//===- llvm/Transforms/LowerAllocations.h - Remove Malloc & Free Insts ------=// // // This file implements a pass that lowers malloc and free instructions to // calls to %malloc & %free functions. This transformation is a target // dependant tranformation because we depend on the size of data types and // alignment constraints. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/LowerAllocations.h" #include "llvm/Target/TargetData.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/SymbolTable.h" #include "llvm/ConstantVals.h" // doPassInitialization - For the lower allocations pass, this ensures that a // module contains a declaration for a malloc and a free function. // // This function is always successful. // bool LowerAllocations::doPassInitialization(Module *M) { bool Changed = false; const MethodType *MallocType = MethodType::get(PointerType::get(Type::SByteTy), vector(1, Type::UIntTy), false); SymbolTable *SymTab = M->getSymbolTableSure(); // Check for a definition of malloc if (Value *V = SymTab->lookup(PointerType::get(MallocType), "malloc")) { MallocMeth = cast(V); // Yup, got it } else { // Nope, add one M->getMethodList().push_back(MallocMeth = new Method(MallocType, false, "malloc")); Changed = true; } const MethodType *FreeType = MethodType::get(Type::VoidTy, vector(1, PointerType::get(Type::SByteTy)), false); // Check for a definition of free if (Value *V = SymTab->lookup(PointerType::get(FreeType), "free")) { FreeMeth = cast(V); // Yup, got it } else { // Nope, add one M->getMethodList().push_back(FreeMeth = new Method(FreeType, false,"free")); Changed = true; } return Changed; // Always successful } // doPerMethodWork - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // bool LowerAllocations::doPerMethodWork(Method *M) { bool Changed = false; assert(MallocMeth && FreeMeth && M && "Pass not initialized!"); // Loop over all of the instructions, looking for malloc or free instructions for (Method::iterator BBI = M->begin(), BBE = M->end(); BBI != BBE; ++BBI) { BasicBlock *BB = *BBI; for (unsigned i = 0; i < BB->size(); ++i) { BasicBlock::InstListType &BBIL = BB->getInstList(); if (MallocInst *MI = dyn_cast(*(BBIL.begin()+i))) { BBIL.remove(BBIL.begin()+i); // remove the malloc instr... const Type *AllocTy =cast(MI->getType())->getElementType(); // Get the number of bytes to be allocated for one element of the // requested type... unsigned Size = DataLayout.getTypeSize(AllocTy); // malloc(type) becomes sbyte *malloc(constint) Value *MallocArg = ConstantUInt::get(Type::UIntTy, Size); if (MI->getNumOperands() && Size == 1) { MallocArg = MI->getOperand(0); // Operand * 1 = Operand } else if (MI->getNumOperands()) { // Multiply it by the array size if neccesary... MallocArg = BinaryOperator::create(Instruction::Mul,MI->getOperand(0), MallocArg); BBIL.insert(BBIL.begin()+i++, cast(MallocArg)); } // Create the call to Malloc... CallInst *MCall = new CallInst(MallocMeth, vector(1, MallocArg)); BBIL.insert(BBIL.begin()+i, MCall); // Create a cast instruction to convert to the right type... CastInst *MCast = new CastInst(MCall, MI->getType()); BBIL.insert(BBIL.begin()+i+1, MCast); // Replace all uses of the old malloc inst with the cast inst MI->replaceAllUsesWith(MCast); delete MI; // Delete the malloc inst Changed = true; } else if (FreeInst *FI = dyn_cast(*(BBIL.begin()+i))) { BBIL.remove(BB->getInstList().begin()+i); // Cast the argument to free into a ubyte*... CastInst *MCast = new CastInst(FI->getOperand(0), PointerType::get(Type::UByteTy)); BBIL.insert(BBIL.begin()+i, MCast); // Insert a call to the free function... CallInst *FCall = new CallInst(FreeMeth, vector(1, MCast)); BBIL.insert(BBIL.begin()+i+1, FCall); // Delete the old free instruction delete FI; Changed = true; } } } return Changed; }