CommutedMI->getOperand(0).setSubReg(SubReg0); } CommutedMI->getOperand(Idx2).setReg(Reg1); CommutedMI->getOperand(Idx1).setReg(Reg2); CommutedMI->getOperand(Idx2).setSubReg(SubReg1); CommutedMI->getOperand(Idx1).setSubReg(SubReg2); CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); // Avoid calling setIsRenamable for virtual registers since we assert that // renamable property is only queried/set for physical registers. if (Register::isPhysicalRegister(Reg1)) CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); if (Register::isPhysicalRegister(Reg2)) CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); return CommutedMI; } MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose // any commutable operand, which is done in findCommutedOpIndices() method // called below. if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { assert(MI.isCommutable() && "Precondition violation: MI must be commutable."); return nullptr; } return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2) { if (ResultIdx1 == CommuteAnyOperandIndex && ResultIdx2 == CommuteAnyOperandIndex) { ResultIdx1 = CommutableOpIdx1; ResultIdx2 = CommutableOpIdx2; } else if (ResultIdx1 == CommuteAnyOperandIndex) { if (ResultIdx2 == CommutableOpIdx1) ResultIdx1 = CommutableOpIdx2; else if (ResultIdx2 == CommutableOpIdx2) ResultIdx1 = CommutableOpIdx1; else return false; } else if (ResultIdx2 == CommuteAnyOperandIndex) { if (ResultIdx1 == CommutableOpIdx1) ResultIdx2 = CommutableOpIdx2; else if (ResultIdx1 == CommutableOpIdx2) ResultIdx2 = CommutableOpIdx1; else return false; } else // Check that the result operand indices match the given commutable // operand indices. return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); return true; } bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { assert(!MI.isBundle() && "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); const MCInstrDesc &MCID = MI.getDesc(); if (!MCID.isCommutable()) return false; // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this // is not true, then the target must implement this. unsigned CommutableOpIdx1 = MCID.getNumDefs(); unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; if (!MI.isPredicable()) return true; return !isPredicated(MI); } bool TargetInstrInfo::PredicateInstruction( MachineInstr &MI, ArrayRef Pred) const { bool MadeChange = false; assert(!MI.isBundle() && "TargetInstrInfo::PredicateInstruction() can't handle bundles"); const MCInstrDesc &MCID = MI.getDesc(); if (!MI.isPredicable()) return false; for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { if (MCID.OpInfo[i].isPredicate()) { MachineOperand &MO = MI.getOperand(i); if (MO.isReg()) { MO.setReg(Pred[j].getReg()); MadeChange = true; } else if (MO.isImm()) { MO.setImm(Pred[j].getImm()); MadeChange = true; } else if (MO.isMBB()) { MO.setMBB(Pred[j].getMBB()); MadeChange = true; } ++j; } } return MadeChange; } bool TargetInstrInfo::hasLoadFromStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const { size_t StartSize = Accesses.size(); for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), oe = MI.memoperands_end(); o != oe; ++o) { if ((*o)->isLoad() && dyn_cast_or_null((*o)->getPseudoValue())) Accesses.push_back(*o); } return Accesses.size() != StartSize; } bool TargetInstrInfo::hasStoreToStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const { size_t StartSize = Accesses.size(); for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), oe = MI.memoperands_end(); o != oe; ++o) { if ((*o)->isStore() && dyn_cast_or_null((*o)->getPseudoValue())) Accesses.push_back(*o); } return Accesses.size() != StartSize; } bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!SubIdx) { Size = TRI->getSpillSize(*RC); Offset = 0; return true; } unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); // Convert bit size to byte size. if (BitSize % 8) return false; int BitOffset = TRI->getSubRegIdxOffset(SubIdx); if (BitOffset < 0 || BitOffset % 8) return false; Size = BitSize / 8; Offset = (unsigned)BitOffset / 8; assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); if (!MF.getDataLayout().isLittleEndian()) { Offset = TRI->getSpillSize(*RC) - (Offset + Size); } return true; } void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); MBB.insert(I, MI); } bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI) const { return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); } MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); MachineFunction &MF = *MBB.getParent(); return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); } // If the COPY instruction in MI can be folded to a stack operation, return // the register class to use. static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, unsigned FoldIdx) { assert(MI.isCopy() && "MI must be a COPY instruction"); if (MI.getNumOperands() != 2) return nullptr; assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); const MachineOperand &FoldOp = MI.getOperand(FoldIdx); const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); if (FoldOp.getSubReg() || LiveOp.getSubReg()) return nullptr; Register FoldReg = FoldOp.getReg(); Register LiveReg = LiveOp.getReg(); assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs"); const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); if (Register::isPhysicalRegister(LiveOp.getReg())) return RC->contains(LiveOp.getReg()) ? RC : nullptr; if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) return RC; // FIXME: Allow folding when register classes are memory compatible. return nullptr; } MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } std::pair TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { switch (MI.getOpcode()) { case TargetOpcode::STACKMAP: // StackMapLiveValues are foldable return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); case TargetOpcode::PATCHPOINT: // For PatchPoint, the call args are not foldable (even if reported in the // stackmap e.g. via anyregcc). return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); case TargetOpcode::STATEPOINT: // For statepoints, fold deopt and gc arguments, but not call arguments. return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); default: llvm_unreachable("unexpected stackmap opcode"); } } static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, int FrameIndex, const TargetInstrInfo &TII) { unsigned StartIdx = 0; unsigned NumDefs = 0; // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); unsigned DefToFoldIdx = MI.getNumOperands(); // Return false if any operands requested for folding are not foldable (not // part of the stackmap's live values). for (unsigned Op : Ops) { if (Op < NumDefs) { assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); DefToFoldIdx = Op; } else if (Op < StartIdx) { return nullptr; } if (MI.getOperand(Op).isTied()) return nullptr; } MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); // No need to fold return, the meta data, and function arguments for (unsigned i = 0; i < StartIdx; ++i) if (i != DefToFoldIdx) MIB.add(MI.getOperand(i)); for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { MachineOperand &MO = MI.getOperand(i); unsigned TiedTo = e; (void)MI.isRegTiedToDefOperand(i, &TiedTo); if (is_contained(Ops, i)) { assert(TiedTo == e && "Cannot fold tied operands"); unsigned SpillSize; unsigned SpillOffset; // Compute the spill slot size and offset. const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(MO.getReg()); bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); if (!Valid) report_fatal_error("cannot spill patchpoint subregister operand"); MIB.addImm(StackMaps::IndirectMemRefOp); MIB.addImm(SpillSize); MIB.addFrameIndex(FrameIndex); MIB.addImm(SpillOffset); } else { MIB.add(MO); if (TiedTo < e) { assert(TiedTo < NumDefs && "Bad tied operand"); if (TiedTo > DefToFoldIdx) --TiedTo; NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); } } } return NewMI; } MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, ArrayRef Ops, int FI, LiveIntervals *LIS, VirtRegMap *VRM) const { auto Flags = MachineMemOperand::MONone; for (unsigned OpIdx : Ops) Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; MachineBasicBlock *MBB = MI.getParent(); assert(MBB && "foldMemoryOperand needs an inserted instruction"); MachineFunction &MF = *MBB->getParent(); // If we're not folding a load into a subreg, the size of the load is the // size of the spill slot. But if we are, we need to figure out what the // actual load size is. int64_t MemSize = 0; const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (Flags & MachineMemOperand::MOStore) { MemSize = MFI.getObjectSize(FI); } else { for (unsigned OpIdx : Ops) { int64_t OpSize = MFI.getObjectSize(FI); if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); if (SubRegSize > 0 && !(SubRegSize % 8)) OpSize = SubRegSize / 8; } MemSize = std::max(MemSize, OpSize); } } assert(MemSize && "Did not expect a zero-sized stack slot"); MachineInstr *NewMI = nullptr; if (MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT || MI.getOpcode() == TargetOpcode::STATEPOINT) { // Fold stackmap/patchpoint. NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); if (NewMI) MBB->insert(MI, NewMI); } else { // Ask the target to do the actual folding. NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); } if (NewMI) { NewMI->setMemRefs(MF, MI.memoperands()); // Add a memory operand, foldMemoryOperandImpl doesn't do that. assert((!(Flags & MachineMemOperand::MOStore) || NewMI->mayStore()) && "Folded a def to a non-store!"); assert((!(Flags & MachineMemOperand::MOLoad) || NewMI->mayLoad()) && "Folded a use to a non-load!"); assert(MFI.getObjectOffset(FI) != -1); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, MFI.getObjectAlign(FI)); NewMI->addMemOperand(MF, MMO); // The pass "x86 speculative load hardening" always attaches symbols to // call instructions. We need copy it form old instruction. NewMI->cloneInstrSymbols(MF, MI); return NewMI; } // Straight COPY may fold as load/store. if (!MI.isCopy() || Ops.size() != 1) return nullptr; const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); if (!RC) return nullptr; const MachineOperand &MO = MI.getOperand(1 - Ops[0]); MachineBasicBlock::iterator Pos = MI; if (Flags == MachineMemOperand::MOStore) storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); else loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); return &*--Pos; } MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, ArrayRef Ops, MachineInstr &LoadMI, LiveIntervals *LIS) const { assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); #ifndef NDEBUG for (unsigned OpIdx : Ops) assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); #endif MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); // Ask the target to do the actual folding. MachineInstr *NewMI = nullptr; int FrameIndex = 0; if ((MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT || MI.getOpcode() == TargetOpcode::STATEPOINT) && isLoadFromStackSlot(LoadMI, FrameIndex)) { // Fold stackmap/patchpoint. NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); if (NewMI) NewMI = &*MBB.insert(MI, NewMI); } else { // Ask the target to do the actual folding. NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); } if (!NewMI) return nullptr; // Copy the memoperands from the load to the folded instruction. if (MI.memoperands_empty()) { NewMI->setMemRefs(MF, LoadMI.memoperands()); } else { // Handle the rare case of folding multiple loads. NewMI->setMemRefs(MF, MI.memoperands()); for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), E = LoadMI.memoperands_end(); I != E; ++I) { NewMI->addMemOperand(MF, *I); } } return NewMI; } bool TargetInstrInfo::hasReassociableOperands( const MachineInstr &Inst, const MachineBasicBlock *MBB) const { const MachineOperand &Op1 = Inst.getOperand(1); const MachineOperand &Op2 = Inst.getOperand(2); const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); // We need virtual register definitions for the operands that we will // reassociate. MachineInstr *MI1 = nullptr; MachineInstr *MI2 = nullptr; if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg())) MI1 = MRI.getUniqueVRegDef(Op1.getReg()); if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg())) MI2 = MRI.getUniqueVRegDef(Op2.getReg()); // And they need to be in the trace (otherwise, they won't have a depth). return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; } bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const { const MachineBasicBlock *MBB = Inst.getParent(); const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); unsigned AssocOpcode = Inst.getOpcode(); // If only one operand has the same opcode and it's the second source operand, // the operands must be commuted. Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; if (Commuted) std::swap(MI1, MI2); // 1. The previous instruction must be the same type as Inst. // 2. The previous instruction must also be associative/commutative (this can // be different even for instructions with the same opcode if traits like // fast-math-flags are included). // 3. The previous instruction must have virtual register definitions for its // operands in the same basic block as Inst. // 4. The previous instruction's result must only be used by Inst. return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) && hasReassociableOperands(*MI1, MBB) && MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); } // 1. The operation must be associative and commutative. // 2. The instruction must have virtual register definitions for its // operands in the same basic block. // 3. The instruction must have a reassociable sibling. bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const { return isAssociativeAndCommutative(Inst) && hasReassociableOperands(Inst, Inst.getParent()) && hasReassociableSibling(Inst, Commuted); } // The concept of the reassociation pass is that these operations can benefit // from this kind of transformation: // // A = ? op ? // B = A op X (Prev) // C = B op Y (Root) // --> // A = ? op ? // B = X op Y // C = A op B // // breaking the dependency between A and B, allowing them to be executed in // parallel (or back-to-back in a pipeline) instead of depending on each other. // FIXME: This has the potential to be expensive (compile time) while not // improving the code at all. Some ways to limit the overhead: // 1. Track successful transforms; bail out if hit rate gets too low. // 2. Only enable at -O3 or some other non-default optimization level. // 3. Pre-screen pattern candidates here: if an operand of the previous // instruction is known to not increase the critical path, then don't match // that pattern. bool TargetInstrInfo::getMachineCombinerPatterns( MachineInstr &Root, SmallVectorImpl &Patterns, bool DoRegPressureReduce) const { bool Commute; if (isReassociationCandidate(Root, Commute)) { // We found a sequence of instructions that may be suitable for a // reassociation of operands to increase ILP. Specify each commutation // possibility for the Prev instruction in the sequence and let the // machine combiner decide if changing the operands is worthwhile. if (Commute) { Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); } else { Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); } return true; } return false; } /// Return true when a code sequence can improve loop throughput. bool TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { return false; } /// Attempt the reassociation transformation to reduce critical path length. /// See the above comments before getMachineCombinerPatterns(). void TargetInstrInfo::reassociateOps( MachineInstr &Root, MachineInstr &Prev, MachineCombinerPattern Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg) const { MachineFunction *MF = Root.getMF(); MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); // This array encodes the operand index for each parameter because the // operands may be commuted. Each row corresponds to a pattern value, // and each column specifies the index of A, B, X, Y. unsigned OpIdx[4][4] = { { 1, 1, 2, 2 }, { 1, 2, 2, 1 }, { 2, 1, 1, 2 }, { 2, 2, 1, 1 } }; int Row; switch (Pattern) { case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; default: llvm_unreachable("unexpected MachineCombinerPattern"); } MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); MachineOperand &OpC = Root.getOperand(0); Register RegA = OpA.getReg(); Register RegB = OpB.getReg(); Register RegX = OpX.getReg(); Register RegY = OpY.getReg(); Register RegC = OpC.getReg(); if (Register::isVirtualRegister(RegA)) MRI.constrainRegClass(RegA, RC); if (Register::isVirtualRegister(RegB)) MRI.constrainRegClass(RegB, RC); if (Register::isVirtualRegister(RegX)) MRI.constrainRegClass(RegX, RC); if (Register::isVirtualRegister(RegY)) MRI.constrainRegClass(RegY, RC); if (Register::isVirtualRegister(RegC)) MRI.constrainRegClass(RegC, RC); // Create a new virtual register for the result of (X op Y) instead of // recycling RegB because the MachineCombiner's computation of the critical // path requires a new register definition rather than an existing one. Register NewVR = MRI.createVirtualRegister(RC); InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); unsigned Opcode = Root.getOpcode(); bool KillA = OpA.isKill(); bool KillX = OpX.isKill(); bool KillY = OpY.isKill(); // Create new instructions for insertion. MachineInstrBuilder MIB1 = BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) .addReg(RegX, getKillRegState(KillX)) .addReg(RegY, getKillRegState(KillY)); MachineInstrBuilder MIB2 = BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) .addReg(RegA, getKillRegState(KillA)) .addReg(NewVR, getKillRegState(true)); setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); // Record new instructions for insertion and old instructions for deletion. InsInstrs.push_back(MIB1); InsInstrs.push_back(MIB2); DelInstrs.push_back(&Prev); DelInstrs.push_back(&Root); } void TargetInstrInfo::genAlternativeCodeSequence( MachineInstr &Root, MachineCombinerPattern Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstIdxForVirtReg) const { MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); // Select the previous instruction in the sequence based on the input pattern. MachineInstr *Prev = nullptr; switch (Pattern) { case MachineCombinerPattern::REASSOC_AX_BY: case MachineCombinerPattern::REASSOC_XA_BY: Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); break; case MachineCombinerPattern::REASSOC_AX_YB: case MachineCombinerPattern::REASSOC_XA_YB: Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); break; default: break; } assert(Prev && "Unknown pattern for machine combiner"); reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); } bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( const MachineInstr &MI, AAResults *AA) const { const MachineFunction &MF = *MI.getMF(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // Remat clients assume operand 0 is the defined register. if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) return false; Register DefReg = MI.getOperand(0).getReg(); // A sub-register definition can only be rematerialized if the instruction // doesn't read the other parts of the register. Otherwise it is really a // read-modify-write operation on the full virtual register which cannot be // moved safely. if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) return false; // A load from a fixed stack slot can be rematerialized. This may be // redundant with subsequent checks, but it's target-independent, // simple, and a common case. int FrameIdx = 0; if (isLoadFromStackSlot(MI, FrameIdx) && MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) return true; // Avoid instructions obviously unsafe for remat. if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || MI.hasUnmodeledSideEffects()) return false; // Don't remat inline asm. We have no idea how expensive it is // even if it's side effect free. if (MI.isInlineAsm()) return false; // Avoid instructions which load from potentially varying memory. if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) return false; // If any of the registers accessed are non-constant, conservatively assume // the instruction is not rematerializable. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; // Check for a well-behaved physical register. if (Register::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI.isConstantPhysReg(Reg)) return false; } else { // A physreg def. We can't remat it. return false; } continue; } // Only allow one virtual-register def. There may be multiple defs of the // same virtual register, though. if (MO.isDef() && Reg != DefReg) return false; // Don't allow any virtual-register uses. Rematting an instruction with // virtual register uses would length the live ranges of the uses, which // is not necessarily a good idea, certainly not "trivial". if (MO.isUse()) return false; } // Everything checked out. return true; } int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getMF(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); if (!isFrameInstr(MI)) return 0; int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) SPAdj = -SPAdj; return SPAdj; } /// isSchedulingBoundary - Test if the given instruction should be /// considered a scheduling boundary. This primarily includes labels /// and terminators. bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Terminators and labels can't be scheduled around. if (MI.isTerminator() || MI.isPosition()) return true; // INLINEASM_BR can jump to another block if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) return true; // Don't attempt to schedule around any instruction that defines // a stack-oriented pointer, as it's unlikely to be profitable. This // saves compile time, because it doesn't require every single // stack slot reference to depend on the instruction that does the // modification. const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); } // Provide a global flag for disabling the PreRA hazard recognizer that targets // may choose to honor. bool TargetInstrInfo::usePreRAHazardRecognizer() const { return !DisableHazardRecognizer; } // Default implementation of CreateTargetRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo:: CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const { // Dummy hazard recognizer allows all instructions to issue. return new ScheduleHazardRecognizer(); } // Default implementation of CreateTargetMIHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); } // Default implementation of CreateTargetPostRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo:: CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); } // Default implementation of getMemOperandWithOffset. bool TargetInstrInfo::getMemOperandWithOffset( const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { SmallVector BaseOps; unsigned Width; if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, Width, TRI) || BaseOps.size() != 1) return false; BaseOp = BaseOps.front(); return true; } //===----------------------------------------------------------------------===// // SelectionDAG latency interface. //===----------------------------------------------------------------------===// int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const { if (!ItinData || ItinData->isEmpty()) return -1; if (!DefNode->isMachineOpcode()) return -1; unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); if (!UseNode->isMachineOpcode()) return ItinData->getOperandCycle(DefClass, DefIdx); unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, SDNode *N) const { if (!ItinData || ItinData->isEmpty()) return 1; if (!N->isMachineOpcode()) return 1; return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); } //===----------------------------------------------------------------------===// // MachineInstr latency interface. //===----------------------------------------------------------------------===// unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const { if (!ItinData || ItinData->isEmpty()) return 1; unsigned Class = MI.getDesc().getSchedClass(); int UOps = ItinData->Itineraries[Class].NumMicroOps; if (UOps >= 0) return UOps; // The # of u-ops is dynamically determined. The specific target should // override this function to return the right number. return 1; } /// Return the default expected latency for a def based on it's opcode. unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const { if (DefMI.isTransient()) return 0; if (DefMI.mayLoad()) return SchedModel.LoadLatency; if (isHighLatencyDef(DefMI.getOpcode())) return SchedModel.HighLatency; return 1; } unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { return 0; } unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost) const { // Default to one cycle for no itinerary. However, an "empty" itinerary may // still have a MinLatency property, which getStageLatency checks. if (!ItinData) return MI.mayLoad() ? 2 : 1; return ItinData->getStageLatency(MI.getDesc().getSchedClass()); } bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const { const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); if (!ItinData || ItinData->isEmpty()) return false; unsigned DefClass = DefMI.getDesc().getSchedClass(); int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); return (DefCycle != -1 && DefCycle <= 1); } Optional TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { const MachineFunction *MF = MI.getMF(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); int64_t Offset; bool OffsetIsScalable; // To simplify the sub-register handling, verify that we only need to // consider physical registers. assert(MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)); if (auto DestSrc = isCopyInstr(MI)) { Register DestReg = DestSrc->Destination->getReg(); // If the copy destination is the forwarding reg, describe the forwarding // reg using the copy source as the backup location. Example: // // x0 = MOV x7 // call callee(x0) ; x0 described as x7 if (Reg == DestReg) return ParamLoadedValue(*DestSrc->Source, Expr); // Cases where super- or sub-registers needs to be described should // be handled by the target's hook implementation. assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) && "TargetInstrInfo::describeLoadedValue can't describe super- or " "sub-regs for copy instructions"); return None; } else if (auto RegImm = isAddImmediate(MI, Reg)) { Register SrcReg = RegImm->Reg; Offset = RegImm->Imm; Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); } else if (MI.hasOneMemOperand()) { // Only describe memory which provably does not escape the function. As // described in llvm.org/PR43343, escaped memory may be clobbered by the // callee (or by another thread). const auto &TII = MF->getSubtarget().getInstrInfo(); const MachineFrameInfo &MFI = MF->getFrameInfo(); const MachineMemOperand *MMO = MI.memoperands()[0]; const PseudoSourceValue *PSV = MMO->getPseudoValue(); // If the address points to "special" memory (e.g. a spill slot), it's // sufficient to check that it isn't aliased by any high-level IR value. if (!PSV || PSV->mayAlias(&MFI)) return None; const MachineOperand *BaseOp; if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) return None; // FIXME: Scalable offsets are not yet handled in the offset code below. if (OffsetIsScalable) return None; // TODO: Can currently only handle mem instructions with a single define. // An example from the x86 target: // ... // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx // ... // if (MI.getNumExplicitDefs() != 1) return None; // TODO: In what way do we need to take Reg into consideration here? SmallVector Ops; DIExpression::appendOffset(Ops, Offset); Ops.push_back(dwarf::DW_OP_deref_size); Ops.push_back(MMO->getSize()); Expr = DIExpression::prependOpcodes(Expr, Ops); return ParamLoadedValue(*BaseOp, Expr); } return None; } /// Both DefMI and UseMI must be valid. By default, call directly to the /// itinerary. This may be overriden by the target. int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { unsigned DefClass = DefMI.getDesc().getSchedClass(); unsigned UseClass = UseMI.getDesc().getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } /// If we can determine the operand latency from the def only, without itinerary /// lookup, do so. Otherwise return -1. int TargetInstrInfo::computeDefOperandLatency( const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { // Let the target hook getInstrLatency handle missing itineraries. if (!ItinData) return getInstrLatency(ItinData, DefMI); if(ItinData->isEmpty()) return defaultDefLatency(ItinData->SchedModel, DefMI); // ...operand lookup required return -1; } bool TargetInstrInfo::getRegSequenceInputs( const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl &InputRegs) const { assert((MI.isRegSequence() || MI.isRegSequenceLike()) && "Instruction do not have the proper type"); if (!MI.isRegSequence()) return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); // We are looking at: // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; OpIdx += 2) { const MachineOperand &MOReg = MI.getOperand(OpIdx); if (MOReg.isUndef()) continue; const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); assert(MOSubIdx.isImm() && "One of the subindex of the reg_sequence is not an immediate"); // Record Reg:SubReg, SubIdx. InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), (unsigned)MOSubIdx.getImm())); } return true; } bool TargetInstrInfo::getExtractSubregInputs( const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const { assert((MI.isExtractSubreg() || MI.isExtractSubregLike()) && "Instruction do not have the proper type"); if (!MI.isExtractSubreg()) return getExtractSubregLikeInputs(MI, DefIdx, InputReg); // We are looking at: // Def = EXTRACT_SUBREG v0.sub1, sub0. assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); const MachineOperand &MOReg = MI.getOperand(1); if (MOReg.isUndef()) return false; const MachineOperand &MOSubIdx = MI.getOperand(2); assert(MOSubIdx.isImm() && "The subindex of the extract_subreg is not an immediate"); InputReg.Reg = MOReg.getReg(); InputReg.SubReg = MOReg.getSubReg(); InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); return true; } bool TargetInstrInfo::getInsertSubregInputs( const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { assert((MI.isInsertSubreg() || MI.isInsertSubregLike()) && "Instruction do not have the proper type"); if (!MI.isInsertSubreg()) return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); // We are looking at: // Def = INSERT_SEQUENCE v0, v1, sub0. assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); const MachineOperand &MOBaseReg = MI.getOperand(1); const MachineOperand &MOInsertedReg = MI.getOperand(2); if (MOInsertedReg.isUndef()) return false; const MachineOperand &MOSubIdx = MI.getOperand(3); assert(MOSubIdx.isImm() && "One of the subindex of the reg_sequence is not an immediate"); BaseReg.Reg = MOBaseReg.getReg(); BaseReg.SubReg = MOBaseReg.getSubReg(); InsertedReg.Reg = MOInsertedReg.getReg(); InsertedReg.SubReg = MOInsertedReg.getSubReg(); InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); return true; } // Returns a MIRPrinter comment for this machine operand. std::string TargetInstrInfo::createMIROperandComment( const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const { if (!MI.isInlineAsm()) return ""; std::string Flags; raw_string_ostream OS(Flags); if (OpIdx == InlineAsm::MIOp_ExtraInfo) { // Print HasSideEffects, MayLoad, MayStore, IsAlignStack unsigned ExtraInfo = Op.getImm(); bool First = true; for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { if (!First) OS << " "; First = false; OS << Info; } return OS.str(); } int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) return ""; assert(Op.isImm() && "Expected flag operand to be an immediate"); // Pretty print the inline asm operand descriptor. unsigned Flag = Op.getImm(); unsigned Kind = InlineAsm::getKind(Flag); OS << InlineAsm::getKindName(Kind); unsigned RCID = 0; if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && InlineAsm::hasRegClassConstraint(Flag, RCID)) { if (TRI) { OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); } else OS << ":RC" << RCID; } if (InlineAsm::isMemKind(Flag)) { unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); OS << ":" << InlineAsm::getMemConstraintName(MCID); } unsigned TiedTo = 0; if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) OS << " tiedto:$" << TiedTo; return OS.str(); } TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}