//===- llvm-jitlink.cpp -- Command line interface/tester for llvm-jitlink -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This utility provides a simple command line interface to the llvm jitlink // library, which makes relocatable object files executable in memory. Its // primary function is as a testing utility for the jitlink library. // //===----------------------------------------------------------------------===// #include "llvm-jitlink.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h" #include "llvm/ExecutionEngine/Orc/EPCDebugObjectRegistrar.h" #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h" #include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Object/COFF.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/Timer.h" #include #include #include #ifdef LLVM_ON_UNIX #include #include #include #include #endif // LLVM_ON_UNIX #define DEBUG_TYPE "llvm_jitlink" using namespace llvm; using namespace llvm::jitlink; using namespace llvm::orc; static cl::list InputFiles(cl::Positional, cl::OneOrMore, cl::desc("input files")); static cl::opt NoExec("noexec", cl::desc("Do not execute loaded code"), cl::init(false)); static cl::list CheckFiles("check", cl::desc("File containing verifier checks"), cl::ZeroOrMore); static cl::opt CheckName("check-name", cl::desc("Name of checks to match against"), cl::init("jitlink-check")); static cl::opt EntryPointName("entry", cl::desc("Symbol to call as main entry point"), cl::init("")); static cl::list JITLinkDylibs( "jld", cl::desc("Specifies the JITDylib to be used for any subsequent " "input file arguments")); static cl::list Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"), cl::ZeroOrMore); static cl::list InputArgv("args", cl::Positional, cl::desc("..."), cl::ZeroOrMore, cl::PositionalEatsArgs); static cl::opt NoProcessSymbols("no-process-syms", cl::desc("Do not resolve to llvm-jitlink process symbols"), cl::init(false)); static cl::list AbsoluteDefs( "define-abs", cl::desc("Inject absolute symbol definitions (syntax: =)"), cl::ZeroOrMore); static cl::list TestHarnesses("harness", cl::Positional, cl::desc("Test harness files"), cl::ZeroOrMore, cl::PositionalEatsArgs); static cl::opt ShowInitialExecutionSessionState( "show-init-es", cl::desc("Print ExecutionSession state before resolving entry point"), cl::init(false)); static cl::opt ShowAddrs( "show-addrs", cl::desc("Print registered symbol, section, got and stub addresses"), cl::init(false)); static cl::opt ShowLinkGraph( "show-graph", cl::desc("Print the link graph after fixups have been applied"), cl::init(false)); static cl::opt ShowSizes( "show-sizes", cl::desc("Show sizes pre- and post-dead stripping, and allocations"), cl::init(false)); static cl::opt ShowTimes("show-times", cl::desc("Show times for llvm-jitlink phases"), cl::init(false)); static cl::opt SlabAllocateSizeString( "slab-allocate", cl::desc("Allocate from a slab of the given size " "(allowable suffixes: Kb, Mb, Gb. default = " "Kb)"), cl::init("")); static cl::opt SlabAddress( "slab-address", cl::desc("Set slab target address (requires -slab-allocate and -noexec)"), cl::init(~0ULL)); static cl::opt ShowRelocatedSectionContents( "show-relocated-section-contents", cl::desc("show section contents after fixups have been applied"), cl::init(false)); static cl::opt PhonyExternals( "phony-externals", cl::desc("resolve all otherwise unresolved externals to null"), cl::init(false)); static cl::opt OutOfProcessExecutor( "oop-executor", cl::desc("Launch an out-of-process executor to run code"), cl::ValueOptional); static cl::opt OutOfProcessExecutorConnect( "oop-executor-connect", cl::desc("Connect to an out-of-process executor via TCP")); ExitOnError ExitOnErr; LLVM_ATTRIBUTE_USED void linkComponents() { errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper << (void *)&llvm_orc_deregisterEHFrameSectionWrapper << (void *)&llvm_orc_registerJITLoaderGDBWrapper; } namespace llvm { static raw_ostream & operator<<(raw_ostream &OS, const Session::MemoryRegionInfo &MRI) { return OS << "target addr = " << format("0x%016" PRIx64, MRI.getTargetAddress()) << ", content: " << (const void *)MRI.getContent().data() << " -- " << (const void *)(MRI.getContent().data() + MRI.getContent().size()) << " (" << MRI.getContent().size() << " bytes)"; } static raw_ostream & operator<<(raw_ostream &OS, const Session::SymbolInfoMap &SIM) { OS << "Symbols:\n"; for (auto &SKV : SIM) OS << " \"" << SKV.first() << "\" " << SKV.second << "\n"; return OS; } static raw_ostream & operator<<(raw_ostream &OS, const Session::FileInfo &FI) { for (auto &SIKV : FI.SectionInfos) OS << " Section \"" << SIKV.first() << "\": " << SIKV.second << "\n"; for (auto &GOTKV : FI.GOTEntryInfos) OS << " GOT \"" << GOTKV.first() << "\": " << GOTKV.second << "\n"; for (auto &StubKV : FI.StubInfos) OS << " Stub \"" << StubKV.first() << "\": " << StubKV.second << "\n"; return OS; } static raw_ostream & operator<<(raw_ostream &OS, const Session::FileInfoMap &FIM) { for (auto &FIKV : FIM) OS << "File \"" << FIKV.first() << "\":\n" << FIKV.second; return OS; } static Error applyHarnessPromotions(Session &S, LinkGraph &G) { // If this graph is part of the test harness there's nothing to do. if (S.HarnessFiles.empty() || S.HarnessFiles.count(G.getName())) return Error::success(); LLVM_DEBUG(dbgs() << "Appling promotions to graph " << G.getName() << "\n"); // If this graph is part of the test then promote any symbols referenced by // the harness to default scope, remove all symbols that clash with harness // definitions. std::vector DefinitionsToRemove; for (auto *Sym : G.defined_symbols()) { if (!Sym->hasName()) continue; if (Sym->getLinkage() == Linkage::Weak) { if (!S.CanonicalWeakDefs.count(Sym->getName()) || S.CanonicalWeakDefs[Sym->getName()] != G.getName()) { LLVM_DEBUG({ dbgs() << " Externalizing weak symbol " << Sym->getName() << "\n"; }); DefinitionsToRemove.push_back(Sym); } else { LLVM_DEBUG({ dbgs() << " Making weak symbol " << Sym->getName() << " strong\n"; }); if (S.HarnessExternals.count(Sym->getName())) Sym->setScope(Scope::Default); else Sym->setScope(Scope::Hidden); Sym->setLinkage(Linkage::Strong); } } else if (S.HarnessExternals.count(Sym->getName())) { LLVM_DEBUG(dbgs() << " Promoting " << Sym->getName() << "\n"); Sym->setScope(Scope::Default); Sym->setLive(true); continue; } else if (S.HarnessDefinitions.count(Sym->getName())) { LLVM_DEBUG(dbgs() << " Externalizing " << Sym->getName() << "\n"); DefinitionsToRemove.push_back(Sym); } } for (auto *Sym : DefinitionsToRemove) G.makeExternal(*Sym); return Error::success(); } static uint64_t computeTotalBlockSizes(LinkGraph &G) { uint64_t TotalSize = 0; for (auto *B : G.blocks()) TotalSize += B->getSize(); return TotalSize; } static void dumpSectionContents(raw_ostream &OS, LinkGraph &G) { constexpr JITTargetAddress DumpWidth = 16; static_assert(isPowerOf2_64(DumpWidth), "DumpWidth must be a power of two"); // Put sections in address order. std::vector
Sections; for (auto &S : G.sections()) Sections.push_back(&S); llvm::sort(Sections, [](const Section *LHS, const Section *RHS) { if (llvm::empty(LHS->symbols()) && llvm::empty(RHS->symbols())) return false; if (llvm::empty(LHS->symbols())) return false; if (llvm::empty(RHS->symbols())) return true; SectionRange LHSRange(*LHS); SectionRange RHSRange(*RHS); return LHSRange.getStart() < RHSRange.getStart(); }); for (auto *S : Sections) { OS << S->getName() << " content:"; if (llvm::empty(S->symbols())) { OS << "\n section empty\n"; continue; } // Sort symbols into order, then render. std::vector Syms(S->symbols().begin(), S->symbols().end()); llvm::sort(Syms, [](const Symbol *LHS, const Symbol *RHS) { return LHS->getAddress() < RHS->getAddress(); }); JITTargetAddress NextAddr = Syms.front()->getAddress() & ~(DumpWidth - 1); for (auto *Sym : Syms) { bool IsZeroFill = Sym->getBlock().isZeroFill(); JITTargetAddress SymStart = Sym->getAddress(); JITTargetAddress SymSize = Sym->getSize(); JITTargetAddress SymEnd = SymStart + SymSize; const uint8_t *SymData = IsZeroFill ? nullptr : reinterpret_cast( Sym->getSymbolContent().data()); // Pad any space before the symbol starts. while (NextAddr != SymStart) { if (NextAddr % DumpWidth == 0) OS << formatv("\n{0:x16}:", NextAddr); OS << " "; ++NextAddr; } // Render the symbol content. while (NextAddr != SymEnd) { if (NextAddr % DumpWidth == 0) OS << formatv("\n{0:x16}:", NextAddr); if (IsZeroFill) OS << " 00"; else OS << formatv(" {0:x-2}", SymData[NextAddr - SymStart]); ++NextAddr; } } OS << "\n"; } } class JITLinkSlabAllocator final : public JITLinkMemoryManager { public: static Expected> Create(uint64_t SlabSize) { Error Err = Error::success(); std::unique_ptr Allocator( new JITLinkSlabAllocator(SlabSize, Err)); if (Err) return std::move(Err); return std::move(Allocator); } Expected> allocate(const JITLinkDylib *JD, const SegmentsRequestMap &Request) override { using AllocationMap = DenseMap; // Local class for allocation. class IPMMAlloc : public Allocation { public: IPMMAlloc(JITLinkSlabAllocator &Parent, AllocationMap SegBlocks) : Parent(Parent), SegBlocks(std::move(SegBlocks)) {} MutableArrayRef getWorkingMemory(ProtectionFlags Seg) override { assert(SegBlocks.count(Seg) && "No allocation for segment"); return {static_cast(SegBlocks[Seg].base()), SegBlocks[Seg].allocatedSize()}; } JITTargetAddress getTargetMemory(ProtectionFlags Seg) override { assert(SegBlocks.count(Seg) && "No allocation for segment"); return pointerToJITTargetAddress(SegBlocks[Seg].base()) + Parent.TargetDelta; } void finalizeAsync(FinalizeContinuation OnFinalize) override { OnFinalize(applyProtections()); } Error deallocate() override { for (auto &KV : SegBlocks) if (auto EC = sys::Memory::releaseMappedMemory(KV.second)) return errorCodeToError(EC); return Error::success(); } private: Error applyProtections() { for (auto &KV : SegBlocks) { auto &Prot = KV.first; auto &Block = KV.second; if (auto EC = sys::Memory::protectMappedMemory(Block, Prot)) return errorCodeToError(EC); if (Prot & sys::Memory::MF_EXEC) sys::Memory::InvalidateInstructionCache(Block.base(), Block.allocatedSize()); } return Error::success(); } JITLinkSlabAllocator &Parent; AllocationMap SegBlocks; }; AllocationMap Blocks; for (auto &KV : Request) { auto &Seg = KV.second; if (Seg.getAlignment() > PageSize) return make_error("Cannot request higher than page " "alignment", inconvertibleErrorCode()); if (PageSize % Seg.getAlignment() != 0) return make_error("Page size is not a multiple of " "alignment", inconvertibleErrorCode()); uint64_t ZeroFillStart = Seg.getContentSize(); uint64_t SegmentSize = ZeroFillStart + Seg.getZeroFillSize(); // Round segment size up to page boundary. SegmentSize = (SegmentSize + PageSize - 1) & ~(PageSize - 1); // Take segment bytes from the front of the slab. void *SlabBase = SlabRemaining.base(); uint64_t SlabRemainingSize = SlabRemaining.allocatedSize(); if (SegmentSize > SlabRemainingSize) return make_error("Slab allocator out of memory", inconvertibleErrorCode()); sys::MemoryBlock SegMem(SlabBase, SegmentSize); SlabRemaining = sys::MemoryBlock(reinterpret_cast(SlabBase) + SegmentSize, SlabRemainingSize - SegmentSize); // Zero out the zero-fill memory. memset(static_cast(SegMem.base()) + ZeroFillStart, 0, Seg.getZeroFillSize()); // Record the block for this segment. Blocks[KV.first] = std::move(SegMem); } return std::unique_ptr( new IPMMAlloc(*this, std::move(Blocks))); } private: JITLinkSlabAllocator(uint64_t SlabSize, Error &Err) { ErrorAsOutParameter _(&Err); PageSize = sys::Process::getPageSizeEstimate(); if (!isPowerOf2_64(PageSize)) { Err = make_error("Page size is not a power of 2", inconvertibleErrorCode()); return; } // Round slab request up to page size. SlabSize = (SlabSize + PageSize - 1) & ~(PageSize - 1); const sys::Memory::ProtectionFlags ReadWrite = static_cast(sys::Memory::MF_READ | sys::Memory::MF_WRITE); std::error_code EC; SlabRemaining = sys::Memory::allocateMappedMemory(SlabSize, nullptr, ReadWrite, EC); if (EC) { Err = errorCodeToError(EC); return; } // Calculate the target address delta to link as-if slab were at // SlabAddress. if (SlabAddress != ~0ULL) TargetDelta = SlabAddress - pointerToJITTargetAddress(SlabRemaining.base()); } sys::MemoryBlock SlabRemaining; uint64_t PageSize = 0; int64_t TargetDelta = 0; }; Expected getSlabAllocSize(StringRef SizeString) { SizeString = SizeString.trim(); uint64_t Units = 1024; if (SizeString.endswith_insensitive("kb")) SizeString = SizeString.drop_back(2).rtrim(); else if (SizeString.endswith_insensitive("mb")) { Units = 1024 * 1024; SizeString = SizeString.drop_back(2).rtrim(); } else if (SizeString.endswith_insensitive("gb")) { Units = 1024 * 1024 * 1024; SizeString = SizeString.drop_back(2).rtrim(); } uint64_t SlabSize = 0; if (SizeString.getAsInteger(10, SlabSize)) return make_error("Invalid numeric format for slab size", inconvertibleErrorCode()); return SlabSize * Units; } static std::unique_ptr createMemoryManager() { if (!SlabAllocateSizeString.empty()) { auto SlabSize = ExitOnErr(getSlabAllocSize(SlabAllocateSizeString)); return ExitOnErr(JITLinkSlabAllocator::Create(SlabSize)); } return std::make_unique(); } LLVMJITLinkObjectLinkingLayer::LLVMJITLinkObjectLinkingLayer( Session &S, JITLinkMemoryManager &MemMgr) : ObjectLinkingLayer(S.ES, MemMgr), S(S) {} Error LLVMJITLinkObjectLinkingLayer::add(ResourceTrackerSP RT, std::unique_ptr O) { if (S.HarnessFiles.empty() || S.HarnessFiles.count(O->getBufferIdentifier())) return ObjectLinkingLayer::add(std::move(RT), std::move(O)); // Use getObjectSymbolInfo to compute the init symbol, but ignore // the symbols field. We'll handle that manually to include promotion. auto ObjSymInfo = getObjectSymbolInfo(getExecutionSession(), O->getMemBufferRef()); if (!ObjSymInfo) return ObjSymInfo.takeError(); auto &InitSymbol = ObjSymInfo->second; // If creating an object file was going to fail it would have happened above, // so we can 'cantFail' this. auto Obj = cantFail(object::ObjectFile::createObjectFile(O->getMemBufferRef())); SymbolFlagsMap SymbolFlags; // The init symbol must be included in the SymbolFlags map if present. if (InitSymbol) SymbolFlags[InitSymbol] = JITSymbolFlags::MaterializationSideEffectsOnly; for (auto &Sym : Obj->symbols()) { Expected SymFlagsOrErr = Sym.getFlags(); if (!SymFlagsOrErr) // TODO: Test this error. return SymFlagsOrErr.takeError(); // Skip symbols not defined in this object file. if ((*SymFlagsOrErr & object::BasicSymbolRef::SF_Undefined)) continue; auto Name = Sym.getName(); if (!Name) return Name.takeError(); // Skip symbols that have type SF_File. if (auto SymType = Sym.getType()) { if (*SymType == object::SymbolRef::ST_File) continue; } else return SymType.takeError(); auto SymFlags = JITSymbolFlags::fromObjectSymbol(Sym); if (!SymFlags) return SymFlags.takeError(); if (SymFlags->isWeak()) { // If this is a weak symbol that's not defined in the harness then we // need to either mark it as strong (if this is the first definition // that we've seen) or discard it. if (S.HarnessDefinitions.count(*Name) || S.CanonicalWeakDefs.count(*Name)) continue; S.CanonicalWeakDefs[*Name] = O->getBufferIdentifier(); *SymFlags &= ~JITSymbolFlags::Weak; if (!S.HarnessExternals.count(*Name)) *SymFlags &= ~JITSymbolFlags::Exported; } else if (S.HarnessExternals.count(*Name)) { *SymFlags |= JITSymbolFlags::Exported; } else if (S.HarnessDefinitions.count(*Name) || !(*SymFlagsOrErr & object::BasicSymbolRef::SF_Global)) continue; auto InternedName = S.ES.intern(*Name); SymbolFlags[InternedName] = std::move(*SymFlags); } auto MU = std::make_unique( *this, std::move(O), std::move(SymbolFlags), std::move(InitSymbol)); auto &JD = RT->getJITDylib(); return JD.define(std::move(MU), std::move(RT)); } Expected> LLVMJITLinkRemoteExecutorProcessControl::LaunchExecutor() { #ifndef LLVM_ON_UNIX // FIXME: Add support for Windows. return make_error("-" + OutOfProcessExecutor.ArgStr + " not supported on non-unix platforms", inconvertibleErrorCode()); #else shared::registerStringError(); constexpr int ReadEnd = 0; constexpr int WriteEnd = 1; // Pipe FDs. int ToExecutor[2]; int FromExecutor[2]; pid_t ChildPID; // Create pipes to/from the executor.. if (pipe(ToExecutor) != 0 || pipe(FromExecutor) != 0) return make_error("Unable to create pipe for executor", inconvertibleErrorCode()); ChildPID = fork(); if (ChildPID == 0) { // In the child... // Close the parent ends of the pipes close(ToExecutor[WriteEnd]); close(FromExecutor[ReadEnd]); // Execute the child process. std::unique_ptr ExecutorPath, FDSpecifier; { ExecutorPath = std::make_unique(OutOfProcessExecutor.size() + 1); strcpy(ExecutorPath.get(), OutOfProcessExecutor.data()); std::string FDSpecifierStr("filedescs="); FDSpecifierStr += utostr(ToExecutor[ReadEnd]); FDSpecifierStr += ','; FDSpecifierStr += utostr(FromExecutor[WriteEnd]); FDSpecifier = std::make_unique(FDSpecifierStr.size() + 1); strcpy(FDSpecifier.get(), FDSpecifierStr.c_str()); } char *const Args[] = {ExecutorPath.get(), FDSpecifier.get(), nullptr}; int RC = execvp(ExecutorPath.get(), Args); if (RC != 0) { errs() << "unable to launch out-of-process executor \"" << ExecutorPath.get() << "\"\n"; exit(1); } } // else we're the parent... // Close the child ends of the pipes close(ToExecutor[ReadEnd]); close(FromExecutor[WriteEnd]); // Return an RPC channel connected to our end of the pipes. auto SSP = std::make_shared(); auto Channel = std::make_unique( FromExecutor[ReadEnd], ToExecutor[WriteEnd]); auto Endpoint = std::make_unique(*Channel, true); auto ReportError = [](Error Err) { logAllUnhandledErrors(std::move(Err), errs(), ""); }; Error Err = Error::success(); std::unique_ptr REPC( new LLVMJITLinkRemoteExecutorProcessControl( std::move(SSP), std::move(Channel), std::move(Endpoint), std::move(ReportError), Err)); if (Err) return std::move(Err); return std::move(REPC); #endif } #ifdef LLVM_ON_UNIX static Error createTCPSocketError(Twine Details) { return make_error( formatv("Failed to connect TCP socket '{0}': {1}", OutOfProcessExecutorConnect, Details), inconvertibleErrorCode()); } static Expected connectTCPSocket(std::string Host, std::string PortStr) { addrinfo *AI; addrinfo Hints{}; Hints.ai_family = AF_INET; Hints.ai_socktype = SOCK_STREAM; Hints.ai_flags = AI_NUMERICSERV; if (int EC = getaddrinfo(Host.c_str(), PortStr.c_str(), &Hints, &AI)) return createTCPSocketError("Address resolution failed (" + StringRef(gai_strerror(EC)) + ")"); // Cycle through the returned addrinfo structures and connect to the first // reachable endpoint. int SockFD; addrinfo *Server; for (Server = AI; Server != nullptr; Server = Server->ai_next) { // socket might fail, e.g. if the address family is not supported. Skip to // the next addrinfo structure in such a case. if ((SockFD = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol)) < 0) continue; // If connect returns null, we exit the loop with a working socket. if (connect(SockFD, Server->ai_addr, Server->ai_addrlen) == 0) break; close(SockFD); } freeaddrinfo(AI); // If we reached the end of the loop without connecting to a valid endpoint, // dump the last error that was logged in socket() or connect(). if (Server == nullptr) return createTCPSocketError(std::strerror(errno)); return SockFD; } #endif Expected> LLVMJITLinkRemoteExecutorProcessControl::ConnectToExecutor() { #ifndef LLVM_ON_UNIX // FIXME: Add TCP support for Windows. return make_error("-" + OutOfProcessExecutorConnect.ArgStr + " not supported on non-unix platforms", inconvertibleErrorCode()); #else shared::registerStringError(); StringRef Host, PortStr; std::tie(Host, PortStr) = StringRef(OutOfProcessExecutorConnect).split(':'); if (Host.empty()) return createTCPSocketError("Host name for -" + OutOfProcessExecutorConnect.ArgStr + " can not be empty"); if (PortStr.empty()) return createTCPSocketError("Port number in -" + OutOfProcessExecutorConnect.ArgStr + " can not be empty"); int Port = 0; if (PortStr.getAsInteger(10, Port)) return createTCPSocketError("Port number '" + PortStr + "' is not a valid integer"); Expected SockFD = connectTCPSocket(Host.str(), PortStr.str()); if (!SockFD) return SockFD.takeError(); auto SSP = std::make_shared(); auto Channel = std::make_unique(*SockFD, *SockFD); auto Endpoint = std::make_unique(*Channel, true); auto ReportError = [](Error Err) { logAllUnhandledErrors(std::move(Err), errs(), ""); }; Error Err = Error::success(); std::unique_ptr REPC( new LLVMJITLinkRemoteExecutorProcessControl( std::move(SSP), std::move(Channel), std::move(Endpoint), std::move(ReportError), Err)); if (Err) return std::move(Err); return std::move(REPC); #endif } Error LLVMJITLinkRemoteExecutorProcessControl::disconnect() { std::promise P; auto F = P.get_future(); auto Err = closeConnection([&](Error Err) -> Error { P.set_value(std::move(Err)); Finished = true; return Error::success(); }); ListenerThread.join(); return joinErrors(std::move(Err), F.get()); } class PhonyExternalsGenerator : public DefinitionGenerator { public: Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD, JITDylibLookupFlags JDLookupFlags, const SymbolLookupSet &LookupSet) override { SymbolMap PhonySymbols; for (auto &KV : LookupSet) PhonySymbols[KV.first] = JITEvaluatedSymbol(0, JITSymbolFlags::Exported); return JD.define(absoluteSymbols(std::move(PhonySymbols))); } }; Expected> Session::Create(Triple TT) { auto PageSize = sys::Process::getPageSize(); if (!PageSize) return PageSize.takeError(); /// If -oop-executor is passed then launch the executor. std::unique_ptr EPC; if (OutOfProcessExecutor.getNumOccurrences()) { if (auto REPC = LLVMJITLinkRemoteExecutorProcessControl::LaunchExecutor()) EPC = std::move(*REPC); else return REPC.takeError(); } else if (OutOfProcessExecutorConnect.getNumOccurrences()) { if (auto REPC = LLVMJITLinkRemoteExecutorProcessControl::ConnectToExecutor()) EPC = std::move(*REPC); else return REPC.takeError(); } else EPC = std::make_unique( std::make_shared(), std::move(TT), *PageSize, createMemoryManager()); Error Err = Error::success(); std::unique_ptr S(new Session(std::move(EPC), Err)); if (Err) return std::move(Err); return std::move(S); } Session::~Session() { if (auto Err = ES.endSession()) ES.reportError(std::move(Err)); } // FIXME: Move to createJITDylib if/when we start using Platform support in // llvm-jitlink. Session::Session(std::unique_ptr EPC, Error &Err) : EPC(std::move(EPC)), ObjLayer(*this, this->EPC->getMemMgr()) { /// Local ObjectLinkingLayer::Plugin class to forward modifyPassConfig to the /// Session. class JITLinkSessionPlugin : public ObjectLinkingLayer::Plugin { public: JITLinkSessionPlugin(Session &S) : S(S) {} void modifyPassConfig(MaterializationResponsibility &MR, LinkGraph &G, PassConfiguration &PassConfig) override { S.modifyPassConfig(G.getTargetTriple(), PassConfig); } Error notifyFailed(MaterializationResponsibility &MR) override { return Error::success(); } Error notifyRemovingResources(ResourceKey K) override { return Error::success(); } void notifyTransferringResources(ResourceKey DstKey, ResourceKey SrcKey) override {} private: Session &S; }; ErrorAsOutParameter _(&Err); if (auto MainJDOrErr = ES.createJITDylib("main")) MainJD = &*MainJDOrErr; else { Err = MainJDOrErr.takeError(); return; } if (!NoExec && !this->EPC->getTargetTriple().isOSWindows()) { ObjLayer.addPlugin(std::make_unique( ES, ExitOnErr(EPCEHFrameRegistrar::Create(*this->EPC)))); ObjLayer.addPlugin(std::make_unique( ES, ExitOnErr(createJITLoaderGDBRegistrar(*this->EPC)))); } ObjLayer.addPlugin(std::make_unique(*this)); // Process any harness files. for (auto &HarnessFile : TestHarnesses) { HarnessFiles.insert(HarnessFile); auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(HarnessFile))); auto ObjSymbolInfo = ExitOnErr(getObjectSymbolInfo(ES, ObjBuffer->getMemBufferRef())); for (auto &KV : ObjSymbolInfo.first) HarnessDefinitions.insert(*KV.first); auto Obj = ExitOnErr( object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef())); for (auto &Sym : Obj->symbols()) { uint32_t SymFlags = ExitOnErr(Sym.getFlags()); auto Name = ExitOnErr(Sym.getName()); if (Name.empty()) continue; if (SymFlags & object::BasicSymbolRef::SF_Undefined) HarnessExternals.insert(Name); } } // If a name is defined by some harness file then it's a definition, not an // external. for (auto &DefName : HarnessDefinitions) HarnessExternals.erase(DefName.getKey()); } void Session::dumpSessionInfo(raw_ostream &OS) { OS << "Registered addresses:\n" << SymbolInfos << FileInfos; } void Session::modifyPassConfig(const Triple &TT, PassConfiguration &PassConfig) { if (!CheckFiles.empty()) PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) { if (EPC->getTargetTriple().getObjectFormat() == Triple::ELF) return registerELFGraphInfo(*this, G); if (EPC->getTargetTriple().getObjectFormat() == Triple::MachO) return registerMachOGraphInfo(*this, G); return make_error("Unsupported object format for GOT/stub " "registration", inconvertibleErrorCode()); }); if (ShowLinkGraph) PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error { outs() << "Link graph \"" << G.getName() << "\" post-fixup:\n"; G.dump(outs()); return Error::success(); }); PassConfig.PrePrunePasses.push_back( [this](LinkGraph &G) { return applyHarnessPromotions(*this, G); }); if (ShowSizes) { PassConfig.PrePrunePasses.push_back([this](LinkGraph &G) -> Error { SizeBeforePruning += computeTotalBlockSizes(G); return Error::success(); }); PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) -> Error { SizeAfterFixups += computeTotalBlockSizes(G); return Error::success(); }); } if (ShowRelocatedSectionContents) PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error { outs() << "Relocated section contents for " << G.getName() << ":\n"; dumpSectionContents(outs(), G); return Error::success(); }); } Expected Session::findFileInfo(StringRef FileName) { auto FileInfoItr = FileInfos.find(FileName); if (FileInfoItr == FileInfos.end()) return make_error("file \"" + FileName + "\" not recognized", inconvertibleErrorCode()); return FileInfoItr->second; } Expected Session::findSectionInfo(StringRef FileName, StringRef SectionName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto SecInfoItr = FI->SectionInfos.find(SectionName); if (SecInfoItr == FI->SectionInfos.end()) return make_error("no section \"" + SectionName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return SecInfoItr->second; } Expected Session::findStubInfo(StringRef FileName, StringRef TargetName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto StubInfoItr = FI->StubInfos.find(TargetName); if (StubInfoItr == FI->StubInfos.end()) return make_error("no stub for \"" + TargetName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return StubInfoItr->second; } Expected Session::findGOTEntryInfo(StringRef FileName, StringRef TargetName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto GOTInfoItr = FI->GOTEntryInfos.find(TargetName); if (GOTInfoItr == FI->GOTEntryInfos.end()) return make_error("no GOT entry for \"" + TargetName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return GOTInfoItr->second; } bool Session::isSymbolRegistered(StringRef SymbolName) { return SymbolInfos.count(SymbolName); } Expected Session::findSymbolInfo(StringRef SymbolName, Twine ErrorMsgStem) { auto SymInfoItr = SymbolInfos.find(SymbolName); if (SymInfoItr == SymbolInfos.end()) return make_error(ErrorMsgStem + ": symbol " + SymbolName + " not found", inconvertibleErrorCode()); return SymInfoItr->second; } } // end namespace llvm static Triple getFirstFileTriple() { static Triple FirstTT = []() { assert(!InputFiles.empty() && "InputFiles can not be empty"); for (auto InputFile : InputFiles) { auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(InputFile))); switch (identify_magic(ObjBuffer->getBuffer())) { case file_magic::elf_relocatable: case file_magic::macho_object: case file_magic::coff_object: { auto Obj = ExitOnErr( object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef())); return Obj->makeTriple(); } default: break; } } return Triple(); }(); return FirstTT; } static Error sanitizeArguments(const Triple &TT, const char *ArgV0) { // Set the entry point name if not specified. if (EntryPointName.empty()) { if (TT.getObjectFormat() == Triple::MachO) EntryPointName = "_main"; else EntryPointName = "main"; } // -noexec and --args should not be used together. if (NoExec && !InputArgv.empty()) outs() << "Warning: --args passed to -noexec run will be ignored.\n"; // If -slab-address is passed, require -slab-allocate and -noexec if (SlabAddress != ~0ULL) { if (SlabAllocateSizeString == "" || !NoExec) return make_error( "-slab-address requires -slab-allocate and -noexec", inconvertibleErrorCode()); } // Only one of -oop-executor and -oop-executor-connect can be used. if (!!OutOfProcessExecutor.getNumOccurrences() && !!OutOfProcessExecutorConnect.getNumOccurrences()) return make_error( "Only one of -" + OutOfProcessExecutor.ArgStr + " and -" + OutOfProcessExecutorConnect.ArgStr + " can be specified", inconvertibleErrorCode()); // If -oop-executor was used but no value was specified then use a sensible // default. if (!!OutOfProcessExecutor.getNumOccurrences() && OutOfProcessExecutor.empty()) { SmallString<256> OOPExecutorPath(sys::fs::getMainExecutable( ArgV0, reinterpret_cast(&sanitizeArguments))); sys::path::remove_filename(OOPExecutorPath); if (OOPExecutorPath.back() != '/') OOPExecutorPath += '/'; OOPExecutorPath += "llvm-jitlink-executor"; OutOfProcessExecutor = OOPExecutorPath.str().str(); } return Error::success(); } static Error loadProcessSymbols(Session &S) { auto FilterMainEntryPoint = [EPName = S.ES.intern(EntryPointName)](SymbolStringPtr Name) { return Name != EPName; }; S.MainJD->addGenerator( ExitOnErr(orc::EPCDynamicLibrarySearchGenerator::GetForTargetProcess( *S.EPC, std::move(FilterMainEntryPoint)))); return Error::success(); } static Error loadDylibs(Session &S) { for (const auto &Dylib : Dylibs) { auto G = orc::EPCDynamicLibrarySearchGenerator::Load(*S.EPC, Dylib.c_str()); if (!G) return G.takeError(); S.MainJD->addGenerator(std::move(*G)); } return Error::success(); } static void addPhonyExternalsGenerator(Session &S) { S.MainJD->addGenerator(std::make_unique()); } static Error loadObjects(Session &S) { std::map IdxToJLD; // First, set up JITDylibs. LLVM_DEBUG(dbgs() << "Creating JITDylibs...\n"); { // Create a "main" JITLinkDylib. IdxToJLD[0] = S.MainJD; S.JDSearchOrder.push_back(S.MainJD); LLVM_DEBUG(dbgs() << " 0: " << S.MainJD->getName() << "\n"); // Add any extra JITLinkDylibs from the command line. std::string JDNamePrefix("lib"); for (auto JLDItr = JITLinkDylibs.begin(), JLDEnd = JITLinkDylibs.end(); JLDItr != JLDEnd; ++JLDItr) { auto JD = S.ES.createJITDylib(JDNamePrefix + *JLDItr); if (!JD) return JD.takeError(); unsigned JDIdx = JITLinkDylibs.getPosition(JLDItr - JITLinkDylibs.begin()); IdxToJLD[JDIdx] = &*JD; S.JDSearchOrder.push_back(&*JD); LLVM_DEBUG(dbgs() << " " << JDIdx << ": " << JD->getName() << "\n"); } // Set every dylib to link against every other, in command line order. for (auto *JD : S.JDSearchOrder) { auto LookupFlags = JITDylibLookupFlags::MatchExportedSymbolsOnly; JITDylibSearchOrder LinkOrder; for (auto *JD2 : S.JDSearchOrder) { if (JD2 == JD) continue; LinkOrder.push_back(std::make_pair(JD2, LookupFlags)); } JD->setLinkOrder(std::move(LinkOrder)); } } LLVM_DEBUG(dbgs() << "Adding test harness objects...\n"); for (auto HarnessFile : TestHarnesses) { LLVM_DEBUG(dbgs() << " " << HarnessFile << "\n"); auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(HarnessFile))); ExitOnErr(S.ObjLayer.add(*S.MainJD, std::move(ObjBuffer))); } // Load each object into the corresponding JITDylib.. LLVM_DEBUG(dbgs() << "Adding objects...\n"); for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end(); InputFileItr != InputFileEnd; ++InputFileItr) { unsigned InputFileArgIdx = InputFiles.getPosition(InputFileItr - InputFiles.begin()); const std::string &InputFile = *InputFileItr; auto &JD = *std::prev(IdxToJLD.lower_bound(InputFileArgIdx))->second; LLVM_DEBUG(dbgs() << " " << InputFileArgIdx << ": \"" << InputFile << "\" to " << JD.getName() << "\n";); auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(InputFile))); auto Magic = identify_magic(ObjBuffer->getBuffer()); if (Magic == file_magic::archive || Magic == file_magic::macho_universal_binary) JD.addGenerator(ExitOnErr(StaticLibraryDefinitionGenerator::Load( S.ObjLayer, InputFile.c_str(), S.EPC->getTargetTriple()))); else ExitOnErr(S.ObjLayer.add(JD, std::move(ObjBuffer))); } // Define absolute symbols. LLVM_DEBUG(dbgs() << "Defining absolute symbols...\n"); for (auto AbsDefItr = AbsoluteDefs.begin(), AbsDefEnd = AbsoluteDefs.end(); AbsDefItr != AbsDefEnd; ++AbsDefItr) { unsigned AbsDefArgIdx = AbsoluteDefs.getPosition(AbsDefItr - AbsoluteDefs.begin()); auto &JD = *std::prev(IdxToJLD.lower_bound(AbsDefArgIdx))->second; StringRef AbsDefStmt = *AbsDefItr; size_t EqIdx = AbsDefStmt.find_first_of('='); if (EqIdx == StringRef::npos) return make_error("Invalid absolute define \"" + AbsDefStmt + "\". Syntax: =", inconvertibleErrorCode()); StringRef Name = AbsDefStmt.substr(0, EqIdx).trim(); StringRef AddrStr = AbsDefStmt.substr(EqIdx + 1).trim(); uint64_t Addr; if (AddrStr.getAsInteger(0, Addr)) return make_error("Invalid address expression \"" + AddrStr + "\" in absolute define \"" + AbsDefStmt + "\"", inconvertibleErrorCode()); JITEvaluatedSymbol AbsDef(Addr, JITSymbolFlags::Exported); if (auto Err = JD.define(absoluteSymbols({{S.ES.intern(Name), AbsDef}}))) return Err; // Register the absolute symbol with the session symbol infos. S.SymbolInfos[Name] = {ArrayRef(), Addr}; } LLVM_DEBUG({ dbgs() << "Dylib search order is [ "; for (auto *JD : S.JDSearchOrder) dbgs() << JD->getName() << " "; dbgs() << "]\n"; }); return Error::success(); } static Error runChecks(Session &S) { auto TripleName = S.EPC->getTargetTriple().str(); std::string ErrorStr; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, ErrorStr); if (!TheTarget) ExitOnErr(make_error("Error accessing target '" + TripleName + "': " + ErrorStr, inconvertibleErrorCode())); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, "", "")); if (!STI) ExitOnErr( make_error("Unable to create subtarget for " + TripleName, inconvertibleErrorCode())); std::unique_ptr MRI(TheTarget->createMCRegInfo(TripleName)); if (!MRI) ExitOnErr(make_error("Unable to create target register info " "for " + TripleName, inconvertibleErrorCode())); MCTargetOptions MCOptions; std::unique_ptr MAI( TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); if (!MAI) ExitOnErr(make_error("Unable to create target asm info " + TripleName, inconvertibleErrorCode())); MCContext Ctx(Triple(TripleName), MAI.get(), MRI.get(), STI.get()); std::unique_ptr Disassembler( TheTarget->createMCDisassembler(*STI, Ctx)); if (!Disassembler) ExitOnErr(make_error("Unable to create disassembler for " + TripleName, inconvertibleErrorCode())); std::unique_ptr MII(TheTarget->createMCInstrInfo()); std::unique_ptr InstPrinter( TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI)); auto IsSymbolValid = [&S](StringRef Symbol) { return S.isSymbolRegistered(Symbol); }; auto GetSymbolInfo = [&S](StringRef Symbol) { return S.findSymbolInfo(Symbol, "Can not get symbol info"); }; auto GetSectionInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findSectionInfo(FileName, SectionName); }; auto GetStubInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findStubInfo(FileName, SectionName); }; auto GetGOTInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findGOTEntryInfo(FileName, SectionName); }; RuntimeDyldChecker Checker( IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo, GetGOTInfo, S.EPC->getTargetTriple().isLittleEndian() ? support::little : support::big, Disassembler.get(), InstPrinter.get(), dbgs()); std::string CheckLineStart = "# " + CheckName + ":"; for (auto &CheckFile : CheckFiles) { auto CheckerFileBuf = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(CheckFile))); if (!Checker.checkAllRulesInBuffer(CheckLineStart, &*CheckerFileBuf)) ExitOnErr(make_error( "Some checks in " + CheckFile + " failed", inconvertibleErrorCode())); } return Error::success(); } static void dumpSessionStats(Session &S) { if (ShowSizes) outs() << "Total size of all blocks before pruning: " << S.SizeBeforePruning << "\nTotal size of all blocks after fixups: " << S.SizeAfterFixups << "\n"; } static Expected getMainEntryPoint(Session &S) { return S.ES.lookup(S.JDSearchOrder, EntryPointName); } namespace { struct JITLinkTimers { TimerGroup JITLinkTG{"llvm-jitlink timers", "timers for llvm-jitlink phases"}; Timer LoadObjectsTimer{"load", "time to load/add object files", JITLinkTG}; Timer LinkTimer{"link", "time to link object files", JITLinkTG}; Timer RunTimer{"run", "time to execute jitlink'd code", JITLinkTG}; }; } // namespace int main(int argc, char *argv[]) { InitLLVM X(argc, argv); InitializeAllTargetInfos(); InitializeAllTargetMCs(); InitializeAllDisassemblers(); cl::ParseCommandLineOptions(argc, argv, "llvm jitlink tool"); ExitOnErr.setBanner(std::string(argv[0]) + ": "); /// If timers are enabled, create a JITLinkTimers instance. std::unique_ptr Timers = ShowTimes ? std::make_unique() : nullptr; ExitOnErr(sanitizeArguments(getFirstFileTriple(), argv[0])); auto S = ExitOnErr(Session::Create(getFirstFileTriple())); { TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr); ExitOnErr(loadObjects(*S)); } if (!NoProcessSymbols) ExitOnErr(loadProcessSymbols(*S)); ExitOnErr(loadDylibs(*S)); if (PhonyExternals) addPhonyExternalsGenerator(*S); if (ShowInitialExecutionSessionState) S->ES.dump(outs()); JITEvaluatedSymbol EntryPoint = 0; { TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr); EntryPoint = ExitOnErr(getMainEntryPoint(*S)); } if (ShowAddrs) S->dumpSessionInfo(outs()); ExitOnErr(runChecks(*S)); dumpSessionStats(*S); if (NoExec) return 0; int Result = 0; { TimeRegion TR(Timers ? &Timers->RunTimer : nullptr); Result = ExitOnErr(S->EPC->runAsMain(EntryPoint.getAddress(), InputArgv)); } ExitOnErr(S->ES.endSession()); ExitOnErr(S->EPC->disconnect()); return Result; }