//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the ELF-specific dumper for llvm-readobj. /// //===----------------------------------------------------------------------===// #include "ARMEHABIPrinter.h" #include "DwarfCFIEHPrinter.h" #include "ObjDumper.h" #include "StackMapPrinter.h" #include "llvm-readobj.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Object/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ELFTypes.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/RelocationResolver.h" #include "llvm/Object/StackMapParser.h" #include "llvm/Support/AMDGPUMetadata.h" #include "llvm/Support/ARMAttributeParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MipsABIFlags.h" #include "llvm/Support/RISCVAttributeParser.h" #include "llvm/Support/RISCVAttributes.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::object; using namespace ELF; #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ case ns::enum: \ return #enum; #define ENUM_ENT(enum, altName) \ { #enum, altName, ELF::enum } #define ENUM_ENT_1(enum) \ { #enum, #enum, ELF::enum } #define TYPEDEF_ELF_TYPES(ELFT) \ using ELFO = ELFFile; \ using Elf_Addr = typename ELFT::Addr; \ using Elf_Shdr = typename ELFT::Shdr; \ using Elf_Sym = typename ELFT::Sym; \ using Elf_Dyn = typename ELFT::Dyn; \ using Elf_Dyn_Range = typename ELFT::DynRange; \ using Elf_Rel = typename ELFT::Rel; \ using Elf_Rela = typename ELFT::Rela; \ using Elf_Relr = typename ELFT::Relr; \ using Elf_Rel_Range = typename ELFT::RelRange; \ using Elf_Rela_Range = typename ELFT::RelaRange; \ using Elf_Relr_Range = typename ELFT::RelrRange; \ using Elf_Phdr = typename ELFT::Phdr; \ using Elf_Half = typename ELFT::Half; \ using Elf_Ehdr = typename ELFT::Ehdr; \ using Elf_Word = typename ELFT::Word; \ using Elf_Hash = typename ELFT::Hash; \ using Elf_GnuHash = typename ELFT::GnuHash; \ using Elf_Note = typename ELFT::Note; \ using Elf_Sym_Range = typename ELFT::SymRange; \ using Elf_Versym = typename ELFT::Versym; \ using Elf_Verneed = typename ELFT::Verneed; \ using Elf_Vernaux = typename ELFT::Vernaux; \ using Elf_Verdef = typename ELFT::Verdef; \ using Elf_Verdaux = typename ELFT::Verdaux; \ using Elf_CGProfile = typename ELFT::CGProfile; \ using uintX_t = typename ELFT::uint; namespace { template class DumpStyle; template struct RelSymbol { RelSymbol(const typename ELFT::Sym *S, StringRef N) : Sym(S), Name(N.str()) {} const typename ELFT::Sym *Sym; std::string Name; }; /// Represents a contiguous uniform range in the file. We cannot just create a /// range directly because when creating one of these from the .dynamic table /// the size, entity size and virtual address are different entries in arbitrary /// order (DT_REL, DT_RELSZ, DT_RELENT for example). struct DynRegionInfo { DynRegionInfo(StringRef ObjName) : FileName(ObjName) {} DynRegionInfo(const uint8_t *A, uint64_t S, uint64_t ES, StringRef ObjName) : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {} /// Address in current address space. const uint8_t *Addr = nullptr; /// Size in bytes of the region. uint64_t Size = 0; /// Size of each entity in the region. uint64_t EntSize = 0; /// Name of the file. Used for error reporting. StringRef FileName; /// Error prefix. Used for error reporting to provide more information. std::string Context; /// Region size name. Used for error reporting. StringRef SizePrintName = "size"; /// Entry size name. Used for error reporting. If this field is empty, errors /// will not mention the entry size. StringRef EntSizePrintName = "entry size"; template ArrayRef getAsArrayRef() const { const Type *Start = reinterpret_cast(Addr); if (!Start) return {Start, Start}; if (EntSize == sizeof(Type) && (Size % EntSize == 0)) return {Start, Start + (Size / EntSize)}; std::string Msg; if (!Context.empty()) Msg += Context + " has "; Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") .str(); if (!EntSizePrintName.empty()) Msg += (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") .str(); reportWarning(createError(Msg.c_str()), FileName); return {Start, Start}; } }; namespace { struct VerdAux { unsigned Offset; std::string Name; }; struct VerDef { unsigned Offset; unsigned Version; unsigned Flags; unsigned Ndx; unsigned Cnt; unsigned Hash; std::string Name; std::vector AuxV; }; struct VernAux { unsigned Hash; unsigned Flags; unsigned Other; unsigned Offset; std::string Name; }; struct VerNeed { unsigned Version; unsigned Cnt; unsigned Offset; std::string File; std::vector AuxV; }; struct NoteType { uint32_t ID; StringRef Name; }; } // namespace template class Relocation { public: Relocation(const typename ELFT::Rel &R, bool IsMips64EL) : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), Offset(R.r_offset), Info(R.r_info) {} Relocation(const typename ELFT::Rela &R, bool IsMips64EL) : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { Addend = R.r_addend; } uint32_t Type; uint32_t Symbol; typename ELFT::uint Offset; typename ELFT::uint Info; Optional Addend; }; template class ELFDumper : public ObjDumper { public: ELFDumper(const object::ELFObjectFile &ObjF, ScopedPrinter &Writer); void printFileHeaders() override; void printSectionHeaders() override; void printRelocations() override; void printDependentLibs() override; void printDynamicRelocations() override; void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; void printHashSymbols() override; void printUnwindInfo() override; void printDynamicTable() override; void printNeededLibraries() override; void printProgramHeaders(bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printHashTable() override; void printGnuHashTable() override; void printLoadName() override; void printVersionInfo() override; void printGroupSections() override; void printArchSpecificInfo() override; void printStackMap() const override; void printHashHistograms() override; void printCGProfile() override; void printAddrsig() override; void printNotes() override; void printELFLinkerOptions() override; void printStackSizes() override; const object::ELFObjectFile &getElfObject() const { return ObjF; }; private: std::unique_ptr> ELFDumperStyle; TYPEDEF_ELF_TYPES(ELFT) Expected createDRI(uint64_t Offset, uint64_t Size, uint64_t EntSize) { if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) return createError("offset (0x" + Twine::utohexstr(Offset) + ") + size (0x" + Twine::utohexstr(Size) + ") is greater than the file size (0x" + Twine::utohexstr(Obj.getBufSize()) + ")"); return DynRegionInfo(Obj.base() + Offset, Size, EntSize, ObjF.getFileName()); } void printAttributes(); void printMipsReginfo(); void printMipsOptions(); std::pair findDynamic(); void loadDynamicTable(); void parseDynamicTable(); Expected getSymbolVersion(const Elf_Sym &Sym, bool &IsDefault) const; Error LoadVersionMap() const; const object::ELFObjectFile &ObjF; const ELFFile &Obj; DynRegionInfo DynRelRegion; DynRegionInfo DynRelaRegion; DynRegionInfo DynRelrRegion; DynRegionInfo DynPLTRelRegion; Optional DynSymRegion; DynRegionInfo DynamicTable; StringRef DynamicStringTable; StringRef SOName = ""; const Elf_Hash *HashTable = nullptr; const Elf_GnuHash *GnuHashTable = nullptr; const Elf_Shdr *DotSymtabSec = nullptr; const Elf_Shdr *DotDynsymSec = nullptr; const Elf_Shdr *DotCGProfileSec = nullptr; const Elf_Shdr *DotAddrsigSec = nullptr; ArrayRef ShndxTable; const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d struct VersionEntry { std::string Name; bool IsVerDef; }; mutable SmallVector, 16> VersionMap; std::unordered_set Warnings; std::string describe(const Elf_Shdr &Sec) const; public: Elf_Dyn_Range dynamic_table() const { // A valid .dynamic section contains an array of entries terminated // with a DT_NULL entry. However, sometimes the section content may // continue past the DT_NULL entry, so to dump the section correctly, // we first find the end of the entries by iterating over them. Elf_Dyn_Range Table = DynamicTable.getAsArrayRef(); size_t Size = 0; while (Size < Table.size()) if (Table[Size++].getTag() == DT_NULL) break; return Table.slice(0, Size); } Optional getDynSymRegion() const { return DynSymRegion; } Elf_Sym_Range dynamic_symbols() const { if (!DynSymRegion) return Elf_Sym_Range(); return DynSymRegion->getAsArrayRef(); } Elf_Rel_Range dyn_rels() const; Elf_Rela_Range dyn_relas() const; Elf_Relr_Range dyn_relrs() const; std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic) const; Expected getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex) const; Expected getSymbolSectionName(const Elf_Sym &Symbol, unsigned SectionIndex) const; std::string getStaticSymbolName(uint32_t Index) const; StringRef getDynamicString(uint64_t Value) const; Expected getSymbolVersionByIndex(uint32_t VersionSymbolIndex, bool &IsDefault) const; void printSymbolsHelper(bool IsDynamic) const; std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; const Elf_Shdr *findSectionByName(StringRef Name) const; const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; } const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; } const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; } ArrayRef getShndxTable() const { return ShndxTable; } StringRef getDynamicStringTable() const { return DynamicStringTable; } const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; } const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; } const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; } const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; } const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; } const Elf_Hash *getHashTable() const { return HashTable; } const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; } Expected> getVersionTable(const Elf_Shdr &Sec, ArrayRef *SymTab, StringRef *StrTab) const; Expected> getVersionDefinitions(const Elf_Shdr &Sec) const; Expected> getVersionDependencies(const Elf_Shdr &Sec) const; Expected> getRelocationTarget(const Relocation &R, const Elf_Shdr *SymTab) const; std::function WarningHandler; void reportUniqueWarning(Error Err) const; }; template static std::string describe(const ELFFile &Obj, const typename ELFT::Shdr &Sec) { unsigned SecNdx = &Sec - &cantFail(Obj.sections()).front(); return (object::getELFSectionTypeName(Obj.getHeader().e_machine, Sec.sh_type) + " section with index " + Twine(SecNdx)) .str(); } template std::string ELFDumper::describe(const Elf_Shdr &Sec) const { return ::describe(Obj, Sec); } template static Expected getLinkAsStrtab(const ELFFile &Obj, const typename ELFT::Shdr &Sec) { Expected StrTabSecOrErr = Obj.getSection(Sec.sh_link); if (!StrTabSecOrErr) return createError("invalid section linked to " + describe(Obj, Sec) + ": " + toString(StrTabSecOrErr.takeError())); Expected StrTabOrErr = Obj.getStringTable(**StrTabSecOrErr); if (!StrTabOrErr) return createError("invalid string table linked to " + describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); return *StrTabOrErr; } // Returns the linked symbol table and associated string table for a given section. template static Expected> getLinkAsSymtab(const ELFFile &Obj, const typename ELFT::Shdr &Sec, unsigned ExpectedType) { Expected SymtabOrErr = Obj.getSection(Sec.sh_link); if (!SymtabOrErr) return createError("invalid section linked to " + describe(Obj, Sec) + ": " + toString(SymtabOrErr.takeError())); if ((*SymtabOrErr)->sh_type != ExpectedType) return createError( "invalid section linked to " + describe(Obj, Sec) + ": expected " + object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + ", but got " + object::getELFSectionTypeName(Obj.getHeader().e_machine, (*SymtabOrErr)->sh_type)); Expected StrTabOrErr = getLinkAsStrtab(Obj, **SymtabOrErr); if (!StrTabOrErr) return createError( "can't get a string table for the symbol table linked to " + describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); Expected SymsOrErr = Obj.symbols(*SymtabOrErr); if (!SymsOrErr) return createError("unable to read symbols from the " + describe(Obj, Sec) + ": " + toString(SymsOrErr.takeError())); return std::make_pair(*SymsOrErr, *StrTabOrErr); } template Expected> ELFDumper::getVersionTable(const Elf_Shdr &Sec, ArrayRef *SymTab, StringRef *StrTab) const { assert((!SymTab && !StrTab) || (SymTab && StrTab)); if (uintptr_t(Obj.base() + Sec.sh_offset) % sizeof(uint16_t) != 0) return createError("the " + describe(Sec) + " is misaligned"); Expected> VersionsOrErr = Obj.template getSectionContentsAsArray(Sec); if (!VersionsOrErr) return createError("cannot read content of " + describe(Sec) + ": " + toString(VersionsOrErr.takeError())); Expected, StringRef>> SymTabOrErr = getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); if (!SymTabOrErr) { reportUniqueWarning(SymTabOrErr.takeError()); return *VersionsOrErr; } if (SymTabOrErr->first.size() != VersionsOrErr->size()) reportUniqueWarning( createError(describe(Sec) + ": the number of entries (" + Twine(VersionsOrErr->size()) + ") does not match the number of symbols (" + Twine(SymTabOrErr->first.size()) + ") in the symbol table with index " + Twine(Sec.sh_link))); if (SymTab) std::tie(*SymTab, *StrTab) = *SymTabOrErr; return *VersionsOrErr; } template Expected> ELFDumper::getVersionDefinitions(const Elf_Shdr &Sec) const { Expected StrTabOrErr = getLinkAsStrtab(Obj, Sec); if (!StrTabOrErr) return StrTabOrErr.takeError(); Expected> ContentsOrErr = Obj.getSectionContents(Sec); if (!ContentsOrErr) return createError("cannot read content of " + describe(Sec) + ": " + toString(ContentsOrErr.takeError())); const uint8_t *Start = ContentsOrErr->data(); const uint8_t *End = Start + ContentsOrErr->size(); auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf, unsigned VerDefNdx) -> Expected { if (VerdauxBuf + sizeof(Elf_Verdaux) > End) return createError("invalid " + describe(Sec) + ": version definition " + Twine(VerDefNdx) + " refers to an auxiliary entry that goes past the end " "of the section"); auto *Verdaux = reinterpret_cast(VerdauxBuf); VerdauxBuf += Verdaux->vda_next; VerdAux Aux; Aux.Offset = VerdauxBuf - Start; if (Verdaux->vda_name <= StrTabOrErr->size()) Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name)); else Aux.Name = "vda_name) + ">"; return Aux; }; std::vector Ret; const uint8_t *VerdefBuf = Start; for (unsigned I = 1; I <= /*VerDefsNum=*/Sec.sh_info; ++I) { if (VerdefBuf + sizeof(Elf_Verdef) > End) return createError("invalid " + describe(Sec) + ": version definition " + Twine(I) + " goes past the end of the section"); if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0) return createError( "invalid " + describe(Sec) + ": found a misaligned version definition entry at offset 0x" + Twine::utohexstr(VerdefBuf - Start)); unsigned Version = *reinterpret_cast(VerdefBuf); if (Version != 1) return createError("unable to dump " + describe(Sec) + ": version " + Twine(Version) + " is not yet supported"); const Elf_Verdef *D = reinterpret_cast(VerdefBuf); VerDef &VD = *Ret.emplace(Ret.end()); VD.Offset = VerdefBuf - Start; VD.Version = D->vd_version; VD.Flags = D->vd_flags; VD.Ndx = D->vd_ndx; VD.Cnt = D->vd_cnt; VD.Hash = D->vd_hash; const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux; for (unsigned J = 0; J < D->vd_cnt; ++J) { if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0) return createError("invalid " + describe(Sec) + ": found a misaligned auxiliary entry at offset 0x" + Twine::utohexstr(VerdauxBuf - Start)); Expected AuxOrErr = ExtractNextAux(VerdauxBuf, I); if (!AuxOrErr) return AuxOrErr.takeError(); if (J == 0) VD.Name = AuxOrErr->Name; else VD.AuxV.push_back(*AuxOrErr); } VerdefBuf += D->vd_next; } return Ret; } template Expected> ELFDumper::getVersionDependencies(const Elf_Shdr &Sec) const { StringRef StrTab; Expected StrTabOrErr = getLinkAsStrtab(Obj, Sec); if (!StrTabOrErr) reportUniqueWarning(StrTabOrErr.takeError()); else StrTab = *StrTabOrErr; Expected> ContentsOrErr = Obj.getSectionContents(Sec); if (!ContentsOrErr) return createError("cannot read content of " + describe(Sec) + ": " + toString(ContentsOrErr.takeError())); const uint8_t *Start = ContentsOrErr->data(); const uint8_t *End = Start + ContentsOrErr->size(); const uint8_t *VerneedBuf = Start; std::vector Ret; for (unsigned I = 1; I <= /*VerneedNum=*/Sec.sh_info; ++I) { if (VerneedBuf + sizeof(Elf_Verdef) > End) return createError("invalid " + describe(Sec) + ": version dependency " + Twine(I) + " goes past the end of the section"); if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0) return createError( "invalid " + describe(Sec) + ": found a misaligned version dependency entry at offset 0x" + Twine::utohexstr(VerneedBuf - Start)); unsigned Version = *reinterpret_cast(VerneedBuf); if (Version != 1) return createError("unable to dump " + describe(Sec) + ": version " + Twine(Version) + " is not yet supported"); const Elf_Verneed *Verneed = reinterpret_cast(VerneedBuf); VerNeed &VN = *Ret.emplace(Ret.end()); VN.Version = Verneed->vn_version; VN.Cnt = Verneed->vn_cnt; VN.Offset = VerneedBuf - Start; if (Verneed->vn_file < StrTab.size()) VN.File = std::string(StrTab.drop_front(Verneed->vn_file)); else VN.File = "vn_file) + ">"; const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; for (unsigned J = 0; J < Verneed->vn_cnt; ++J) { if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0) return createError("invalid " + describe(Sec) + ": found a misaligned auxiliary entry at offset 0x" + Twine::utohexstr(VernauxBuf - Start)); if (VernauxBuf + sizeof(Elf_Vernaux) > End) return createError( "invalid " + describe(Sec) + ": version dependency " + Twine(I) + " refers to an auxiliary entry that goes past the end " "of the section"); const Elf_Vernaux *Vernaux = reinterpret_cast(VernauxBuf); VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end()); Aux.Hash = Vernaux->vna_hash; Aux.Flags = Vernaux->vna_flags; Aux.Other = Vernaux->vna_other; Aux.Offset = VernauxBuf - Start; if (StrTab.size() <= Vernaux->vna_name) Aux.Name = ""; else Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name)); VernauxBuf += Vernaux->vna_next; } VerneedBuf += Verneed->vn_next; } return Ret; } template void ELFDumper::printSymbolsHelper(bool IsDynamic) const { Optional StrTable; size_t Entries = 0; Elf_Sym_Range Syms(nullptr, nullptr); const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; if (IsDynamic) { StrTable = DynamicStringTable; Syms = dynamic_symbols(); Entries = Syms.size(); } else if (DotSymtabSec) { if (Expected StrTableOrErr = Obj.getStringTableForSymtab(*DotSymtabSec)) StrTable = *StrTableOrErr; else reportUniqueWarning(createError( "unable to get the string table for the SHT_SYMTAB section: " + toString(StrTableOrErr.takeError()))); if (Expected SymsOrErr = Obj.symbols(DotSymtabSec)) Syms = *SymsOrErr; else reportUniqueWarning( createError("unable to read symbols from the SHT_SYMTAB section: " + toString(SymsOrErr.takeError()))); Entries = DotSymtabSec->getEntityCount(); } if (Syms.begin() == Syms.end()) return; // The st_other field has 2 logical parts. The first two bits hold the symbol // visibility (STV_*) and the remainder hold other platform-specific values. bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }) != Syms.end(); ELFDumperStyle->printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed); for (const Elf_Sym &Sym : Syms) ELFDumperStyle->printSymbol(Sym, &Sym - Syms.begin(), StrTable, IsDynamic, NonVisibilityBitsUsed); } template class MipsGOTParser; template class DumpStyle { public: TYPEDEF_ELF_TYPES(ELFT) DumpStyle(const ELFDumper &Dumper) : Obj(*Dumper.getElfObject().getELFFile()), ElfObj(Dumper.getElfObject()), Dumper(Dumper) { FileName = ElfObj.getFileName(); } virtual ~DumpStyle() = default; virtual void printFileHeaders() = 0; virtual void printGroupSections() = 0; virtual void printRelocations() = 0; virtual void printSectionHeaders() = 0; virtual void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) = 0; virtual void printHashSymbols() {} virtual void printDependentLibs() = 0; virtual void printDynamic() {} virtual void printDynamicRelocations() = 0; virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, bool NonVisibilityBitsUsed) {} virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic, bool NonVisibilityBitsUsed) = 0; virtual void printProgramHeaders(bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) = 0; virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; virtual void printHashHistograms() = 0; virtual void printCGProfile() = 0; virtual void printAddrsig() = 0; virtual void printNotes() = 0; virtual void printELFLinkerOptions() = 0; virtual void printStackSizes() = 0; void printNonRelocatableStackSizes(std::function PrintHeader); void printRelocatableStackSizes(std::function PrintHeader); void printFunctionStackSize(uint64_t SymValue, Optional FunctionSec, const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset); void printStackSize(RelocationRef Rel, const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, const RelocationResolver &Resolver, DataExtractor Data); virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0; virtual void printMipsGOT(const MipsGOTParser &Parser) = 0; virtual void printMipsPLT(const MipsGOTParser &Parser) = 0; virtual void printMipsABIFlags() = 0; const ELFDumper &dumper() const { return Dumper; } protected: void printDependentLibsHelper( function_ref OnSectionStart, function_ref OnSectionEntry); virtual void printReloc(const Relocation &R, unsigned RelIndex, const Elf_Shdr &Sec, const Elf_Shdr *SymTab) = 0; virtual void printRelrReloc(const Elf_Relr &R) = 0; virtual void printDynamicReloc(const Relocation &R) = 0; void printRelocationsHelper(const Elf_Shdr &Sec); void printDynamicRelocationsHelper(); virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, const DynRegionInfo &Reg){}; StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; void reportUniqueWarning(Error Err) const; StringRef FileName; const ELFFile &Obj; const ELFObjectFile &ElfObj; private: const ELFDumper &Dumper; }; template class GNUStyle : public DumpStyle { formatted_raw_ostream &OS; public: TYPEDEF_ELF_TYPES(ELFT) GNUStyle(ScopedPrinter &W, const ELFDumper &Dumper) : DumpStyle(Dumper), OS(static_cast(W.getOStream())) { assert(&W.getOStream() == &llvm::fouts()); } void printFileHeaders() override; void printGroupSections() override; void printRelocations() override; void printSectionHeaders() override; void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; void printHashSymbols() override; void printDependentLibs() override; void printDynamic() override; void printDynamicRelocations() override; void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, bool NonVisibilityBitsUsed) override; void printProgramHeaders(bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printVersionSymbolSection(const Elf_Shdr *Sec) override; void printVersionDefinitionSection(const Elf_Shdr *Sec) override; void printVersionDependencySection(const Elf_Shdr *Sec) override; void printHashHistograms() override; void printCGProfile() override; void printAddrsig() override; void printNotes() override; void printELFLinkerOptions() override; void printStackSizes() override; void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; void printMipsGOT(const MipsGOTParser &Parser) override; void printMipsPLT(const MipsGOTParser &Parser) override; void printMipsABIFlags() override; private: void printHashHistogram(const Elf_Hash &HashTable); void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable); void printHashTableSymbols(const Elf_Hash &HashTable); void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); struct Field { std::string Str; unsigned Column; Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} Field(unsigned Col) : Column(Col) {} }; template std::string printEnum(T Value, ArrayRef> EnumValues) { for (const EnumEntry &EnumItem : EnumValues) if (EnumItem.Value == Value) return std::string(EnumItem.AltName); return to_hexString(Value, false); } template std::string printFlags(T Value, ArrayRef> EnumValues, TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, TEnum EnumMask3 = {}) { std::string Str; for (const EnumEntry &Flag : EnumValues) { if (Flag.Value == 0) continue; TEnum EnumMask{}; if (Flag.Value & EnumMask1) EnumMask = EnumMask1; else if (Flag.Value & EnumMask2) EnumMask = EnumMask2; else if (Flag.Value & EnumMask3) EnumMask = EnumMask3; bool IsEnum = (Flag.Value & EnumMask) != 0; if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || (IsEnum && (Value & EnumMask) == Flag.Value)) { if (!Str.empty()) Str += ", "; Str += Flag.AltName; } } return Str; } formatted_raw_ostream &printField(struct Field F) { if (F.Column != 0) OS.PadToColumn(F.Column); OS << F.Str; OS.flush(); return OS; } void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, StringRef StrTable, uint32_t Bucket); void printReloc(const Relocation &R, unsigned RelIndex, const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override; void printRelrReloc(const Elf_Relr &R) override; void printRelRelaReloc(const Relocation &R, const RelSymbol &RelSym); void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic, bool NonVisibilityBitsUsed) override; void printDynamicRelocHeader(unsigned Type, StringRef Name, const DynRegionInfo &Reg) override; void printDynamicReloc(const Relocation &R) override; std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex); void printProgramHeaders(); void printSectionMapping(); void printGNUVersionSectionProlog(const typename ELFT::Shdr *Sec, const Twine &Label, unsigned EntriesNum); }; template void ELFDumper::reportUniqueWarning(Error Err) const { handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) { cantFail(WarningHandler(EI.message()), "WarningHandler should always return ErrorSuccess"); }); } template void DumpStyle::reportUniqueWarning(Error Err) const { this->dumper().reportUniqueWarning(std::move(Err)); } template class LLVMStyle : public DumpStyle { public: TYPEDEF_ELF_TYPES(ELFT) LLVMStyle(ScopedPrinter &W, const ELFDumper &Dumper) : DumpStyle(Dumper), W(W) {} void printFileHeaders() override; void printGroupSections() override; void printRelocations() override; void printSectionHeaders() override; void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; void printDependentLibs() override; void printDynamic() override; void printDynamicRelocations() override; void printProgramHeaders(bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) override; void printVersionSymbolSection(const Elf_Shdr *Sec) override; void printVersionDefinitionSection(const Elf_Shdr *Sec) override; void printVersionDependencySection(const Elf_Shdr *Sec) override; void printHashHistograms() override; void printCGProfile() override; void printAddrsig() override; void printNotes() override; void printELFLinkerOptions() override; void printStackSizes() override; void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; void printMipsGOT(const MipsGOTParser &Parser) override; void printMipsPLT(const MipsGOTParser &Parser) override; void printMipsABIFlags() override; private: void printReloc(const Relocation &R, unsigned RelIndex, const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override; void printRelrReloc(const Elf_Relr &R) override; void printDynamicReloc(const Relocation &R) override; void printRelRelaReloc(const Relocation &R, StringRef SymbolName); void printSymbols(); void printDynamicSymbols(); void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex); void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic, bool /*NonVisibilityBitsUsed*/) override; void printProgramHeaders(); void printSectionMapping() {} ScopedPrinter &W; }; } // end anonymous namespace namespace llvm { template static std::unique_ptr createELFDumper(const ELFObjectFile &Obj, ScopedPrinter &Writer) { return std::make_unique>(Obj, Writer); } std::unique_ptr createELFDumper(const object::ELFObjectFileBase &Obj, ScopedPrinter &Writer) { // Little-endian 32-bit if (const ELF32LEObjectFile *ELFObj = dyn_cast(&Obj)) return createELFDumper(*ELFObj, Writer); // Big-endian 32-bit if (const ELF32BEObjectFile *ELFObj = dyn_cast(&Obj)) return createELFDumper(*ELFObj, Writer); // Little-endian 64-bit if (const ELF64LEObjectFile *ELFObj = dyn_cast(&Obj)) return createELFDumper(*ELFObj, Writer); // Big-endian 64-bit return createELFDumper(*cast(&Obj), Writer); } } // end namespace llvm template Error ELFDumper::LoadVersionMap() const { // If there is no dynamic symtab or version table, there is nothing to do. if (!DynSymRegion || !SymbolVersionSection) return Error::success(); // Has the VersionMap already been loaded? if (!VersionMap.empty()) return Error::success(); // The first two version indexes are reserved. // Index 0 is LOCAL, index 1 is GLOBAL. VersionMap.push_back(VersionEntry()); VersionMap.push_back(VersionEntry()); auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) { if (N >= VersionMap.size()) VersionMap.resize(N + 1); VersionMap[N] = {std::string(Version), IsVerdef}; }; if (SymbolVersionDefSection) { Expected> Defs = this->getVersionDefinitions(*SymbolVersionDefSection); if (!Defs) return Defs.takeError(); for (const VerDef &Def : *Defs) InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true); } if (SymbolVersionNeedSection) { Expected> Deps = this->getVersionDependencies(*SymbolVersionNeedSection); if (!Deps) return Deps.takeError(); for (const VerNeed &Dep : *Deps) for (const VernAux &Aux : Dep.AuxV) InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false); } return Error::success(); } template Expected ELFDumper::getSymbolVersion(const Elf_Sym &Sym, bool &IsDefault) const { // This is a dynamic symbol. Look in the GNU symbol version table. if (!SymbolVersionSection) { // No version table. IsDefault = false; return ""; } assert(DynSymRegion && "DynSymRegion has not been initialised"); // Determine the position in the symbol table of this entry. size_t EntryIndex = (reinterpret_cast(&Sym) - reinterpret_cast(DynSymRegion->Addr)) / sizeof(Elf_Sym); // Get the corresponding version index entry. if (Expected EntryOrErr = Obj.template getEntry(*SymbolVersionSection, EntryIndex)) return this->getSymbolVersionByIndex((*EntryOrErr)->vs_index, IsDefault); else return EntryOrErr.takeError(); } template Expected> ELFDumper::getRelocationTarget(const Relocation &R, const Elf_Shdr *SymTab) const { if (R.Symbol == 0) return RelSymbol(nullptr, ""); Expected SymOrErr = Obj.template getEntry(*SymTab, R.Symbol); if (!SymOrErr) return SymOrErr.takeError(); const Elf_Sym *Sym = *SymOrErr; if (!Sym) return RelSymbol(nullptr, ""); Expected StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); if (!StrTableOrErr) return StrTableOrErr.takeError(); const Elf_Sym *FirstSym = cantFail(Obj.template getEntry(*SymTab, 0)); std::string SymbolName = getFullSymbolName( *Sym, Sym - FirstSym, *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); return RelSymbol(Sym, SymbolName); } static std::string maybeDemangle(StringRef Name) { return opts::Demangle ? demangle(std::string(Name)) : Name.str(); } template std::string ELFDumper::getStaticSymbolName(uint32_t Index) const { auto Warn = [&](Error E) -> std::string { this->reportUniqueWarning( createError("unable to read the name of symbol with index " + Twine(Index) + ": " + toString(std::move(E)))); return ""; }; Expected SymOrErr = Obj.getSymbol(DotSymtabSec, Index); if (!SymOrErr) return Warn(SymOrErr.takeError()); Expected StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); if (!StrTabOrErr) return Warn(StrTabOrErr.takeError()); Expected NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); if (!NameOrErr) return Warn(NameOrErr.takeError()); return maybeDemangle(*NameOrErr); } template Expected ELFDumper::getSymbolVersionByIndex(uint32_t SymbolVersionIndex, bool &IsDefault) const { size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION; // Special markers for unversioned symbols. if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) { IsDefault = false; return ""; } // Lookup this symbol in the version table. if (Error E = LoadVersionMap()) return std::move(E); if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex]) return createError("SHT_GNU_versym section refers to a version index " + Twine(VersionIndex) + " which is missing"); const VersionEntry &Entry = *VersionMap[VersionIndex]; if (Entry.IsVerDef) IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN); else IsDefault = false; return Entry.Name.c_str(); } template std::string ELFDumper::getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic) const { if (!StrTable) return ""; std::string SymbolName; if (Expected NameOrErr = Symbol.getName(*StrTable)) { SymbolName = maybeDemangle(*NameOrErr); } else { reportUniqueWarning(NameOrErr.takeError()); return ""; } if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { Expected SectionIndex = getSymbolSectionIndex(Symbol, SymIndex); if (!SectionIndex) { reportUniqueWarning(SectionIndex.takeError()); return ""; } Expected NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); if (!NameOrErr) { reportUniqueWarning(NameOrErr.takeError()); return ("
").str(); } return std::string(*NameOrErr); } if (!IsDynamic) return SymbolName; bool IsDefault; Expected VersionOrErr = getSymbolVersion(Symbol, IsDefault); if (!VersionOrErr) { reportUniqueWarning(VersionOrErr.takeError()); return SymbolName + "@"; } if (!VersionOrErr->empty()) { SymbolName += (IsDefault ? "@@" : "@"); SymbolName += *VersionOrErr; } return SymbolName; } template Expected ELFDumper::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex) const { unsigned Ndx = Symbol.st_shndx; if (Ndx == SHN_XINDEX) return object::getExtendedSymbolTableIndex(Symbol, SymIndex, ShndxTable); if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) return Ndx; auto CreateErr = [&](const Twine &Name, Optional Offset = None) { std::string Desc; if (Offset) Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); else Desc = Name.str(); return createError( "unable to get section index for symbol with st_shndx = 0x" + Twine::utohexstr(Ndx) + " (" + Desc + ")"); }; if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); if (Ndx == ELF::SHN_UNDEF) return CreateErr("SHN_UNDEF"); if (Ndx == ELF::SHN_ABS) return CreateErr("SHN_ABS"); if (Ndx == ELF::SHN_COMMON) return CreateErr("SHN_COMMON"); return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); } template Expected ELFDumper::getSymbolSectionName(const Elf_Sym &Symbol, unsigned SectionIndex) const { Expected SecOrErr = Obj.getSection(SectionIndex); if (!SecOrErr) return SecOrErr.takeError(); return Obj.getSectionName(**SecOrErr); } template static const typename ELFO::Elf_Shdr * findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, uint64_t Addr) { for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) return &Shdr; return nullptr; } static const EnumEntry ElfClass[] = { {"None", "none", ELF::ELFCLASSNONE}, {"32-bit", "ELF32", ELF::ELFCLASS32}, {"64-bit", "ELF64", ELF::ELFCLASS64}, }; static const EnumEntry ElfDataEncoding[] = { {"None", "none", ELF::ELFDATANONE}, {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, }; static const EnumEntry ElfObjectFileType[] = { {"None", "NONE (none)", ELF::ET_NONE}, {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, {"Core", "CORE (Core file)", ELF::ET_CORE}, }; static const EnumEntry ElfOSABI[] = { {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, {"AROS", "AROS", ELF::ELFOSABI_AROS}, {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} }; static const EnumEntry AMDGPUElfOSABI[] = { {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} }; static const EnumEntry ARMElfOSABI[] = { {"ARM", "ARM", ELF::ELFOSABI_ARM} }; static const EnumEntry C6000ElfOSABI[] = { {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} }; static const EnumEntry ElfMachineType[] = { ENUM_ENT(EM_NONE, "None"), ENUM_ENT(EM_M32, "WE32100"), ENUM_ENT(EM_SPARC, "Sparc"), ENUM_ENT(EM_386, "Intel 80386"), ENUM_ENT(EM_68K, "MC68000"), ENUM_ENT(EM_88K, "MC88000"), ENUM_ENT(EM_IAMCU, "EM_IAMCU"), ENUM_ENT(EM_860, "Intel 80860"), ENUM_ENT(EM_MIPS, "MIPS R3000"), ENUM_ENT(EM_S370, "IBM System/370"), ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), ENUM_ENT(EM_PARISC, "HPPA"), ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), ENUM_ENT(EM_960, "Intel 80960"), ENUM_ENT(EM_PPC, "PowerPC"), ENUM_ENT(EM_PPC64, "PowerPC64"), ENUM_ENT(EM_S390, "IBM S/390"), ENUM_ENT(EM_SPU, "SPU"), ENUM_ENT(EM_V800, "NEC V800 series"), ENUM_ENT(EM_FR20, "Fujistsu FR20"), ENUM_ENT(EM_RH32, "TRW RH-32"), ENUM_ENT(EM_RCE, "Motorola RCE"), ENUM_ENT(EM_ARM, "ARM"), ENUM_ENT(EM_ALPHA, "EM_ALPHA"), ENUM_ENT(EM_SH, "Hitachi SH"), ENUM_ENT(EM_SPARCV9, "Sparc v9"), ENUM_ENT(EM_TRICORE, "Siemens Tricore"), ENUM_ENT(EM_ARC, "ARC"), ENUM_ENT(EM_H8_300, "Hitachi H8/300"), ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), ENUM_ENT(EM_H8S, "Hitachi H8S"), ENUM_ENT(EM_H8_500, "Hitachi H8/500"), ENUM_ENT(EM_IA_64, "Intel IA-64"), ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), ENUM_ENT(EM_PCP, "Siemens PCP"), ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), ENUM_ENT(EM_ME16, "Toyota ME16 processor"), ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), ENUM_ENT(EM_PDSP, "Sony DSP processor"), ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), ENUM_ENT(EM_VAX, "Digital VAX"), ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), ENUM_ENT(EM_PRISM, "Vitesse Prism"), ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), ENUM_ENT(EM_FR30, "Fujitsu FR30"), ENUM_ENT(EM_D10V, "Mitsubishi D10V"), ENUM_ENT(EM_D30V, "Mitsubishi D30V"), ENUM_ENT(EM_V850, "NEC v850"), ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), ENUM_ENT(EM_MN10300, "Matsushita MN10300"), ENUM_ENT(EM_MN10200, "Matsushita MN10200"), ENUM_ENT(EM_PJ, "picoJava"), ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), ENUM_ENT(EM_SNP1K, "EM_SNP1K"), ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), ENUM_ENT(EM_MAX, "MAX Processor"), ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), ENUM_ENT(EM_UNICORE, "Unicore"), ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), ENUM_ENT(EM_M16C, "Renesas M16C"), ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), ENUM_ENT(EM_M32C, "Renesas M32C"), ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), ENUM_ENT(EM_SHARC, "EM_SHARC"), ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), ENUM_ENT(EM_8051, "Intel 8051 and variants"), ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has // an identical number to EM_ECOG1. ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), ENUM_ENT(EM_RX, "Renesas RX"), ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"), ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), ENUM_ENT(EM_L10M, "EM_L10M"), ENUM_ENT(EM_K10M, "EM_K10M"), ENUM_ENT(EM_AARCH64, "AArch64"), ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), ENUM_ENT(EM_OPEN8, "EM_OPEN8"), ENUM_ENT(EM_RL78, "Renesas RL78"), ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), ENUM_ENT(EM_78KOR, "EM_78KOR"), ENUM_ENT(EM_56800EX, "EM_56800EX"), ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), ENUM_ENT(EM_RISCV, "RISC-V"), ENUM_ENT(EM_LANAI, "EM_LANAI"), ENUM_ENT(EM_BPF, "EM_BPF"), ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), }; static const EnumEntry ElfSymbolBindings[] = { {"Local", "LOCAL", ELF::STB_LOCAL}, {"Global", "GLOBAL", ELF::STB_GLOBAL}, {"Weak", "WEAK", ELF::STB_WEAK}, {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; static const EnumEntry ElfSymbolVisibilities[] = { {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; static const EnumEntry AMDGPUSymbolTypes[] = { { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } }; static const char *getGroupType(uint32_t Flag) { if (Flag & ELF::GRP_COMDAT) return "COMDAT"; else return "(unknown)"; } static const EnumEntry ElfSectionFlags[] = { ENUM_ENT(SHF_WRITE, "W"), ENUM_ENT(SHF_ALLOC, "A"), ENUM_ENT(SHF_EXECINSTR, "X"), ENUM_ENT(SHF_MERGE, "M"), ENUM_ENT(SHF_STRINGS, "S"), ENUM_ENT(SHF_INFO_LINK, "I"), ENUM_ENT(SHF_LINK_ORDER, "L"), ENUM_ENT(SHF_OS_NONCONFORMING, "O"), ENUM_ENT(SHF_GROUP, "G"), ENUM_ENT(SHF_TLS, "T"), ENUM_ENT(SHF_COMPRESSED, "C"), ENUM_ENT(SHF_EXCLUDE, "E"), }; static const EnumEntry ElfXCoreSectionFlags[] = { ENUM_ENT(XCORE_SHF_CP_SECTION, ""), ENUM_ENT(XCORE_SHF_DP_SECTION, "") }; static const EnumEntry ElfARMSectionFlags[] = { ENUM_ENT(SHF_ARM_PURECODE, "y") }; static const EnumEntry ElfHexagonSectionFlags[] = { ENUM_ENT(SHF_HEX_GPREL, "") }; static const EnumEntry ElfMipsSectionFlags[] = { ENUM_ENT(SHF_MIPS_NODUPES, ""), ENUM_ENT(SHF_MIPS_NAMES, ""), ENUM_ENT(SHF_MIPS_LOCAL, ""), ENUM_ENT(SHF_MIPS_NOSTRIP, ""), ENUM_ENT(SHF_MIPS_GPREL, ""), ENUM_ENT(SHF_MIPS_MERGE, ""), ENUM_ENT(SHF_MIPS_ADDR, ""), ENUM_ENT(SHF_MIPS_STRING, "") }; static const EnumEntry ElfX86_64SectionFlags[] = { ENUM_ENT(SHF_X86_64_LARGE, "l") }; static std::vector> getSectionFlagsForTarget(unsigned EMachine) { std::vector> Ret(std::begin(ElfSectionFlags), std::end(ElfSectionFlags)); switch (EMachine) { case EM_ARM: Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), std::end(ElfARMSectionFlags)); break; case EM_HEXAGON: Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), std::end(ElfHexagonSectionFlags)); break; case EM_MIPS: Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), std::end(ElfMipsSectionFlags)); break; case EM_X86_64: Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), std::end(ElfX86_64SectionFlags)); break; case EM_XCORE: Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), std::end(ElfXCoreSectionFlags)); break; default: break; } return Ret; } static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) { // Here we are trying to build the flags string in the same way as GNU does. // It is not that straightforward. Imagine we have sh_flags == 0x90000000. // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. // GNU readelf will not print "E" or "Ep" in this case, but will print just // "p". It only will print "E" when no other processor flag is set. std::string Str; bool HasUnknownFlag = false; bool HasOSFlag = false; bool HasProcFlag = false; std::vector> FlagsList = getSectionFlagsForTarget(EMachine); while (Flags) { // Take the least significant bit as a flag. uint64_t Flag = Flags & -Flags; Flags -= Flag; // Find the flag in the known flags list. auto I = llvm::find_if(FlagsList, [=](const EnumEntry &E) { // Flags with empty names are not printed in GNU style output. return E.Value == Flag && !E.AltName.empty(); }); if (I != FlagsList.end()) { Str += I->AltName; continue; } // If we did not find a matching regular flag, then we deal with an OS // specific flag, processor specific flag or an unknown flag. if (Flag & ELF::SHF_MASKOS) { HasOSFlag = true; Flags &= ~ELF::SHF_MASKOS; } else if (Flag & ELF::SHF_MASKPROC) { HasProcFlag = true; // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE // bit if set so that it doesn't also get printed. Flags &= ~ELF::SHF_MASKPROC; } else { HasUnknownFlag = true; } } // "o", "p" and "x" are printed last. if (HasOSFlag) Str += "o"; if (HasProcFlag) Str += "p"; if (HasUnknownFlag) Str += "x"; return Str; } static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { // Check potentially overlapped processor-specific program header type. switch (Arch) { case ELF::EM_ARM: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } break; case ELF::EM_MIPS: case ELF::EM_MIPS_RS3_LE: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); } break; } switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); default: return ""; } } static std::string getGNUPtType(unsigned Arch, unsigned Type) { StringRef Seg = segmentTypeToString(Arch, Type); if (Seg.empty()) return std::string(": ") + to_string(format_hex(Type, 1)); // E.g. "PT_ARM_EXIDX" -> "EXIDX". if (Seg.startswith("PT_ARM_")) return Seg.drop_front(7).str(); // E.g. "PT_MIPS_REGINFO" -> "REGINFO". if (Seg.startswith("PT_MIPS_")) return Seg.drop_front(8).str(); // E.g. "PT_LOAD" -> "LOAD". assert(Seg.startswith("PT_")); return Seg.drop_front(3).str(); } static const EnumEntry ElfSegmentFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, PF_X), LLVM_READOBJ_ENUM_ENT(ELF, PF_W), LLVM_READOBJ_ENUM_ENT(ELF, PF_R) }; static const EnumEntry ElfHeaderMipsFlags[] = { ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), ENUM_ENT(EF_MIPS_PIC, "pic"), ENUM_ENT(EF_MIPS_CPIC, "cpic"), ENUM_ENT(EF_MIPS_ABI2, "abi2"), ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), ENUM_ENT(EF_MIPS_FP64, "fp64"), ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), ENUM_ENT(EF_MIPS_ABI_O32, "o32"), ENUM_ENT(EF_MIPS_ABI_O64, "o64"), ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), ENUM_ENT(EF_MIPS_MACH_3900, "3900"), ENUM_ENT(EF_MIPS_MACH_4010, "4010"), ENUM_ENT(EF_MIPS_MACH_4100, "4100"), ENUM_ENT(EF_MIPS_MACH_4650, "4650"), ENUM_ENT(EF_MIPS_MACH_4120, "4120"), ENUM_ENT(EF_MIPS_MACH_4111, "4111"), ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), ENUM_ENT(EF_MIPS_MACH_5400, "5400"), ENUM_ENT(EF_MIPS_MACH_5900, "5900"), ENUM_ENT(EF_MIPS_MACH_5500, "5500"), ENUM_ENT(EF_MIPS_MACH_9000, "9000"), ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") }; static const EnumEntry ElfHeaderAMDGPUFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK), LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC) }; static const EnumEntry ElfHeaderRISCVFlags[] = { ENUM_ENT(EF_RISCV_RVC, "RVC"), ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), ENUM_ENT(EF_RISCV_RVE, "RVE") }; static const EnumEntry ElfSymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) }; static const EnumEntry ElfMipsSymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) }; static const EnumEntry ElfMips16SymOtherFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) }; static const char *getElfMipsOptionsOdkType(unsigned Odk) { switch (Odk) { LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); default: return "Unknown"; } } template std::pair ELFDumper::findDynamic() { // Try to locate the PT_DYNAMIC header. const Elf_Phdr *DynamicPhdr = nullptr; if (Expected> PhdrsOrErr = Obj.program_headers()) { for (const Elf_Phdr &Phdr : *PhdrsOrErr) { if (Phdr.p_type != ELF::PT_DYNAMIC) continue; DynamicPhdr = &Phdr; break; } } else { this->reportUniqueWarning(createError( "unable to read program headers to locate the PT_DYNAMIC segment: " + toString(PhdrsOrErr.takeError()))); } // Try to locate the .dynamic section in the sections header table. const Elf_Shdr *DynamicSec = nullptr; for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { if (Sec.sh_type != ELF::SHT_DYNAMIC) continue; DynamicSec = &Sec; break; } if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > ObjF.getMemoryBufferRef().getBufferSize()) || (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < DynamicPhdr->p_offset))) { reportUniqueWarning(createError( "PT_DYNAMIC segment offset (0x" + Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + Twine::utohexstr(DynamicPhdr->p_filesz) + ") exceeds the size of the file (0x" + Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")")); // Don't use the broken dynamic header. DynamicPhdr = nullptr; } if (DynamicPhdr && DynamicSec) { if (DynamicSec->sh_addr + DynamicSec->sh_size > DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || DynamicSec->sh_addr < DynamicPhdr->p_vaddr) reportUniqueWarning(createError(describe(*DynamicSec) + " is not contained within the " "PT_DYNAMIC segment")); if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) reportUniqueWarning(createError(describe(*DynamicSec) + " is not at the start of " "PT_DYNAMIC segment")); } return std::make_pair(DynamicPhdr, DynamicSec); } template void ELFDumper::loadDynamicTable() { const Elf_Phdr *DynamicPhdr; const Elf_Shdr *DynamicSec; std::tie(DynamicPhdr, DynamicSec) = findDynamic(); if (!DynamicPhdr && !DynamicSec) return; DynRegionInfo FromPhdr(ObjF.getFileName()); bool IsPhdrTableValid = false; if (DynamicPhdr) { // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are // validated in findDynamic() and so createDRI() is not expected to fail. FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, sizeof(Elf_Dyn))); FromPhdr.SizePrintName = "PT_DYNAMIC size"; FromPhdr.EntSizePrintName = ""; IsPhdrTableValid = !FromPhdr.getAsArrayRef().empty(); } // Locate the dynamic table described in a section header. // Ignore sh_entsize and use the expected value for entry size explicitly. // This allows us to dump dynamic sections with a broken sh_entsize // field. DynRegionInfo FromSec(ObjF.getFileName()); bool IsSecTableValid = false; if (DynamicSec) { Expected RegOrErr = createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); if (RegOrErr) { FromSec = *RegOrErr; FromSec.Context = describe(*DynamicSec); FromSec.EntSizePrintName = ""; IsSecTableValid = !FromSec.getAsArrayRef().empty(); } else { reportUniqueWarning(createError("unable to read the dynamic table from " + describe(*DynamicSec) + ": " + toString(RegOrErr.takeError()))); } } // When we only have information from one of the SHT_DYNAMIC section header or // PT_DYNAMIC program header, just use that. if (!DynamicPhdr || !DynamicSec) { if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { DynamicTable = DynamicPhdr ? FromPhdr : FromSec; parseDynamicTable(); } else { reportUniqueWarning(createError("no valid dynamic table was found")); } return; } // At this point we have tables found from the section header and from the // dynamic segment. Usually they match, but we have to do sanity checks to // verify that. if (FromPhdr.Addr != FromSec.Addr) reportUniqueWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC " "program header disagree about " "the location of the dynamic table")); if (!IsPhdrTableValid && !IsSecTableValid) { reportUniqueWarning(createError("no valid dynamic table was found")); return; } // Information in the PT_DYNAMIC program header has priority over the information // in a section header. if (IsPhdrTableValid) { if (!IsSecTableValid) reportUniqueWarning(createError( "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used")); DynamicTable = FromPhdr; } else { reportUniqueWarning(createError( "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used")); DynamicTable = FromSec; } parseDynamicTable(); } template ELFDumper::ELFDumper(const object::ELFObjectFile &O, ScopedPrinter &Writer) : ObjDumper(Writer), ObjF(O), Obj(*O.getELFFile()), DynRelRegion(O.getFileName()), DynRelaRegion(O.getFileName()), DynRelrRegion(O.getFileName()), DynPLTRelRegion(O.getFileName()), DynamicTable(O.getFileName()) { // Dumper reports all non-critical errors as warnings. // It does not print the same warning more than once. WarningHandler = [this](const Twine &Msg) { if (Warnings.insert(Msg.str()).second) reportWarning(createError(Msg), ObjF.getFileName()); return Error::success(); }; if (opts::Output == opts::GNU) ELFDumperStyle.reset(new GNUStyle(Writer, *this)); else ELFDumperStyle.reset(new LLVMStyle(Writer, *this)); typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); for (const Elf_Shdr &Sec : Sections) { switch (Sec.sh_type) { case ELF::SHT_SYMTAB: if (!DotSymtabSec) DotSymtabSec = &Sec; break; case ELF::SHT_DYNSYM: if (!DotDynsymSec) DotDynsymSec = &Sec; if (!DynSymRegion) { Expected RegOrErr = createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); if (RegOrErr) { DynSymRegion = *RegOrErr; DynSymRegion->Context = describe(Sec); if (Expected E = Obj.getStringTableForSymtab(Sec)) DynamicStringTable = *E; else reportWarning(E.takeError(), ObjF.getFileName()); } else { reportUniqueWarning(createError( "unable to read dynamic symbols from " + describe(Sec) + ": " + toString(RegOrErr.takeError()))); } } break; case ELF::SHT_SYMTAB_SHNDX: ShndxTable = unwrapOrError(ObjF.getFileName(), Obj.getSHNDXTable(Sec)); break; case ELF::SHT_GNU_versym: if (!SymbolVersionSection) SymbolVersionSection = &Sec; break; case ELF::SHT_GNU_verdef: if (!SymbolVersionDefSection) SymbolVersionDefSection = &Sec; break; case ELF::SHT_GNU_verneed: if (!SymbolVersionNeedSection) SymbolVersionNeedSection = &Sec; break; case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: if (!DotCGProfileSec) DotCGProfileSec = &Sec; break; case ELF::SHT_LLVM_ADDRSIG: if (!DotAddrsigSec) DotAddrsigSec = &Sec; break; } } loadDynamicTable(); } template void ELFDumper::parseDynamicTable() { auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { auto MappedAddrOrError = Obj.toMappedAddr(VAddr); if (!MappedAddrOrError) { Error Err = createError("Unable to parse DT_" + Obj.getDynamicTagAsString(Tag) + ": " + llvm::toString(MappedAddrOrError.takeError())); reportWarning(std::move(Err), ObjF.getFileName()); return nullptr; } return MappedAddrOrError.get(); }; uint64_t SONameOffset = 0; const char *StringTableBegin = nullptr; uint64_t StringTableSize = 0; Optional DynSymFromTable; for (const Elf_Dyn &Dyn : dynamic_table()) { switch (Dyn.d_tag) { case ELF::DT_HASH: HashTable = reinterpret_cast( toMappedAddr(Dyn.getTag(), Dyn.getPtr())); break; case ELF::DT_GNU_HASH: GnuHashTable = reinterpret_cast( toMappedAddr(Dyn.getTag(), Dyn.getPtr())); break; case ELF::DT_STRTAB: StringTableBegin = reinterpret_cast( toMappedAddr(Dyn.getTag(), Dyn.getPtr())); break; case ELF::DT_STRSZ: StringTableSize = Dyn.getVal(); break; case ELF::DT_SYMTAB: { // If we can't map the DT_SYMTAB value to an address (e.g. when there are // no program headers), we ignore its value. if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { DynSymFromTable.emplace(ObjF.getFileName()); DynSymFromTable->Addr = VA; DynSymFromTable->EntSize = sizeof(Elf_Sym); DynSymFromTable->EntSizePrintName = ""; } break; } case ELF::DT_SYMENT: { uint64_t Val = Dyn.getVal(); if (Val != sizeof(Elf_Sym)) reportWarning(createError("DT_SYMENT value of 0x" + Twine::utohexstr(Val) + " is not the size of a symbol (0x" + Twine::utohexstr(sizeof(Elf_Sym)) + ")"), ObjF.getFileName()); break; } case ELF::DT_RELA: DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); break; case ELF::DT_RELASZ: DynRelaRegion.Size = Dyn.getVal(); DynRelaRegion.SizePrintName = "DT_RELASZ value"; break; case ELF::DT_RELAENT: DynRelaRegion.EntSize = Dyn.getVal(); DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; break; case ELF::DT_SONAME: SONameOffset = Dyn.getVal(); break; case ELF::DT_REL: DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); break; case ELF::DT_RELSZ: DynRelRegion.Size = Dyn.getVal(); DynRelRegion.SizePrintName = "DT_RELSZ value"; break; case ELF::DT_RELENT: DynRelRegion.EntSize = Dyn.getVal(); DynRelRegion.EntSizePrintName = "DT_RELENT value"; break; case ELF::DT_RELR: case ELF::DT_ANDROID_RELR: DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); break; case ELF::DT_RELRSZ: case ELF::DT_ANDROID_RELRSZ: DynRelrRegion.Size = Dyn.getVal(); DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ ? "DT_RELRSZ value" : "DT_ANDROID_RELRSZ value"; break; case ELF::DT_RELRENT: case ELF::DT_ANDROID_RELRENT: DynRelrRegion.EntSize = Dyn.getVal(); DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT ? "DT_RELRENT value" : "DT_ANDROID_RELRENT value"; break; case ELF::DT_PLTREL: if (Dyn.getVal() == DT_REL) DynPLTRelRegion.EntSize = sizeof(Elf_Rel); else if (Dyn.getVal() == DT_RELA) DynPLTRelRegion.EntSize = sizeof(Elf_Rela); else reportError(createError(Twine("unknown DT_PLTREL value of ") + Twine((uint64_t)Dyn.getVal())), ObjF.getFileName()); DynPLTRelRegion.EntSizePrintName = ""; break; case ELF::DT_JMPREL: DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); break; case ELF::DT_PLTRELSZ: DynPLTRelRegion.Size = Dyn.getVal(); DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; break; } } if (StringTableBegin) { const uint64_t FileSize = Obj.getBufSize(); const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); if (StringTableSize > FileSize - Offset) reportUniqueWarning(createError( "the dynamic string table at 0x" + Twine::utohexstr(Offset) + " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize))); else DynamicStringTable = StringRef(StringTableBegin, StringTableSize); } SOName = getDynamicString(SONameOffset); if (DynSymRegion) { // Often we find the information about the dynamic symbol table // location in the SHT_DYNSYM section header. However, the value in // DT_SYMTAB has priority, because it is used by dynamic loaders to // locate .dynsym at runtime. The location we find in the section header // and the location we find here should match. if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) reportUniqueWarning( createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " "the location of the dynamic symbol table")); // According to the ELF gABI: "The number of symbol table entries should // equal nchain". Check to see if the DT_HASH hash table nchain value // conflicts with the number of symbols in the dynamic symbol table // according to the section header. if (HashTable) { if (DynSymRegion->EntSize == 0) reportUniqueWarning( createError("SHT_DYNSYM section has sh_entsize == 0")); else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) reportUniqueWarning(createError( "hash table nchain (" + Twine(HashTable->nchain) + ") differs from symbol count derived from SHT_DYNSYM section " "header (" + Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")")); } } // Delay the creation of the actual dynamic symbol table until now, so that // checks can always be made against the section header-based properties, // without worrying about tag order. if (DynSymFromTable) { if (!DynSymRegion) { DynSymRegion = DynSymFromTable; } else { DynSymRegion->Addr = DynSymFromTable->Addr; DynSymRegion->EntSize = DynSymFromTable->EntSize; DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; } } // Derive the dynamic symbol table size from the DT_HASH hash table, if // present. if (HashTable && DynSymRegion) { const uint64_t FileSize = Obj.getBufSize(); const uint64_t DerivedSize = (uint64_t)HashTable->nchain * DynSymRegion->EntSize; const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); if (DerivedSize > FileSize - Offset) reportUniqueWarning(createError( "the size (0x" + Twine::utohexstr(DerivedSize) + ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + ", derived from the hash table, goes past the end of the file (0x" + Twine::utohexstr(FileSize) + ") and will be ignored")); else DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; } } template typename ELFDumper::Elf_Rel_Range ELFDumper::dyn_rels() const { return DynRelRegion.getAsArrayRef(); } template typename ELFDumper::Elf_Rela_Range ELFDumper::dyn_relas() const { return DynRelaRegion.getAsArrayRef(); } template typename ELFDumper::Elf_Relr_Range ELFDumper::dyn_relrs() const { return DynRelrRegion.getAsArrayRef(); } template void ELFDumper::printFileHeaders() { ELFDumperStyle->printFileHeaders(); } template void ELFDumper::printSectionHeaders() { ELFDumperStyle->printSectionHeaders(); } template void ELFDumper::printRelocations() { ELFDumperStyle->printRelocations(); } template void ELFDumper::printProgramHeaders( bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { ELFDumperStyle->printProgramHeaders(PrintProgramHeaders, PrintSectionMapping); } template void ELFDumper::printVersionInfo() { // Dump version symbol section. ELFDumperStyle->printVersionSymbolSection(SymbolVersionSection); // Dump version definition section. ELFDumperStyle->printVersionDefinitionSection(SymbolVersionDefSection); // Dump version dependency section. ELFDumperStyle->printVersionDependencySection(SymbolVersionNeedSection); } template void ELFDumper::printDependentLibs() { ELFDumperStyle->printDependentLibs(); } template void ELFDumper::printDynamicRelocations() { ELFDumperStyle->printDynamicRelocations(); } template void ELFDumper::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) { ELFDumperStyle->printSymbols(PrintSymbols, PrintDynamicSymbols); } template void ELFDumper::printHashSymbols() { ELFDumperStyle->printHashSymbols(); } template void ELFDumper::printHashHistograms() { ELFDumperStyle->printHashHistograms(); } template void ELFDumper::printCGProfile() { ELFDumperStyle->printCGProfile(); } template void ELFDumper::printNotes() { ELFDumperStyle->printNotes(); } template void ELFDumper::printELFLinkerOptions() { ELFDumperStyle->printELFLinkerOptions(); } template void ELFDumper::printStackSizes() { ELFDumperStyle->printStackSizes(); } #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ { #enum, prefix##_##enum } static const EnumEntry ElfDynamicDTFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) }; static const EnumEntry ElfDynamicDTFlags1[] = { LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), }; static const EnumEntry ElfDynamicDTMipsFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) }; #undef LLVM_READOBJ_DT_FLAG_ENT template void printFlags(T Value, ArrayRef> Flags, raw_ostream &OS) { SmallVector, 10> SetFlags; for (const EnumEntry &Flag : Flags) if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) SetFlags.push_back(Flag); for (const EnumEntry &Flag : SetFlags) OS << Flag.Name << " "; } template const typename ELFT::Shdr * ELFDumper::findSectionByName(StringRef Name) const { for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { if (Expected NameOrErr = Obj.getSectionName(Shdr)) { if (*NameOrErr == Name) return &Shdr; } else { reportUniqueWarning(createError("unable to read the name of " + describe(Shdr) + ": " + toString(NameOrErr.takeError()))); } } return nullptr; } template std::string ELFDumper::getDynamicEntry(uint64_t Type, uint64_t Value) const { auto FormatHexValue = [](uint64_t V) { std::string Str; raw_string_ostream OS(Str); const char *ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; OS << format(ConvChar, V); return OS.str(); }; auto FormatFlags = [](uint64_t V, llvm::ArrayRef> Array) { std::string Str; raw_string_ostream OS(Str); printFlags(V, Array, OS); return OS.str(); }; // Handle custom printing of architecture specific tags switch (Obj.getHeader().e_machine) { case EM_AARCH64: switch (Type) { case DT_AARCH64_BTI_PLT: case DT_AARCH64_PAC_PLT: return std::to_string(Value); default: break; } break; case EM_HEXAGON: switch (Type) { case DT_HEXAGON_VER: return std::to_string(Value); case DT_HEXAGON_SYMSZ: case DT_HEXAGON_PLT: return FormatHexValue(Value); default: break; } break; case EM_MIPS: switch (Type) { case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: return std::to_string(Value); case DT_MIPS_TIME_STAMP: case DT_MIPS_ICHECKSUM: case DT_MIPS_IVERSION: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_MSYM: case DT_MIPS_CONFLICT: case DT_MIPS_LIBLIST: case DT_MIPS_CONFLICTNO: case DT_MIPS_LIBLISTNO: case DT_MIPS_GOTSYM: case DT_MIPS_HIPAGENO: case DT_MIPS_RLD_MAP: case DT_MIPS_DELTA_CLASS: case DT_MIPS_DELTA_CLASS_NO: case DT_MIPS_DELTA_INSTANCE: case DT_MIPS_DELTA_RELOC: case DT_MIPS_DELTA_RELOC_NO: case DT_MIPS_DELTA_SYM: case DT_MIPS_DELTA_SYM_NO: case DT_MIPS_DELTA_CLASSSYM: case DT_MIPS_DELTA_CLASSSYM_NO: case DT_MIPS_CXX_FLAGS: case DT_MIPS_PIXIE_INIT: case DT_MIPS_SYMBOL_LIB: case DT_MIPS_LOCALPAGE_GOTIDX: case DT_MIPS_LOCAL_GOTIDX: case DT_MIPS_HIDDEN_GOTIDX: case DT_MIPS_PROTECTED_GOTIDX: case DT_MIPS_OPTIONS: case DT_MIPS_INTERFACE: case DT_MIPS_DYNSTR_ALIGN: case DT_MIPS_INTERFACE_SIZE: case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: case DT_MIPS_PERF_SUFFIX: case DT_MIPS_COMPACT_SIZE: case DT_MIPS_GP_VALUE: case DT_MIPS_AUX_DYNAMIC: case DT_MIPS_PLTGOT: case DT_MIPS_RWPLT: case DT_MIPS_RLD_MAP_REL: return FormatHexValue(Value); case DT_MIPS_FLAGS: return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags)); default: break; } break; default: break; } switch (Type) { case DT_PLTREL: if (Value == DT_REL) return "REL"; if (Value == DT_RELA) return "RELA"; LLVM_FALLTHROUGH; case DT_PLTGOT: case DT_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_RELA: case DT_INIT: case DT_FINI: case DT_REL: case DT_JMPREL: case DT_INIT_ARRAY: case DT_FINI_ARRAY: case DT_PREINIT_ARRAY: case DT_DEBUG: case DT_VERDEF: case DT_VERNEED: case DT_VERSYM: case DT_GNU_HASH: case DT_NULL: return FormatHexValue(Value); case DT_RELACOUNT: case DT_RELCOUNT: case DT_VERDEFNUM: case DT_VERNEEDNUM: return std::to_string(Value); case DT_PLTRELSZ: case DT_RELASZ: case DT_RELAENT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_PREINIT_ARRAYSZ: case DT_ANDROID_RELSZ: case DT_ANDROID_RELASZ: return std::to_string(Value) + " (bytes)"; case DT_NEEDED: case DT_SONAME: case DT_AUXILIARY: case DT_USED: case DT_FILTER: case DT_RPATH: case DT_RUNPATH: { const std::map TagNames = { {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, {DT_RUNPATH, "Library runpath"}, }; return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") .str(); } case DT_FLAGS: return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags)); case DT_FLAGS_1: return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1)); default: return FormatHexValue(Value); } } template StringRef ELFDumper::getDynamicString(uint64_t Value) const { if (DynamicStringTable.empty() && !DynamicStringTable.data()) { reportUniqueWarning(createError("string table was not found")); return ""; } auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { reportUniqueWarning(createError("string table at offset 0x" + Twine::utohexstr(Offset) + Msg)); return ""; }; const uint64_t FileSize = Obj.getBufSize(); const uint64_t Offset = (const uint8_t *)DynamicStringTable.data() - Obj.base(); if (DynamicStringTable.size() > FileSize - Offset) return WarnAndReturn(" with size 0x" + Twine::utohexstr(DynamicStringTable.size()) + " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + ")", Offset); if (Value >= DynamicStringTable.size()) return WarnAndReturn( ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + ": it goes past the end of the table (0x" + Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", Offset); if (DynamicStringTable.back() != '\0') return WarnAndReturn(": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + ": the string table is not null-terminated", Offset); return DynamicStringTable.data() + Value; } template void ELFDumper::printUnwindInfo() { DwarfCFIEH::PrinterContext Ctx(W, ObjF); Ctx.printUnwindInformation(); } namespace { template <> void ELFDumper::printUnwindInfo() { if (Obj.getHeader().e_machine == EM_ARM) { ARM::EHABI::PrinterContext Ctx(W, Obj, ObjF.getFileName(), DotSymtabSec); Ctx.PrintUnwindInformation(); } DwarfCFIEH::PrinterContext Ctx(W, ObjF); Ctx.printUnwindInformation(); } } // end anonymous namespace template void ELFDumper::printDynamicTable() { ELFDumperStyle->printDynamic(); } template void ELFDumper::printNeededLibraries() { ListScope D(W, "NeededLibraries"); std::vector Libs; for (const auto &Entry : dynamic_table()) if (Entry.d_tag == ELF::DT_NEEDED) Libs.push_back(getDynamicString(Entry.d_un.d_val)); llvm::sort(Libs); for (StringRef L : Libs) W.startLine() << L << "\n"; } template static Error checkHashTable(const ELFFile &Obj, const typename ELFT::Hash *H, bool *IsHeaderValid = nullptr) { auto MakeError = [&](uint64_t Off, const Twine &Msg = "") { return createError("the hash table at offset 0x" + Twine::utohexstr(Off) + " goes past the end of the file (0x" + Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); }; // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); if (IsHeaderValid) *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; if (Obj.getBufSize() - SecOffset < HeaderSize) return MakeError(SecOffset); if (Obj.getBufSize() - SecOffset - HeaderSize < ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) return MakeError(SecOffset, ", nbucket = " + Twine(H->nbucket) + ", nchain = " + Twine(H->nchain)); return Error::success(); } template static Error checkGNUHashTable(const ELFFile &Obj, const typename ELFT::GnuHash *GnuHashTable, bool *IsHeaderValid = nullptr) { const uint8_t *TableData = reinterpret_cast(GnuHashTable); assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"); uint64_t TableOffset = TableData - Obj.base(); if (IsHeaderValid) *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= Obj.getBufSize()) return createError("unable to dump the SHT_GNU_HASH " "section at 0x" + Twine::utohexstr(TableOffset) + ": it goes past the end of the file"); return Error::success(); } template void ELFDumper::printHashTable() { DictScope D(W, "HashTable"); if (!HashTable) return; bool IsHeaderValid; Error Err = checkHashTable(Obj, HashTable, &IsHeaderValid); if (IsHeaderValid) { W.printNumber("Num Buckets", HashTable->nbucket); W.printNumber("Num Chains", HashTable->nchain); } if (Err) { reportUniqueWarning(std::move(Err)); return; } W.printList("Buckets", HashTable->buckets()); W.printList("Chains", HashTable->chains()); } template static Expected> getGnuHashTableChains(Optional DynSymRegion, const typename ELFT::GnuHash *GnuHashTable) { if (!DynSymRegion) return createError("no dynamic symbol table found"); ArrayRef DynSymTable = DynSymRegion->getAsArrayRef(); size_t NumSyms = DynSymTable.size(); if (!NumSyms) return createError("the dynamic symbol table is empty"); if (GnuHashTable->symndx < NumSyms) return GnuHashTable->values(NumSyms); // A normal empty GNU hash table section produced by linker might have // symndx set to the number of dynamic symbols + 1 (for the zero symbol) // and have dummy null values in the Bloom filter and in the buckets // vector (or no values at all). It happens because the value of symndx is not // important for dynamic loaders when the GNU hash table is empty. They just // skip the whole object during symbol lookup. In such cases, the symndx value // is irrelevant and we should not report a warning. ArrayRef Buckets = GnuHashTable->buckets(); if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) return createError("the first hashed symbol index (" + Twine(GnuHashTable->symndx) + ") is larger than the number of dynamic symbols (" + Twine(NumSyms) + ")"); // There is no way to represent an array of (dynamic symbols count - symndx) // length. return ArrayRef(); } template void ELFDumper::printGnuHashTable() { DictScope D(W, "GnuHashTable"); if (!GnuHashTable) return; bool IsHeaderValid; Error Err = checkGNUHashTable(Obj, GnuHashTable, &IsHeaderValid); if (IsHeaderValid) { W.printNumber("Num Buckets", GnuHashTable->nbuckets); W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); W.printNumber("Num Mask Words", GnuHashTable->maskwords); W.printNumber("Shift Count", GnuHashTable->shift2); } if (Err) { reportUniqueWarning(std::move(Err)); return; } ArrayRef BloomFilter = GnuHashTable->filter(); W.printHexList("Bloom Filter", BloomFilter); ArrayRef Buckets = GnuHashTable->buckets(); W.printList("Buckets", Buckets); Expected> Chains = getGnuHashTableChains(DynSymRegion, GnuHashTable); if (!Chains) { reportUniqueWarning( createError("unable to dump 'Values' for the SHT_GNU_HASH " "section: " + toString(Chains.takeError()))); return; } W.printHexList("Values", *Chains); } template void ELFDumper::printLoadName() { W.printString("LoadName", SOName); } template void ELFDumper::printArchSpecificInfo() { switch (Obj.getHeader().e_machine) { case EM_ARM: case EM_RISCV: printAttributes(); break; case EM_MIPS: { ELFDumperStyle->printMipsABIFlags(); printMipsOptions(); printMipsReginfo(); MipsGOTParser Parser(*this); if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) reportError(std::move(E), ObjF.getFileName()); else if (!Parser.isGotEmpty()) ELFDumperStyle->printMipsGOT(Parser); if (Error E = Parser.findPLT(dynamic_table())) reportError(std::move(E), ObjF.getFileName()); else if (!Parser.isPltEmpty()) ELFDumperStyle->printMipsPLT(Parser); break; } default: break; } } template void ELFDumper::printAttributes() { if (!Obj.isLE()) { W.startLine() << "Attributes not implemented.\n"; return; } const unsigned Machine = Obj.getHeader().e_machine; assert((Machine == EM_ARM || Machine == EM_RISCV) && "Attributes not implemented."); DictScope BA(W, "BuildAttributes"); for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES && Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES) continue; ArrayRef Contents = unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(Sec)); if (Contents[0] != ELFAttrs::Format_Version) { reportWarning(createError(Twine("unrecognised FormatVersion: 0x") + Twine::utohexstr(Contents[0])), ObjF.getFileName()); continue; } W.printHex("FormatVersion", Contents[0]); if (Contents.size() == 1) continue; // TODO: Delete the redundant FormatVersion check above. if (Machine == EM_ARM) { if (Error E = ARMAttributeParser(&W).parse(Contents, support::little)) reportWarning(std::move(E), ObjF.getFileName()); } else if (Machine == EM_RISCV) { if (Error E = RISCVAttributeParser(&W).parse(Contents, support::little)) reportWarning(std::move(E), ObjF.getFileName()); } } } namespace { template class MipsGOTParser { public: TYPEDEF_ELF_TYPES(ELFT) using Entry = typename ELFO::Elf_Addr; using Entries = ArrayRef; const bool IsStatic; const ELFO &Obj; const ELFDumper &Dumper; MipsGOTParser(const ELFDumper &D); Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); Error findPLT(Elf_Dyn_Range DynTable); bool isGotEmpty() const { return GotEntries.empty(); } bool isPltEmpty() const { return PltEntries.empty(); } uint64_t getGp() const; const Entry *getGotLazyResolver() const; const Entry *getGotModulePointer() const; const Entry *getPltLazyResolver() const; const Entry *getPltModulePointer() const; Entries getLocalEntries() const; Entries getGlobalEntries() const; Entries getOtherEntries() const; Entries getPltEntries() const; uint64_t getGotAddress(const Entry * E) const; int64_t getGotOffset(const Entry * E) const; const Elf_Sym *getGotSym(const Entry *E) const; uint64_t getPltAddress(const Entry * E) const; const Elf_Sym *getPltSym(const Entry *E) const; StringRef getPltStrTable() const { return PltStrTable; } const Elf_Shdr *getPltSymTable() const { return PltSymTable; } private: const Elf_Shdr *GotSec; size_t LocalNum; size_t GlobalNum; const Elf_Shdr *PltSec; const Elf_Shdr *PltRelSec; const Elf_Shdr *PltSymTable; StringRef FileName; Elf_Sym_Range GotDynSyms; StringRef PltStrTable; Entries GotEntries; Entries PltEntries; }; } // end anonymous namespace template MipsGOTParser::MipsGOTParser(const ELFDumper &D) : IsStatic(D.dynamic_table().empty()), Obj(*D.getElfObject().getELFFile()), Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr), FileName(D.getElfObject().getFileName()) {} template Error MipsGOTParser::findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms) { // See "Global Offset Table" in Chapter 5 in the following document // for detailed GOT description. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf // Find static GOT secton. if (IsStatic) { GotSec = Dumper.findSectionByName(".got"); if (!GotSec) return Error::success(); ArrayRef Content = unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); GotEntries = Entries(reinterpret_cast(Content.data()), Content.size() / sizeof(Entry)); LocalNum = GotEntries.size(); return Error::success(); } // Lookup dynamic table tags which define the GOT layout. Optional DtPltGot; Optional DtLocalGotNum; Optional DtGotSym; for (const auto &Entry : DynTable) { switch (Entry.getTag()) { case ELF::DT_PLTGOT: DtPltGot = Entry.getVal(); break; case ELF::DT_MIPS_LOCAL_GOTNO: DtLocalGotNum = Entry.getVal(); break; case ELF::DT_MIPS_GOTSYM: DtGotSym = Entry.getVal(); break; } } if (!DtPltGot && !DtLocalGotNum && !DtGotSym) return Error::success(); if (!DtPltGot) return createError("cannot find PLTGOT dynamic tag"); if (!DtLocalGotNum) return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); if (!DtGotSym) return createError("cannot find MIPS_GOTSYM dynamic tag"); size_t DynSymTotal = DynSyms.size(); if (*DtGotSym > DynSymTotal) return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + ") exceeds the number of dynamic symbols (" + Twine(DynSymTotal) + ")"); GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); if (!GotSec) return createError("there is no non-empty GOT section at 0x" + Twine::utohexstr(*DtPltGot)); LocalNum = *DtLocalGotNum; GlobalNum = DynSymTotal - *DtGotSym; ArrayRef Content = unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); GotEntries = Entries(reinterpret_cast(Content.data()), Content.size() / sizeof(Entry)); GotDynSyms = DynSyms.drop_front(*DtGotSym); return Error::success(); } template Error MipsGOTParser::findPLT(Elf_Dyn_Range DynTable) { // Lookup dynamic table tags which define the PLT layout. Optional DtMipsPltGot; Optional DtJmpRel; for (const auto &Entry : DynTable) { switch (Entry.getTag()) { case ELF::DT_MIPS_PLTGOT: DtMipsPltGot = Entry.getVal(); break; case ELF::DT_JMPREL: DtJmpRel = Entry.getVal(); break; } } if (!DtMipsPltGot && !DtJmpRel) return Error::success(); // Find PLT section. if (!DtMipsPltGot) return createError("cannot find MIPS_PLTGOT dynamic tag"); if (!DtJmpRel) return createError("cannot find JMPREL dynamic tag"); PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); if (!PltSec) return createError("there is no non-empty PLTGOT section at 0x" + Twine::utohexstr(*DtMipsPltGot)); PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); if (!PltRelSec) return createError("there is no non-empty RELPLT section at 0x" + Twine::utohexstr(*DtJmpRel)); if (Expected> PltContentOrErr = Obj.getSectionContents(*PltSec)) PltEntries = Entries(reinterpret_cast(PltContentOrErr->data()), PltContentOrErr->size() / sizeof(Entry)); else return createError("unable to read PLTGOT section content: " + toString(PltContentOrErr.takeError())); if (Expected PltSymTableOrErr = Obj.getSection(PltRelSec->sh_link)) PltSymTable = *PltSymTableOrErr; else return createError("unable to get a symbol table linked to the " + describe(Obj, *PltRelSec) + ": " + toString(PltSymTableOrErr.takeError())); if (Expected StrTabOrErr = Obj.getStringTableForSymtab(*PltSymTable)) PltStrTable = *StrTabOrErr; else return createError("unable to get a string table for the " + describe(Obj, *PltSymTable) + ": " + toString(StrTabOrErr.takeError())); return Error::success(); } template uint64_t MipsGOTParser::getGp() const { return GotSec->sh_addr + 0x7ff0; } template const typename MipsGOTParser::Entry * MipsGOTParser::getGotLazyResolver() const { return LocalNum > 0 ? &GotEntries[0] : nullptr; } template const typename MipsGOTParser::Entry * MipsGOTParser::getGotModulePointer() const { if (LocalNum < 2) return nullptr; const Entry &E = GotEntries[1]; if ((E >> (sizeof(Entry) * 8 - 1)) == 0) return nullptr; return &E; } template typename MipsGOTParser::Entries MipsGOTParser::getLocalEntries() const { size_t Skip = getGotModulePointer() ? 2 : 1; if (LocalNum - Skip <= 0) return Entries(); return GotEntries.slice(Skip, LocalNum - Skip); } template typename MipsGOTParser::Entries MipsGOTParser::getGlobalEntries() const { if (GlobalNum == 0) return Entries(); return GotEntries.slice(LocalNum, GlobalNum); } template typename MipsGOTParser::Entries MipsGOTParser::getOtherEntries() const { size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; if (OtherNum == 0) return Entries(); return GotEntries.slice(LocalNum + GlobalNum, OtherNum); } template uint64_t MipsGOTParser::getGotAddress(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); return GotSec->sh_addr + Offset; } template int64_t MipsGOTParser::getGotOffset(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); return Offset - 0x7ff0; } template const typename MipsGOTParser::Elf_Sym * MipsGOTParser::getGotSym(const Entry *E) const { int64_t Offset = std::distance(GotEntries.data(), E); return &GotDynSyms[Offset - LocalNum]; } template const typename MipsGOTParser::Entry * MipsGOTParser::getPltLazyResolver() const { return PltEntries.empty() ? nullptr : &PltEntries[0]; } template const typename MipsGOTParser::Entry * MipsGOTParser::getPltModulePointer() const { return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; } template typename MipsGOTParser::Entries MipsGOTParser::getPltEntries() const { if (PltEntries.size() <= 2) return Entries(); return PltEntries.slice(2, PltEntries.size() - 2); } template uint64_t MipsGOTParser::getPltAddress(const Entry *E) const { int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); return PltSec->sh_addr + Offset; } template const typename MipsGOTParser::Elf_Sym * MipsGOTParser::getPltSym(const Entry *E) const { int64_t Offset = std::distance(getPltEntries().data(), E); if (PltRelSec->sh_type == ELF::SHT_REL) { Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); return unwrapOrError(FileName, Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); } else { Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); return unwrapOrError(FileName, Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); } } static const EnumEntry ElfMipsISAExtType[] = { {"None", Mips::AFL_EXT_NONE}, {"Broadcom SB-1", Mips::AFL_EXT_SB1}, {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, {"LSI R4010", Mips::AFL_EXT_4010}, {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, {"MIPS R4650", Mips::AFL_EXT_4650}, {"MIPS R5900", Mips::AFL_EXT_5900}, {"MIPS R10000", Mips::AFL_EXT_10000}, {"NEC VR4100", Mips::AFL_EXT_4100}, {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, {"NEC VR4120", Mips::AFL_EXT_4120}, {"NEC VR5400", Mips::AFL_EXT_5400}, {"NEC VR5500", Mips::AFL_EXT_5500}, {"RMI Xlr", Mips::AFL_EXT_XLR}, {"Toshiba R3900", Mips::AFL_EXT_3900} }; static const EnumEntry ElfMipsASEFlags[] = { {"DSP", Mips::AFL_ASE_DSP}, {"DSPR2", Mips::AFL_ASE_DSPR2}, {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, {"MCU", Mips::AFL_ASE_MCU}, {"MDMX", Mips::AFL_ASE_MDMX}, {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, {"MT", Mips::AFL_ASE_MT}, {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, {"VZ", Mips::AFL_ASE_VIRT}, {"MSA", Mips::AFL_ASE_MSA}, {"MIPS16", Mips::AFL_ASE_MIPS16}, {"microMIPS", Mips::AFL_ASE_MICROMIPS}, {"XPA", Mips::AFL_ASE_XPA}, {"CRC", Mips::AFL_ASE_CRC}, {"GINV", Mips::AFL_ASE_GINV}, }; static const EnumEntry ElfMipsFpABIType[] = { {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, {"Hard float compat (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64A} }; static const EnumEntry ElfMipsFlags1[] { {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, }; static int getMipsRegisterSize(uint8_t Flag) { switch (Flag) { case Mips::AFL_REG_NONE: return 0; case Mips::AFL_REG_32: return 32; case Mips::AFL_REG_64: return 64; case Mips::AFL_REG_128: return 128; default: return -1; } } template static void printMipsReginfoData(ScopedPrinter &W, const Elf_Mips_RegInfo &Reginfo) { W.printHex("GP", Reginfo.ri_gp_value); W.printHex("General Mask", Reginfo.ri_gprmask); W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); } template void ELFDumper::printMipsReginfo() { const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); if (!RegInfoSec) { W.startLine() << "There is no .reginfo section in the file.\n"; return; } Expected> ContentsOrErr = Obj.getSectionContents(*RegInfoSec); if (!ContentsOrErr) { this->reportUniqueWarning(createError( "unable to read the content of the .reginfo section (" + describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()))); return; } if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo)) { this->reportUniqueWarning( createError("the .reginfo section has an invalid size (0x" + Twine::utohexstr(ContentsOrErr->size()) + ")")); return; } DictScope GS(W, "MIPS RegInfo"); printMipsReginfoData(W, *reinterpret_cast *>( ContentsOrErr->data())); } template static Expected *> readMipsOptions(const uint8_t *SecBegin, ArrayRef &SecData, bool &IsSupported) { if (SecData.size() < sizeof(Elf_Mips_Options)) return createError("the .MIPS.options section has an invalid size (0x" + Twine::utohexstr(SecData.size()) + ")"); const Elf_Mips_Options *O = reinterpret_cast *>(SecData.data()); const uint8_t Size = O->size; if (Size > SecData.size()) { const uint64_t Offset = SecData.data() - SecBegin; const uint64_t SecSize = Offset + SecData.size(); return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + " at offset 0x" + Twine::utohexstr(Offset) + " goes past the end of the .MIPS.options " "section of size 0x" + Twine::utohexstr(SecSize)); } IsSupported = O->kind == ODK_REGINFO; const size_t ExpectedSize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); if (IsSupported) if (Size < ExpectedSize) return createError( "a .MIPS.options entry of kind " + Twine(getElfMipsOptionsOdkType(O->kind)) + " has an invalid size (0x" + Twine::utohexstr(Size) + "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); SecData = SecData.drop_front(Size); return O; } template void ELFDumper::printMipsOptions() { const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); if (!MipsOpts) { W.startLine() << "There is no .MIPS.options section in the file.\n"; return; } DictScope GS(W, "MIPS Options"); ArrayRef Data = unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); const uint8_t *const SecBegin = Data.begin(); while (!Data.empty()) { bool IsSupported; Expected *> OptsOrErr = readMipsOptions(SecBegin, Data, IsSupported); if (!OptsOrErr) { reportUniqueWarning(OptsOrErr.takeError()); break; } unsigned Kind = (*OptsOrErr)->kind; const char *Type = getElfMipsOptionsOdkType(Kind); if (!IsSupported) { W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind << ")\n"; continue; } DictScope GS(W, Type); if (Kind == ODK_REGINFO) printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); else llvm_unreachable("unexpected .MIPS.options section descriptor kind"); } } template void ELFDumper::printStackMap() const { const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); if (!StackMapSection) return; auto Warn = [&](Error &&E) { this->reportUniqueWarning(createError("unable to read the stack map from " + describe(*StackMapSection) + ": " + toString(std::move(E)))); }; Expected> ContentOrErr = Obj.getSectionContents(*StackMapSection); if (!ContentOrErr) { Warn(ContentOrErr.takeError()); return; } if (Error E = StackMapParser::validateHeader( *ContentOrErr)) { Warn(std::move(E)); return; } prettyPrintStackMap(W, StackMapParser(*ContentOrErr)); } template void ELFDumper::printGroupSections() { ELFDumperStyle->printGroupSections(); } template void ELFDumper::printAddrsig() { ELFDumperStyle->printAddrsig(); } static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, StringRef Str2) { OS.PadToColumn(2u); OS << Str1; OS.PadToColumn(37u); OS << Str2 << "\n"; OS.flush(); } template static std::string getSectionHeadersNumString(const ELFFile &Obj, StringRef FileName) { const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); if (ElfHeader.e_shnum != 0) return to_string(ElfHeader.e_shnum); ArrayRef Arr = cantFail(Obj.sections()); if (Arr.empty()) return "0"; return "0 (" + to_string(Arr[0].sh_size) + ")"; } template static std::string getSectionHeaderTableIndexString(const ELFFile &Obj, StringRef FileName) { const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); if (ElfHeader.e_shstrndx != SHN_XINDEX) return to_string(ElfHeader.e_shstrndx); ArrayRef Arr = cantFail(Obj.sections()); if (Arr.empty()) return "65535 (corrupt: out of range)"; return to_string(ElfHeader.e_shstrndx) + " (" + to_string(Arr[0].sh_link) + ")"; } template void GNUStyle::printFileHeaders() { const Elf_Ehdr &e = this->Obj.getHeader(); OS << "ELF Header:\n"; OS << " Magic: "; std::string Str; for (int i = 0; i < ELF::EI_NIDENT; i++) OS << format(" %02x", static_cast(e.e_ident[i])); OS << "\n"; Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); printFields(OS, "Class:", Str); Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); printFields(OS, "Data:", Str); OS.PadToColumn(2u); OS << "Version:"; OS.PadToColumn(37u); OS << to_hexString(e.e_ident[ELF::EI_VERSION]); if (e.e_version == ELF::EV_CURRENT) OS << " (current)"; OS << "\n"; Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); printFields(OS, "OS/ABI:", Str); printFields(OS, "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); Str = printEnum(e.e_type, makeArrayRef(ElfObjectFileType)); printFields(OS, "Type:", Str); Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType)); printFields(OS, "Machine:", Str); Str = "0x" + to_hexString(e.e_version); printFields(OS, "Version:", Str); Str = "0x" + to_hexString(e.e_entry); printFields(OS, "Entry point address:", Str); Str = to_string(e.e_phoff) + " (bytes into file)"; printFields(OS, "Start of program headers:", Str); Str = to_string(e.e_shoff) + " (bytes into file)"; printFields(OS, "Start of section headers:", Str); std::string ElfFlags; if (e.e_machine == EM_MIPS) ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); else if (e.e_machine == EM_RISCV) ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); Str = "0x" + to_hexString(e.e_flags); if (!ElfFlags.empty()) Str = Str + ", " + ElfFlags; printFields(OS, "Flags:", Str); Str = to_string(e.e_ehsize) + " (bytes)"; printFields(OS, "Size of this header:", Str); Str = to_string(e.e_phentsize) + " (bytes)"; printFields(OS, "Size of program headers:", Str); Str = to_string(e.e_phnum); printFields(OS, "Number of program headers:", Str); Str = to_string(e.e_shentsize) + " (bytes)"; printFields(OS, "Size of section headers:", Str); Str = getSectionHeadersNumString(this->Obj, this->FileName); printFields(OS, "Number of section headers:", Str); Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); printFields(OS, "Section header string table index:", Str); } namespace { struct GroupMember { StringRef Name; uint64_t Index; }; struct GroupSection { StringRef Name; std::string Signature; uint64_t ShName; uint64_t Index; uint32_t Link; uint32_t Info; uint32_t Type; std::vector Members; }; template std::vector getGroups(const ELFFile &Obj, StringRef FileName) { using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Word = typename ELFT::Word; std::vector Ret; uint64_t I = 0; for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { ++I; if (Sec.sh_type != ELF::SHT_GROUP) continue; const Elf_Shdr *Symtab = unwrapOrError(FileName, Obj.getSection(Sec.sh_link)); StringRef StrTable = unwrapOrError(FileName, Obj.getStringTableForSymtab(*Symtab)); const Elf_Sym *Sym = unwrapOrError( FileName, Obj.template getEntry(*Symtab, Sec.sh_info)); auto Data = unwrapOrError( FileName, Obj.template getSectionContentsAsArray(Sec)); StringRef Name = unwrapOrError(FileName, Obj.getSectionName(Sec)); StringRef Signature = StrTable.data() + Sym->st_name; Ret.push_back({Name, maybeDemangle(Signature), Sec.sh_name, I - 1, Sec.sh_link, Sec.sh_info, Data[0], {}}); std::vector &GM = Ret.back().Members; for (uint32_t Ndx : Data.slice(1)) { const Elf_Shdr &Sec = *unwrapOrError(FileName, Obj.getSection(Ndx)); const StringRef Name = unwrapOrError(FileName, Obj.getSectionName(Sec)); GM.push_back({Name, Ndx}); } } return Ret; } DenseMap mapSectionsToGroups(ArrayRef Groups) { DenseMap Ret; for (const GroupSection &G : Groups) for (const GroupMember &GM : G.Members) Ret.insert({GM.Index, &G}); return Ret; } } // namespace template void GNUStyle::printGroupSections() { std::vector V = getGroups(this->Obj, this->FileName); DenseMap Map = mapSectionsToGroups(V); for (const GroupSection &G : V) { OS << "\n" << getGroupType(G.Type) << " group section [" << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature << "] contains " << G.Members.size() << " sections:\n" << " [Index] Name\n"; for (const GroupMember &GM : G.Members) { const GroupSection *MainGroup = Map[GM.Index]; if (MainGroup != &G) this->reportUniqueWarning( createError("section with index " + Twine(GM.Index) + ", included in the group section with index " + Twine(MainGroup->Index) + ", was also found in the group section with index " + Twine(G.Index))); OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; } } if (V.empty()) OS << "There are no section groups in this file.\n"; } template void GNUStyle::printReloc(const Relocation &R, unsigned RelIndex, const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { Expected> Target = this->dumper().getRelocationTarget(R, SymTab); if (!Target) this->reportUniqueWarning(createError( "unable to print relocation " + Twine(RelIndex) + " in " + describe(this->Obj, Sec) + ": " + toString(Target.takeError()))); else printRelRelaReloc(R, *Target); } template void GNUStyle::printRelrReloc(const Elf_Relr &R) { OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; } template void GNUStyle::printRelRelaReloc(const Relocation &R, const RelSymbol &RelSym) { // First two fields are bit width dependent. The rest of them are fixed width. unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; unsigned Width = ELFT::Is64Bits ? 16 : 8; Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); SmallString<32> RelocName; this->Obj.getRelocationTypeName(R.Type, RelocName); Fields[2].Str = RelocName.c_str(); if (RelSym.Sym) Fields[3].Str = to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); Fields[4].Str = std::string(RelSym.Name); for (const Field &F : Fields) printField(F); std::string Addend; if (Optional A = R.Addend) { int64_t RelAddend = *A; if (!RelSym.Name.empty()) { if (RelAddend < 0) { Addend = " - "; RelAddend = std::abs(RelAddend); } else { Addend = " + "; } } Addend += to_hexString(RelAddend, false); } OS << Addend << "\n"; } template static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) { bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; if (ELFT::Is64Bits) OS << " "; else OS << " "; if (IsRelr && opts::RawRelr) OS << "Data "; else OS << "Offset"; if (ELFT::Is64Bits) OS << " Info Type" << " Symbol's Value Symbol's Name"; else OS << " Info Type Sym. Value Symbol's Name"; if (IsRela) OS << " + Addend"; OS << "\n"; } template void GNUStyle::printDynamicRelocHeader(unsigned Type, StringRef Name, const DynRegionInfo &Reg) { uint64_t Offset = Reg.Addr - this->Obj.base(); OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n"; printRelocHeaderFields(OS, Type); } template static bool isRelocationSec(const typename ELFT::Shdr &Sec) { return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || Sec.sh_type == ELF::SHT_ANDROID_RELA || Sec.sh_type == ELF::SHT_ANDROID_RELR; } template void GNUStyle::printRelocations() { auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected { // Android's packed relocation section needs to be unpacked first // to get the actual number of entries. if (Sec.sh_type == ELF::SHT_ANDROID_REL || Sec.sh_type == ELF::SHT_ANDROID_RELA) { Expected> RelasOrErr = this->Obj.android_relas(Sec); if (!RelasOrErr) return RelasOrErr.takeError(); return RelasOrErr->size(); } if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR)) { Expected RelrsOrErr = this->Obj.relrs(Sec); if (!RelrsOrErr) return RelrsOrErr.takeError(); return this->Obj.decode_relrs(*RelrsOrErr).size(); } return Sec.getEntityCount(); }; bool HasRelocSections = false; for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { if (!isRelocationSec(Sec)) continue; HasRelocSections = true; std::string EntriesNum = ""; if (Expected NumOrErr = GetEntriesNum(Sec)) EntriesNum = std::to_string(*NumOrErr); else this->reportUniqueWarning(createError( "unable to get the number of relocations in " + describe(this->Obj, Sec) + ": " + toString(NumOrErr.takeError()))); uintX_t Offset = Sec.sh_offset; StringRef Name = this->getPrintableSectionName(Sec); OS << "\nRelocation section '" << Name << "' at offset 0x" << to_hexString(Offset, false) << " contains " << EntriesNum << " entries:\n"; printRelocHeaderFields(OS, Sec.sh_type); this->printRelocationsHelper(Sec); } if (!HasRelocSections) OS << "\nThere are no relocations in this file.\n"; } // Print the offset of a particular section from anyone of the ranges: // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. // If 'Type' does not fall within any of those ranges, then a string is // returned as '' followed by the type value. static std::string getSectionTypeOffsetString(unsigned Type) { if (Type >= SHT_LOOS && Type <= SHT_HIOS) return "LOOS+0x" + to_hexString(Type - SHT_LOOS); else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); return "0x" + to_hexString(Type) + ": "; } static std::string getSectionTypeString(unsigned Machine, unsigned Type) { StringRef Name = getELFSectionTypeName(Machine, Type); // Handle SHT_GNU_* type names. if (Name.startswith("SHT_GNU_")) { if (Name == "SHT_GNU_HASH") return "GNU_HASH"; // E.g. SHT_GNU_verneed -> VERNEED. return Name.drop_front(8).upper(); } if (Name == "SHT_SYMTAB_SHNDX") return "SYMTAB SECTION INDICES"; if (Name.startswith("SHT_")) return Name.drop_front(4).str(); return getSectionTypeOffsetString(Type); } static void printSectionDescription(formatted_raw_ostream &OS, unsigned EMachine) { OS << "Key to Flags:\n"; OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " "(info),\n"; OS << " L (link order), O (extra OS processing required), G (group), T " "(TLS),\n"; OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; if (EMachine == EM_X86_64) OS << " l (large), "; else if (EMachine == EM_ARM) OS << " y (purecode), "; else OS << " "; OS << "p (processor specific)\n"; } template void GNUStyle::printSectionHeaders() { unsigned Bias = ELFT::Is64Bits ? 0 : 8; ArrayRef Sections = cantFail(this->Obj.sections()); OS << "There are " << to_string(Sections.size()) << " section headers, starting at offset " << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; OS << "Section Headers:\n"; Field Fields[11] = { {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; for (const Field &F : Fields) printField(F); OS << "\n"; StringRef SecStrTable; if (Expected SecStrTableOrErr = this->Obj.getSectionStringTable( Sections, this->dumper().WarningHandler)) SecStrTable = *SecStrTableOrErr; else this->reportUniqueWarning(SecStrTableOrErr.takeError()); size_t SectionIndex = 0; for (const Elf_Shdr &Sec : Sections) { Fields[0].Str = to_string(SectionIndex); if (SecStrTable.empty()) Fields[1].Str = ""; else Fields[1].Str = std::string(unwrapOrError( this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); Fields[2].Str = getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); Fields[3].Str = to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags); Fields[8].Str = to_string(Sec.sh_link); Fields[9].Str = to_string(Sec.sh_info); Fields[10].Str = to_string(Sec.sh_addralign); OS.PadToColumn(Fields[0].Column); OS << "[" << right_justify(Fields[0].Str, 2) << "]"; for (int i = 1; i < 7; i++) printField(Fields[i]); OS.PadToColumn(Fields[7].Column); OS << right_justify(Fields[7].Str, 3); OS.PadToColumn(Fields[8].Column); OS << right_justify(Fields[8].Str, 2); OS.PadToColumn(Fields[9].Column); OS << right_justify(Fields[9].Str, 3); OS.PadToColumn(Fields[10].Column); OS << right_justify(Fields[10].Str, 2); OS << "\n"; ++SectionIndex; } printSectionDescription(OS, this->Obj.getHeader().e_machine); } template void GNUStyle::printSymtabMessage(const Elf_Shdr *Symtab, size_t Entries, bool NonVisibilityBitsUsed) { StringRef Name; if (Symtab) Name = this->getPrintableSectionName(*Symtab); if (!Name.empty()) OS << "\nSymbol table '" << Name << "'"; else OS << "\nSymbol table for image"; OS << " contains " << Entries << " entries:\n"; if (ELFT::Is64Bits) OS << " Num: Value Size Type Bind Vis"; else OS << " Num: Value Size Type Bind Vis"; if (NonVisibilityBitsUsed) OS << " "; OS << " Ndx Name\n"; } template std::string GNUStyle::getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex) { unsigned SectionIndex = Symbol.st_shndx; switch (SectionIndex) { case ELF::SHN_UNDEF: return "UND"; case ELF::SHN_ABS: return "ABS"; case ELF::SHN_COMMON: return "COM"; case ELF::SHN_XINDEX: { Expected IndexOrErr = object::getExtendedSymbolTableIndex( Symbol, SymIndex, this->dumper().getShndxTable()); if (!IndexOrErr) { assert(Symbol.st_shndx == SHN_XINDEX && "getExtendedSymbolTableIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"); this->reportUniqueWarning(IndexOrErr.takeError()); return "RSV[0xffff]"; } return to_string(format_decimal(*IndexOrErr, 3)); } default: // Find if: // Processor specific if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) return std::string("PRC[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // OS specific if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) return std::string("OS[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // Architecture reserved: if (SectionIndex >= ELF::SHN_LORESERVE && SectionIndex <= ELF::SHN_HIRESERVE) return std::string("RSV[0x") + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; // A normal section with an index return to_string(format_decimal(SectionIndex, 3)); } } template void GNUStyle::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic, bool NonVisibilityBitsUsed) { unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; Fields[1].Str = to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); unsigned char SymbolType = Symbol.getType(); if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); Fields[4].Str = printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); Fields[5].Str = printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities)); if (Symbol.st_other & ~0x3) Fields[5].Str += " []"; Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex); Fields[7].Str = this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic); for (const Field &Entry : Fields) printField(Entry); OS << "\n"; } template void GNUStyle::printHashedSymbol(const Elf_Sym *Symbol, unsigned SymIndex, StringRef StrTable, uint32_t Bucket) { unsigned Bias = ELFT::Is64Bits ? 8 : 0; Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; Fields[0].Str = to_string(format_decimal(SymIndex, 5)); Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; Fields[2].Str = to_string( format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); unsigned char SymbolType = Symbol->getType(); if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); Fields[5].Str = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); Fields[6].Str = printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex); Fields[8].Str = this->dumper().getFullSymbolName(*Symbol, SymIndex, StrTable, true); for (const Field &Entry : Fields) printField(Entry); OS << "\n"; } template void GNUStyle::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) { if (!PrintSymbols && !PrintDynamicSymbols) return; // GNU readelf prints both the .dynsym and .symtab with --symbols. this->dumper().printSymbolsHelper(true); if (PrintSymbols) this->dumper().printSymbolsHelper(false); } template void GNUStyle::printHashTableSymbols(const Elf_Hash &SysVHash) { StringRef StringTable = this->dumper().getDynamicStringTable(); if (StringTable.empty()) return; if (ELFT::Is64Bits) OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; else OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; OS << "\n"; Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols(); const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; if (!FirstSym) { Optional DynSymRegion = this->dumper().getDynSymRegion(); this->reportUniqueWarning( createError(Twine("unable to print symbols for the .hash table: the " "dynamic symbol table ") + (DynSymRegion ? "is empty" : "was not found"))); return; } auto Buckets = SysVHash.buckets(); auto Chains = SysVHash.chains(); for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { if (Buckets[Buc] == ELF::STN_UNDEF) continue; std::vector Visited(SysVHash.nchain); for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { if (Ch == ELF::STN_UNDEF) break; if (Visited[Ch]) { reportWarning(createError(".hash section is invalid: bucket " + Twine(Ch) + ": a cycle was detected in the linked chain"), this->FileName); break; } printHashedSymbol(FirstSym + Ch, Ch, StringTable, Buc); Visited[Ch] = true; } } } template void GNUStyle::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { StringRef StringTable = this->dumper().getDynamicStringTable(); if (StringTable.empty()) return; Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols(); const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; if (!FirstSym) { Optional DynSymRegion = this->dumper().getDynSymRegion(); this->reportUniqueWarning(createError( Twine("unable to print symbols for the .gnu.hash table: the " "dynamic symbol table ") + (DynSymRegion ? "is empty" : "was not found"))); return; } ArrayRef Buckets = GnuHash.buckets(); for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { if (Buckets[Buc] == ELF::STN_UNDEF) continue; uint32_t Index = Buckets[Buc]; uint32_t GnuHashable = Index - GnuHash.symndx; // Print whole chain while (true) { uint32_t SymIndex = Index++; printHashedSymbol(FirstSym + SymIndex, SymIndex, StringTable, Buc); // Chain ends at symbol with stopper bit if ((GnuHash.values(DynSyms.size())[GnuHashable++] & 1) == 1) break; } } } template void GNUStyle::printHashSymbols() { if (const Elf_Hash *SysVHash = this->dumper().getHashTable()) { OS << "\n Symbol table of .hash for image:\n"; if (Error E = checkHashTable(this->Obj, SysVHash)) this->reportUniqueWarning(std::move(E)); else printHashTableSymbols(*SysVHash); } // Try printing the .gnu.hash table. if (const Elf_GnuHash *GnuHash = this->dumper().getGnuHashTable()) { OS << "\n Symbol table of .gnu.hash for image:\n"; if (ELFT::Is64Bits) OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; else OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; OS << "\n"; if (Error E = checkGNUHashTable(this->Obj, GnuHash)) this->reportUniqueWarning(std::move(E)); else printGnuHashTableSymbols(*GnuHash); } } static inline std::string printPhdrFlags(unsigned Flag) { std::string Str; Str = (Flag & PF_R) ? "R" : " "; Str += (Flag & PF_W) ? "W" : " "; Str += (Flag & PF_X) ? "E" : " "; return Str; } template static bool checkTLSSections(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec) { if (Sec.sh_flags & ELF::SHF_TLS) { // .tbss must only be shown in the PT_TLS segment. if (Sec.sh_type == ELF::SHT_NOBITS) return Phdr.p_type == ELF::PT_TLS; // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO // segments. return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || (Phdr.p_type == ELF::PT_GNU_RELRO); } // PT_TLS must only have SHF_TLS sections. return Phdr.p_type != ELF::PT_TLS; } template static bool checkOffsets(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec) { // SHT_NOBITS sections don't need to have an offset inside the segment. if (Sec.sh_type == ELF::SHT_NOBITS) return true; if (Sec.sh_offset < Phdr.p_offset) return false; // Only non-empty sections can be at the end of a segment. if (Sec.sh_size == 0) return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz); return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz; } // Check that an allocatable section belongs to a virtual address // space of a segment. template static bool checkVMA(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec) { if (!(Sec.sh_flags & ELF::SHF_ALLOC)) return true; if (Sec.sh_addr < Phdr.p_vaddr) return false; bool IsTbss = (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); // .tbss is special, it only has memory in PT_TLS and has NOBITS properties. bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS; // Only non-empty sections can be at the end of a segment. if (Sec.sh_size == 0 || IsTbssInNonTLS) return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz; return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz; } template static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec) { if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) return true; // We get here when we have an empty section. Only non-empty sections can be // at the start or at the end of PT_DYNAMIC. // Is section within the phdr both based on offset and VMA? bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || (Sec.sh_offset > Phdr.p_offset && Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); return CheckOffset && CheckVA; } template void GNUStyle::printProgramHeaders( bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { if (PrintProgramHeaders) printProgramHeaders(); // Display the section mapping along with the program headers, unless // -section-mapping is explicitly set to false. if (PrintSectionMapping != cl::BOU_FALSE) printSectionMapping(); } template void GNUStyle::printProgramHeaders() { unsigned Bias = ELFT::Is64Bits ? 8 : 0; const Elf_Ehdr &Header = this->Obj.getHeader(); Field Fields[8] = {2, 17, 26, 37 + Bias, 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; OS << "\nElf file type is " << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n" << "Entry point " << format_hex(Header.e_entry, 3) << "\n" << "There are " << Header.e_phnum << " program headers," << " starting at offset " << Header.e_phoff << "\n\n" << "Program Headers:\n"; if (ELFT::Is64Bits) OS << " Type Offset VirtAddr PhysAddr " << " FileSiz MemSiz Flg Align\n"; else OS << " Type Offset VirtAddr PhysAddr FileSiz " << "MemSiz Flg Align\n"; unsigned Width = ELFT::Is64Bits ? 18 : 10; unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; Expected> PhdrsOrErr = this->Obj.program_headers(); if (!PhdrsOrErr) { this->reportUniqueWarning(createError("unable to dump program headers: " + toString(PhdrsOrErr.takeError()))); return; } for (const Elf_Phdr &Phdr : *PhdrsOrErr) { Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); Fields[6].Str = printPhdrFlags(Phdr.p_flags); Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); for (const Field &F : Fields) printField(F); if (Phdr.p_type == ELF::PT_INTERP) { OS << "\n"; auto ReportBadInterp = [&](const Twine &Msg) { reportWarning( createError("unable to read program interpreter name at offset 0x" + Twine::utohexstr(Phdr.p_offset) + ": " + Msg), this->FileName); }; if (Phdr.p_offset >= this->Obj.getBufSize()) { ReportBadInterp("it goes past the end of the file (0x" + Twine::utohexstr(this->Obj.getBufSize()) + ")"); continue; } const char *Data = reinterpret_cast(this->Obj.base()) + Phdr.p_offset; size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; size_t Len = strnlen(Data, MaxSize); if (Len == MaxSize) { ReportBadInterp("it is not null-terminated"); continue; } OS << " [Requesting program interpreter: "; OS << StringRef(Data, Len) << "]"; } OS << "\n"; } } template void GNUStyle::printSectionMapping() { OS << "\n Section to Segment mapping:\n Segment Sections...\n"; DenseSet BelongsToSegment; int Phnum = 0; Expected> PhdrsOrErr = this->Obj.program_headers(); if (!PhdrsOrErr) { this->reportUniqueWarning(createError( "can't read program headers to build section to segment mapping: " + toString(PhdrsOrErr.takeError()))); return; } for (const Elf_Phdr &Phdr : *PhdrsOrErr) { std::string Sections; OS << format(" %2.2d ", Phnum++); // Check if each section is in a segment and then print mapping. for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { if (Sec.sh_type == ELF::SHT_NULL) continue; // readelf additionally makes sure it does not print zero sized sections // at end of segments and for PT_DYNAMIC both start and end of section // .tbss must only be shown in PT_TLS section. if (checkTLSSections(Phdr, Sec) && checkOffsets(Phdr, Sec) && checkVMA(Phdr, Sec) && checkPTDynamic(Phdr, Sec)) { Sections += unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + " "; BelongsToSegment.insert(&Sec); } } OS << Sections << "\n"; OS.flush(); } // Display sections that do not belong to a segment. std::string Sections; for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) Sections += unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + ' '; } if (!Sections.empty()) { OS << " None " << Sections << '\n'; OS.flush(); } } namespace { template RelSymbol getSymbolForReloc(const ELFFile &Obj, StringRef FileName, const ELFDumper &Dumper, const Relocation &Reloc) { auto WarnAndReturn = [&](const typename ELFT::Sym *Sym, const Twine &Reason) -> RelSymbol { reportWarning( createError("unable to get name of the dynamic symbol with index " + Twine(Reloc.Symbol) + ": " + Reason), FileName); return {Sym, ""}; }; ArrayRef Symbols = Dumper.dynamic_symbols(); const typename ELFT::Sym *FirstSym = Symbols.begin(); if (!FirstSym) return WarnAndReturn(nullptr, "no dynamic symbol table found"); // We might have an object without a section header. In this case the size of // Symbols is zero, because there is no way to know the size of the dynamic // table. We should allow this case and not print a warning. if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) return WarnAndReturn( nullptr, "index is greater than or equal to the number of dynamic symbols (" + Twine(Symbols.size()) + ")"); const typename ELFT::Sym *Sym = FirstSym + Reloc.Symbol; Expected ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); if (!ErrOrName) return WarnAndReturn(Sym, toString(ErrOrName.takeError())); return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; } } // namespace template void GNUStyle::printDynamicReloc(const Relocation &R) { printRelRelaReloc( R, getSymbolForReloc(this->Obj, this->FileName, this->dumper(), R)); } template static size_t getMaxDynamicTagSize(const ELFFile &Obj, typename ELFT::DynRange Tags) { size_t Max = 0; for (const typename ELFT::Dyn &Dyn : Tags) Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); return Max; } template void GNUStyle::printDynamic() { Elf_Dyn_Range Table = this->dumper().dynamic_table(); if (Table.empty()) return; OS << "Dynamic section at offset " << format_hex(reinterpret_cast( this->dumper().getDynamicTableRegion().Addr) - this->Obj.base(), 1) << " contains " << Table.size() << " entries:\n"; // The type name is surrounded with round brackets, hence add 2. size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; // The "Name/Value" column should be indented from the "Type" column by N // spaces, where N = MaxTagSize - length of "Type" (4) + trailing // space (1) = 3. OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; for (auto Entry : Table) { uintX_t Tag = Entry.getTag(); std::string Type = std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")"; std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal()); OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; } } template void GNUStyle::printDynamicRelocations() { this->printDynamicRelocationsHelper(); } template void DumpStyle::printDynamicRelocationsHelper() { const bool IsMips64EL = this->Obj.isMips64EL(); const DynRegionInfo &DynRelaRegion = this->dumper().getDynRelaRegion(); if (DynRelaRegion.Size > 0) { printDynamicRelocHeader(ELF::SHT_RELA, "RELA", DynRelaRegion); for (const Elf_Rela &Rela : this->dumper().dyn_relas()) printDynamicReloc(Relocation(Rela, IsMips64EL)); } const DynRegionInfo &DynRelRegion = this->dumper().getDynRelRegion(); if (DynRelRegion.Size > 0) { printDynamicRelocHeader(ELF::SHT_REL, "REL", DynRelRegion); for (const Elf_Rel &Rel : this->dumper().dyn_rels()) printDynamicReloc(Relocation(Rel, IsMips64EL)); } const DynRegionInfo &DynRelrRegion = this->dumper().getDynRelrRegion(); if (DynRelrRegion.Size > 0) { printDynamicRelocHeader(ELF::SHT_REL, "RELR", DynRelrRegion); Elf_Relr_Range Relrs = this->dumper().dyn_relrs(); for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) printDynamicReloc(Relocation(Rel, IsMips64EL)); } const DynRegionInfo &DynPLTRelRegion = this->dumper().getDynPLTRelRegion(); if (DynPLTRelRegion.Size) { if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { printDynamicRelocHeader(ELF::SHT_RELA, "PLT", DynPLTRelRegion); for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef()) printDynamicReloc(Relocation(Rela, IsMips64EL)); } else { printDynamicRelocHeader(ELF::SHT_REL, "PLT", DynPLTRelRegion); for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef()) printDynamicReloc(Relocation(Rel, IsMips64EL)); } } } template void GNUStyle::printGNUVersionSectionProlog( const typename ELFT::Shdr *Sec, const Twine &Label, unsigned EntriesNum) { StringRef SecName = unwrapOrError(this->FileName, this->Obj.getSectionName(*Sec)); OS << Label << " section '" << SecName << "' " << "contains " << EntriesNum << " entries:\n"; StringRef SymTabName = ""; Expected SymTabOrErr = this->Obj.getSection(Sec->sh_link); if (SymTabOrErr) SymTabName = unwrapOrError(this->FileName, this->Obj.getSectionName(**SymTabOrErr)); else this->reportUniqueWarning(createError("invalid section linked to " + describe(this->Obj, *Sec) + ": " + toString(SymTabOrErr.takeError()))); OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16) << " Offset: " << format_hex(Sec->sh_offset, 8) << " Link: " << Sec->sh_link << " (" << SymTabName << ")\n"; } template void GNUStyle::printVersionSymbolSection(const Elf_Shdr *Sec) { if (!Sec) return; printGNUVersionSectionProlog(Sec, "Version symbols", Sec->sh_size / sizeof(Elf_Versym)); Expected> VerTableOrErr = this->dumper().getVersionTable(*Sec, /*SymTab=*/nullptr, /*StrTab=*/nullptr); if (!VerTableOrErr) { this->reportUniqueWarning(VerTableOrErr.takeError()); return; } ArrayRef VerTable = *VerTableOrErr; std::vector Versions; for (size_t I = 0, E = VerTable.size(); I < E; ++I) { unsigned Ndx = VerTable[I].vs_index; if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); continue; } bool IsDefault; Expected NameOrErr = this->dumper().getSymbolVersionByIndex(Ndx, IsDefault); if (!NameOrErr) { if (!NameOrErr) this->reportUniqueWarning( createError("unable to get a version for entry " + Twine(I) + " of " + describe(this->Obj, *Sec) + ": " + toString(NameOrErr.takeError()))); Versions.emplace_back(""); continue; } Versions.emplace_back(*NameOrErr); } // readelf prints 4 entries per line. uint64_t Entries = VerTable.size(); for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { unsigned Ndx = VerTable[VersymRow + I].vs_index; OS << format("%4x%c", Ndx & VERSYM_VERSION, Ndx & VERSYM_HIDDEN ? 'h' : ' '); OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); } OS << '\n'; } OS << '\n'; } static std::string versionFlagToString(unsigned Flags) { if (Flags == 0) return "none"; std::string Ret; auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { if (!(Flags & Flag)) return; if (!Ret.empty()) Ret += " | "; Ret += Name; Flags &= ~Flag; }; AddFlag(VER_FLG_BASE, "BASE"); AddFlag(VER_FLG_WEAK, "WEAK"); AddFlag(VER_FLG_INFO, "INFO"); AddFlag(~0, ""); return Ret; } template void GNUStyle::printVersionDefinitionSection(const Elf_Shdr *Sec) { if (!Sec) return; printGNUVersionSectionProlog(Sec, "Version definition", Sec->sh_info); Expected> V = this->dumper().getVersionDefinitions(*Sec); if (!V) { this->reportUniqueWarning(V.takeError()); return; } for (const VerDef &Def : *V) { OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", Def.Offset, Def.Version, versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, Def.Name.data()); unsigned I = 0; for (const VerdAux &Aux : Def.AuxV) OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, Aux.Name.data()); } OS << '\n'; } template void GNUStyle::printVersionDependencySection(const Elf_Shdr *Sec) { if (!Sec) return; unsigned VerneedNum = Sec->sh_info; printGNUVersionSectionProlog(Sec, "Version needs", VerneedNum); Expected> V = this->dumper().getVersionDependencies(*Sec); if (!V) { this->reportUniqueWarning(V.takeError()); return; } for (const VerNeed &VN : *V) { OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, VN.Version, VN.File.data(), VN.Cnt); for (const VernAux &Aux : VN.AuxV) OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), Aux.Other); } OS << '\n'; } template void GNUStyle::printHashHistogram(const Elf_Hash &HashTable) { size_t NBucket = HashTable.nbucket; size_t NChain = HashTable.nchain; ArrayRef Buckets = HashTable.buckets(); ArrayRef Chains = HashTable.chains(); size_t TotalSyms = 0; // If hash table is correct, we have at least chains with 0 length size_t MaxChain = 1; size_t CumulativeNonZero = 0; if (NChain == 0 || NBucket == 0) return; std::vector ChainLen(NBucket, 0); // Go over all buckets and and note chain lengths of each bucket (total // unique chain lengths). for (size_t B = 0; B < NBucket; B++) { std::vector Visited(NChain); for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { if (C == ELF::STN_UNDEF) break; if (Visited[C]) { reportWarning(createError(".hash section is invalid: bucket " + Twine(C) + ": a cycle was detected in the linked chain"), this->FileName); break; } Visited[C] = true; if (MaxChain <= ++ChainLen[B]) MaxChain++; } TotalSyms += ChainLen[B]; } if (!TotalSyms) return; std::vector Count(MaxChain, 0); // Count how long is the chain for each bucket for (size_t B = 0; B < NBucket; B++) ++Count[ChainLen[B]]; // Print Number of buckets with each chain lengths and their cumulative // coverage of the symbols OS << "Histogram for bucket list length (total of " << NBucket << " buckets)\n" << " Length Number % of total Coverage\n"; for (size_t I = 0; I < MaxChain; I++) { CumulativeNonZero += Count[I] * I; OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], (Count[I] * 100.0) / NBucket, (CumulativeNonZero * 100.0) / TotalSyms); } } template void GNUStyle::printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) { Expected> ChainsOrErr = getGnuHashTableChains( this->dumper().getDynSymRegion(), &GnuHashTable); if (!ChainsOrErr) { this->reportUniqueWarning( createError("unable to print the GNU hash table histogram: " + toString(ChainsOrErr.takeError()))); return; } ArrayRef Chains = *ChainsOrErr; size_t Symndx = GnuHashTable.symndx; size_t TotalSyms = 0; size_t MaxChain = 1; size_t CumulativeNonZero = 0; size_t NBucket = GnuHashTable.nbuckets; if (Chains.empty() || NBucket == 0) return; ArrayRef Buckets = GnuHashTable.buckets(); std::vector ChainLen(NBucket, 0); for (size_t B = 0; B < NBucket; B++) { if (!Buckets[B]) continue; size_t Len = 1; for (size_t C = Buckets[B] - Symndx; C < Chains.size() && (Chains[C] & 1) == 0; C++) if (MaxChain < ++Len) MaxChain++; ChainLen[B] = Len; TotalSyms += Len; } MaxChain++; if (!TotalSyms) return; std::vector Count(MaxChain, 0); for (size_t B = 0; B < NBucket; B++) ++Count[ChainLen[B]]; // Print Number of buckets with each chain lengths and their cumulative // coverage of the symbols OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket << " buckets)\n" << " Length Number % of total Coverage\n"; for (size_t I = 0; I < MaxChain; I++) { CumulativeNonZero += Count[I] * I; OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], (Count[I] * 100.0) / NBucket, (CumulativeNonZero * 100.0) / TotalSyms); } } // Hash histogram shows statistics of how efficient the hash was for the // dynamic symbol table. The table shows the number of hash buckets for // different lengths of chains as an absolute number and percentage of the total // buckets, and the cumulative coverage of symbols for each set of buckets. template void GNUStyle::printHashHistograms() { // Print histogram for the .hash section. if (const Elf_Hash *HashTable = this->dumper().getHashTable()) { if (Error E = checkHashTable(this->Obj, HashTable)) this->reportUniqueWarning(std::move(E)); else printHashHistogram(*HashTable); } // Print histogram for the .gnu.hash section. if (const Elf_GnuHash *GnuHashTable = this->dumper().getGnuHashTable()) { if (Error E = checkGNUHashTable(this->Obj, GnuHashTable)) this->reportUniqueWarning(std::move(E)); else printGnuHashHistogram(*GnuHashTable); } } template void GNUStyle::printCGProfile() { OS << "GNUStyle::printCGProfile not implemented\n"; } template void GNUStyle::printAddrsig() { reportError(createError("--addrsig: not implemented"), this->FileName); } template static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, ArrayRef Data) { std::string str; raw_string_ostream OS(str); uint32_t PrData; auto DumpBit = [&](uint32_t Flag, StringRef Name) { if (PrData & Flag) { PrData &= ~Flag; OS << Name; if (PrData) OS << ", "; } }; switch (Type) { default: OS << format("", Type); return OS.str(); case GNU_PROPERTY_STACK_SIZE: { OS << "stack size: "; if (DataSize == sizeof(typename ELFT::uint)) OS << formatv("{0:x}", (uint64_t)(*(const typename ELFT::Addr *)Data.data())); else OS << format("", DataSize); return OS.str(); } case GNU_PROPERTY_NO_COPY_ON_PROTECTED: OS << "no copy on protected"; if (DataSize) OS << format(" ", DataSize); return OS.str(); case GNU_PROPERTY_AARCH64_FEATURE_1_AND: case GNU_PROPERTY_X86_FEATURE_1_AND: OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " : "x86 feature: "); if (DataSize != 4) { OS << format("", DataSize); return OS.str(); } PrData = support::endian::read32(Data.data()); if (PrData == 0) { OS << ""; return OS.str(); } if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); } else { DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); } if (PrData) OS << format("", PrData); return OS.str(); case GNU_PROPERTY_X86_ISA_1_NEEDED: case GNU_PROPERTY_X86_ISA_1_USED: OS << "x86 ISA " << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); if (DataSize != 4) { OS << format("", DataSize); return OS.str(); } PrData = support::endian::read32(Data.data()); if (PrData == 0) { OS << ""; return OS.str(); } DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1"); DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2"); DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2"); DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI"); if (PrData) OS << format("", PrData); return OS.str(); break; case GNU_PROPERTY_X86_FEATURE_2_NEEDED: case GNU_PROPERTY_X86_FEATURE_2_USED: OS << "x86 feature " << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); if (DataSize != 4) { OS << format("", DataSize); return OS.str(); } PrData = support::endian::read32(Data.data()); if (PrData == 0) { OS << ""; return OS.str(); } DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); if (PrData) OS << format("", PrData); return OS.str(); } } template static SmallVector getGNUPropertyList(ArrayRef Arr) { using Elf_Word = typename ELFT::Word; SmallVector Properties; while (Arr.size() >= 8) { uint32_t Type = *reinterpret_cast(Arr.data()); uint32_t DataSize = *reinterpret_cast(Arr.data() + 4); Arr = Arr.drop_front(8); // Take padding size into account if present. uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); std::string str; raw_string_ostream OS(str); if (Arr.size() < PaddedSize) { OS << format("", Type, DataSize); Properties.push_back(OS.str()); break; } Properties.push_back( getGNUProperty(Type, DataSize, Arr.take_front(PaddedSize))); Arr = Arr.drop_front(PaddedSize); } if (!Arr.empty()) Properties.push_back(""); return Properties; } struct GNUAbiTag { std::string OSName; std::string ABI; bool IsValid; }; template static GNUAbiTag getGNUAbiTag(ArrayRef Desc) { typedef typename ELFT::Word Elf_Word; ArrayRef Words(reinterpret_cast(Desc.begin()), reinterpret_cast(Desc.end())); if (Words.size() < 4) return {"", "", /*IsValid=*/false}; static const char *OSNames[] = { "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", }; StringRef OSName = "Unknown"; if (Words[0] < array_lengthof(OSNames)) OSName = OSNames[Words[0]]; uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; std::string str; raw_string_ostream ABI(str); ABI << Major << "." << Minor << "." << Patch; return {std::string(OSName), ABI.str(), /*IsValid=*/true}; } static std::string getGNUBuildId(ArrayRef Desc) { std::string str; raw_string_ostream OS(str); for (uint8_t B : Desc) OS << format_hex_no_prefix(B, 2); return OS.str(); } static StringRef getGNUGoldVersion(ArrayRef Desc) { return StringRef(reinterpret_cast(Desc.data()), Desc.size()); } template static void printGNUNote(raw_ostream &OS, uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return; case ELF::NT_GNU_ABI_TAG: { const GNUAbiTag &AbiTag = getGNUAbiTag(Desc); if (!AbiTag.IsValid) OS << " "; else OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; break; } case ELF::NT_GNU_BUILD_ID: { OS << " Build ID: " << getGNUBuildId(Desc); break; } case ELF::NT_GNU_GOLD_VERSION: OS << " Version: " << getGNUGoldVersion(Desc); break; case ELF::NT_GNU_PROPERTY_TYPE_0: OS << " Properties:"; for (const std::string &Property : getGNUPropertyList(Desc)) OS << " " << Property << "\n"; break; } OS << '\n'; } struct AMDNote { std::string Type; std::string Value; }; template static AMDNote getAMDNote(uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return {"", ""}; case ELF::NT_AMD_AMDGPU_HSA_METADATA: return { "HSA Metadata", std::string(reinterpret_cast(Desc.data()), Desc.size())}; case ELF::NT_AMD_AMDGPU_ISA: return { "ISA Version", std::string(reinterpret_cast(Desc.data()), Desc.size())}; } } struct AMDGPUNote { std::string Type; std::string Value; }; template static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef Desc) { switch (NoteType) { default: return {"", ""}; case ELF::NT_AMDGPU_METADATA: { StringRef MsgPackString = StringRef(reinterpret_cast(Desc.data()), Desc.size()); msgpack::Document MsgPackDoc; if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); if (!Verifier.verify(MsgPackDoc.getRoot())) return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; std::string HSAMetadataString; raw_string_ostream StrOS(HSAMetadataString); MsgPackDoc.toYAML(StrOS); return {"AMDGPU Metadata", StrOS.str()}; } } } struct CoreFileMapping { uint64_t Start, End, Offset; StringRef Filename; }; struct CoreNote { uint64_t PageSize; std::vector Mappings; }; static Expected readCoreNote(DataExtractor Desc) { // Expected format of the NT_FILE note description: // 1. # of file mappings (call it N) // 2. Page size // 3. N (start, end, offset) triples // 4. N packed filenames (null delimited) // Each field is an Elf_Addr, except for filenames which are char* strings. CoreNote Ret; const int Bytes = Desc.getAddressSize(); if (!Desc.isValidOffsetForAddress(2)) return createStringError(object_error::parse_failed, "malformed note: header too short"); if (Desc.getData().back() != 0) return createStringError(object_error::parse_failed, "malformed note: not NUL terminated"); uint64_t DescOffset = 0; uint64_t FileCount = Desc.getAddress(&DescOffset); Ret.PageSize = Desc.getAddress(&DescOffset); if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) return createStringError(object_error::parse_failed, "malformed note: too short for number of files"); uint64_t FilenamesOffset = 0; DataExtractor Filenames( Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), Desc.isLittleEndian(), Desc.getAddressSize()); Ret.Mappings.resize(FileCount); for (CoreFileMapping &Mapping : Ret.Mappings) { if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) return createStringError(object_error::parse_failed, "malformed note: too few filenames"); Mapping.Start = Desc.getAddress(&DescOffset); Mapping.End = Desc.getAddress(&DescOffset); Mapping.Offset = Desc.getAddress(&DescOffset); Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); } return Ret; } template static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { // Length of "0x
" string. const int FieldWidth = ELFT::Is64Bits ? 18 : 10; OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; OS << " " << right_justify("Start", FieldWidth) << " " << right_justify("End", FieldWidth) << " " << right_justify("Page Offset", FieldWidth) << '\n'; for (const CoreFileMapping &Mapping : Note.Mappings) { OS << " " << format_hex(Mapping.Start, FieldWidth) << " " << format_hex(Mapping.End, FieldWidth) << " " << format_hex(Mapping.Offset, FieldWidth) << "\n " << Mapping.Filename << '\n'; } } static const NoteType GenericNoteTypes[] = { {ELF::NT_VERSION, "NT_VERSION (version)"}, {ELF::NT_ARCH, "NT_ARCH (architecture)"}, {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, }; static const NoteType GNUNoteTypes[] = { {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, }; static const NoteType FreeBSDNoteTypes[] = { {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, }; static const NoteType AMDNoteTypes[] = { {ELF::NT_AMD_AMDGPU_HSA_METADATA, "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"}, {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"}, {ELF::NT_AMD_AMDGPU_PAL_METADATA, "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}, }; static const NoteType AMDGPUNoteTypes[] = { {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, }; static const NoteType CoreNoteTypes[] = { {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, {ELF::NT_PPC_TM_CFPR, "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, {ELF::NT_PPC_TM_CVMX, "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, {ELF::NT_S390_LAST_BREAK, "NT_S390_LAST_BREAK (s390 last breaking event address)"}, {ELF::NT_S390_SYSTEM_CALL, "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, {ELF::NT_S390_VXRS_LOW, "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, {ELF::NT_S390_GS_BC, "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, {ELF::NT_ARM_HW_BREAK, "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, {ELF::NT_ARM_HW_WATCH, "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, {ELF::NT_FILE, "NT_FILE (mapped files)"}, {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, }; template const StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { uint32_t Type = Note.getType(); auto FindNote = [&](ArrayRef V) -> StringRef { for (const NoteType &N : V) if (N.ID == Type) return N.Name; return ""; }; StringRef Name = Note.getName(); if (Name == "GNU") return FindNote(GNUNoteTypes); if (Name == "FreeBSD") return FindNote(FreeBSDNoteTypes); if (Name == "AMD") return FindNote(AMDNoteTypes); if (Name == "AMDGPU") return FindNote(AMDGPUNoteTypes); if (ELFType == ELF::ET_CORE) return FindNote(CoreNoteTypes); return FindNote(GenericNoteTypes); } template void GNUStyle::printNotes() { auto PrintHeader = [&](Optional SecName, const typename ELFT::Off Offset, const typename ELFT::Addr Size) { OS << "Displaying notes found "; if (SecName) OS << "in: " << *SecName << "\n"; else OS << "at file offset " << format_hex(Offset, 10) << " with length " << format_hex(Size, 10) << ":\n"; OS << " Owner Data size \tDescription\n"; }; auto ProcessNote = [&](const Elf_Note &Note) { StringRef Name = Note.getName(); ArrayRef Descriptor = Note.getDesc(); Elf_Word Type = Note.getType(); // Print the note owner/type. OS << " " << left_justify(Name, 20) << ' ' << format_hex(Descriptor.size(), 10) << '\t'; StringRef NoteType = getNoteTypeName(Note, this->Obj.getHeader().e_type); if (!NoteType.empty()) OS << NoteType << '\n'; else OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; // Print the description, or fallback to printing raw bytes for unknown // owners. if (Name == "GNU") { printGNUNote(OS, Type, Descriptor); } else if (Name == "AMD") { const AMDNote N = getAMDNote(Type, Descriptor); if (!N.Type.empty()) OS << " " << N.Type << ":\n " << N.Value << '\n'; } else if (Name == "AMDGPU") { const AMDGPUNote N = getAMDGPUNote(Type, Descriptor); if (!N.Type.empty()) OS << " " << N.Type << ":\n " << N.Value << '\n'; } else if (Name == "CORE") { if (Type == ELF::NT_FILE) { DataExtractor DescExtractor(Descriptor, ELFT::TargetEndianness == support::little, sizeof(Elf_Addr)); Expected Note = readCoreNote(DescExtractor); if (Note) printCoreNote(OS, *Note); else reportWarning(Note.takeError(), this->FileName); } } else if (!Descriptor.empty()) { OS << " description data:"; for (uint8_t B : Descriptor) OS << " " << format("%02x", B); OS << '\n'; } }; ArrayRef Sections = cantFail(this->Obj.sections()); if (this->Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) { for (const Elf_Shdr &S : Sections) { if (S.sh_type != SHT_NOTE) continue; PrintHeader(expectedToOptional(this->Obj.getSectionName(S)), S.sh_offset, S.sh_size); Error Err = Error::success(); for (const Elf_Note Note : this->Obj.notes(S, Err)) ProcessNote(Note); if (Err) reportError(std::move(Err), this->FileName); } } else { Expected> PhdrsOrErr = this->Obj.program_headers(); if (!PhdrsOrErr) { this->reportUniqueWarning(createError( "unable to read program headers to locate the PT_NOTE segment: " + toString(PhdrsOrErr.takeError()))); return; } for (const Elf_Phdr &P : *PhdrsOrErr) { if (P.p_type != PT_NOTE) continue; PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz); Error Err = Error::success(); for (const Elf_Note Note : this->Obj.notes(P, Err)) ProcessNote(Note); if (Err) reportError(std::move(Err), this->FileName); } } } template void GNUStyle::printELFLinkerOptions() { OS << "printELFLinkerOptions not implemented!\n"; } template void DumpStyle::printDependentLibsHelper( function_ref OnSectionStart, function_ref OnLibEntry) { auto Warn = [this](unsigned SecNdx, StringRef Msg) { this->reportUniqueWarning( createError("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + Twine(SecNdx) + " is broken: " + Msg)); }; unsigned I = -1; for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { ++I; if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) continue; OnSectionStart(Shdr); Expected> ContentsOrErr = Obj.getSectionContents(Shdr); if (!ContentsOrErr) { Warn(I, toString(ContentsOrErr.takeError())); continue; } ArrayRef Contents = *ContentsOrErr; if (!Contents.empty() && Contents.back() != 0) { Warn(I, "the content is not null-terminated"); continue; } for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { StringRef Lib((const char *)I); OnLibEntry(Lib, I - Contents.begin()); I += Lib.size() + 1; } } } template void DumpStyle::printRelocationsHelper(const Elf_Shdr &Sec) { auto Warn = [&](Error &&E, const Twine &Prefix = "unable to read relocations from") { this->reportUniqueWarning(createError(Prefix + " " + describe(Obj, Sec) + ": " + toString(std::move(E)))); }; // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table. // For them we should not treat the value of the sh_link field as an index of // a symbol table. const Elf_Shdr *SymTab; if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) { Expected SymTabOrErr = Obj.getSection(Sec.sh_link); if (!SymTabOrErr) { Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); return; } SymTab = *SymTabOrErr; } unsigned RelNdx = 0; const bool IsMips64EL = this->Obj.isMips64EL(); switch (Sec.sh_type) { case ELF::SHT_REL: if (Expected RangeOrErr = Obj.rels(Sec)) { for (const Elf_Rel &R : *RangeOrErr) printReloc(Relocation(R, IsMips64EL), ++RelNdx, Sec, SymTab); } else { Warn(RangeOrErr.takeError()); } break; case ELF::SHT_RELA: if (Expected RangeOrErr = Obj.relas(Sec)) { for (const Elf_Rela &R : *RangeOrErr) printReloc(Relocation(R, IsMips64EL), ++RelNdx, Sec, SymTab); } else { Warn(RangeOrErr.takeError()); } break; case ELF::SHT_RELR: case ELF::SHT_ANDROID_RELR: { Expected RangeOrErr = Obj.relrs(Sec); if (!RangeOrErr) { Warn(RangeOrErr.takeError()); break; } if (opts::RawRelr) { for (const Elf_Relr &R : *RangeOrErr) printRelrReloc(R); break; } for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) printReloc(Relocation(R, IsMips64EL), ++RelNdx, Sec, /*SymTab=*/nullptr); break; } case ELF::SHT_ANDROID_REL: case ELF::SHT_ANDROID_RELA: if (Expected> RelasOrErr = Obj.android_relas(Sec)) { for (const Elf_Rela &R : *RelasOrErr) printReloc(Relocation(R, IsMips64EL), ++RelNdx, Sec, SymTab); } else { Warn(RelasOrErr.takeError()); } break; } } template StringRef DumpStyle::getPrintableSectionName(const Elf_Shdr &Sec) const { StringRef Name = ""; if (Expected SecNameOrErr = Obj.getSectionName(Sec, this->dumper().WarningHandler)) Name = *SecNameOrErr; else this->reportUniqueWarning(createError("unable to get the name of " + describe(Obj, Sec) + ": " + toString(SecNameOrErr.takeError()))); return Name; } template void GNUStyle::printDependentLibs() { bool SectionStarted = false; struct NameOffset { StringRef Name; uint64_t Offset; }; std::vector SecEntries; NameOffset Current; auto PrintSection = [&]() { OS << "Dependent libraries section " << Current.Name << " at offset " << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() << " entries:\n"; for (NameOffset Entry : SecEntries) OS << " [" << format("%6tx", Entry.Offset) << "] " << Entry.Name << "\n"; OS << "\n"; SecEntries.clear(); }; auto OnSectionStart = [&](const Elf_Shdr &Shdr) { if (SectionStarted) PrintSection(); SectionStarted = true; Current.Offset = Shdr.sh_offset; Current.Name = this->getPrintableSectionName(Shdr); }; auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { SecEntries.push_back(NameOffset{Lib, Offset}); }; this->printDependentLibsHelper(OnSectionStart, OnLibEntry); if (SectionStarted) PrintSection(); } // Used for printing symbol names in places where possible errors can be // ignored. static std::string getSymbolName(const ELFSymbolRef &Sym) { Expected NameOrErr = Sym.getName(); if (NameOrErr) return maybeDemangle(*NameOrErr); consumeError(NameOrErr.takeError()); return ""; } template void DumpStyle::printFunctionStackSize( uint64_t SymValue, Optional FunctionSec, const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { // This function ignores potentially erroneous input, unless it is directly // related to stack size reporting. SymbolRef FuncSym; for (const ELFSymbolRef &Symbol : ElfObj.symbols()) { Expected SymAddrOrErr = Symbol.getAddress(); if (!SymAddrOrErr) { consumeError(SymAddrOrErr.takeError()); continue; } if (Expected SymFlags = Symbol.getFlags()) { if (*SymFlags & SymbolRef::SF_Undefined) continue; } else consumeError(SymFlags.takeError()); if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) { // Check if the symbol is in the right section. FunctionSec == None means // "any section". if (!FunctionSec || ElfObj.toSectionRef(*FunctionSec).containsSymbol(Symbol)) { FuncSym = Symbol; break; } } } std::string FuncName = "?"; // A valid SymbolRef has a non-null object file pointer. if (FuncSym.BasicSymbolRef::getObject()) FuncName = getSymbolName(FuncSym); else reportWarning( createError("could not identify function symbol for stack size entry"), FileName); // Extract the size. The expectation is that Offset is pointing to the right // place, i.e. past the function address. uint64_t PrevOffset = *Offset; uint64_t StackSize = Data.getULEB128(Offset); // getULEB128() does not advance Offset if it is not able to extract a valid // integer. if (*Offset == PrevOffset) { reportWarning(createStringError(object_error::parse_failed, "could not extract a valid stack size in " + describe(Obj, StackSizeSec)), FileName); return; } printStackSizeEntry(StackSize, FuncName); } template void GNUStyle::printStackSizeEntry(uint64_t Size, StringRef FuncName) { OS.PadToColumn(2); OS << format_decimal(Size, 11); OS.PadToColumn(18); OS << FuncName << "\n"; } template void DumpStyle::printStackSize(RelocationRef Reloc, const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, const RelocationResolver &Resolver, DataExtractor Data) { // This function ignores potentially erroneous input, unless it is directly // related to stack size reporting. object::symbol_iterator RelocSym = Reloc.getSymbol(); uint64_t RelocSymValue = 0; if (RelocSym != ElfObj.symbol_end()) { // Ensure that the relocation symbol is in the function section, i.e. the // section where the functions whose stack sizes we are reporting are // located. auto SectionOrErr = RelocSym->getSection(); if (!SectionOrErr) { reportWarning( createError("cannot identify the section for relocation symbol '" + getSymbolName(*RelocSym) + "'"), FileName); consumeError(SectionOrErr.takeError()); } else if (*SectionOrErr != ElfObj.toSectionRef(FunctionSec)) { reportWarning(createError("relocation symbol '" + getSymbolName(*RelocSym) + "' is not in the expected section"), FileName); // Pretend that the symbol is in the correct section and report its // stack size anyway. FunctionSec = ElfObj.getSection((*SectionOrErr)->getRawDataRefImpl()); } Expected RelocSymValueOrErr = RelocSym->getValue(); if (RelocSymValueOrErr) RelocSymValue = *RelocSymValueOrErr; else consumeError(RelocSymValueOrErr.takeError()); } uint64_t Offset = Reloc.getOffset(); if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { reportUniqueWarning(createStringError( object_error::parse_failed, "found invalid relocation offset (0x" + Twine::utohexstr(Offset) + ") into " + describe(Obj, StackSizeSec) + " while trying to extract a stack size entry")); return; } uint64_t Addend = Data.getAddress(&Offset); uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend); this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, &Offset); } template void DumpStyle::printNonRelocatableStackSizes( std::function PrintHeader) { // This function ignores potentially erroneous input, unless it is directly // related to stack size reporting. for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { if (this->getPrintableSectionName(Sec) != ".stack_sizes") continue; PrintHeader(); ArrayRef Contents = unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); uint64_t Offset = 0; while (Offset < Contents.size()) { // The function address is followed by a ULEB representing the stack // size. Check for an extra byte before we try to process the entry. if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { reportUniqueWarning(createStringError( object_error::parse_failed, describe(Obj, Sec) + " ended while trying to extract a stack size entry")); break; } uint64_t SymValue = Data.getAddress(&Offset); printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data, &Offset); } } } template void DumpStyle::printRelocatableStackSizes( std::function PrintHeader) { // Build a map between stack size sections and their corresponding relocation // sections. llvm::MapVector StackSizeRelocMap; for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { StringRef SectionName; if (Expected NameOrErr = Obj.getSectionName(Sec)) SectionName = *NameOrErr; else consumeError(NameOrErr.takeError()); // A stack size section that we haven't encountered yet is mapped to the // null section until we find its corresponding relocation section. if (SectionName == ".stack_sizes") if (StackSizeRelocMap .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr)) .second) continue; // Check relocation sections if they are relocating contents of a // stack sizes section. if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL) continue; Expected RelSecOrErr = Obj.getSection(Sec.sh_info); if (!RelSecOrErr) { reportUniqueWarning(createStringError( object_error::parse_failed, describe(Obj, Sec) + ": failed to get a relocated section: " + toString(RelSecOrErr.takeError()))); continue; } const Elf_Shdr *ContentsSec = *RelSecOrErr; if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes") continue; // Insert a mapping from the stack sizes section to its relocation section. StackSizeRelocMap[ContentsSec] = &Sec; } for (const auto &StackSizeMapEntry : StackSizeRelocMap) { PrintHeader(); const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; const Elf_Shdr *RelocSec = StackSizeMapEntry.second; // Warn about stack size sections without a relocation section. if (!RelocSec) { reportWarning(createError(".stack_sizes (" + describe(Obj, *StackSizesELFSec) + ") does not have a corresponding " "relocation section"), FileName); continue; } // A .stack_sizes section header's sh_link field is supposed to point // to the section that contains the functions whose stack sizes are // described in it. const Elf_Shdr *FunctionSec = unwrapOrError( this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); bool (*IsSupportedFn)(uint64_t); RelocationResolver Resolver; std::tie(IsSupportedFn, Resolver) = getRelocationResolver(ElfObj); ArrayRef Contents = unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); size_t I = 0; for (const RelocationRef &Reloc : ElfObj.toSectionRef(RelocSec).relocations()) { ++I; if (!IsSupportedFn || !IsSupportedFn(Reloc.getType())) { reportUniqueWarning(createStringError( object_error::parse_failed, describe(Obj, *RelocSec) + " contains an unsupported relocation with index " + Twine(I) + ": " + Obj.getRelocationTypeName(Reloc.getType()))); continue; } this->printStackSize(Reloc, FunctionSec, *StackSizesELFSec, Resolver, Data); } } } template void GNUStyle::printStackSizes() { bool HeaderHasBeenPrinted = false; auto PrintHeader = [&]() { if (HeaderHasBeenPrinted) return; OS << "\nStack Sizes:\n"; OS.PadToColumn(9); OS << "Size"; OS.PadToColumn(18); OS << "Function\n"; HeaderHasBeenPrinted = true; }; // For non-relocatable objects, look directly for sections whose name starts // with .stack_sizes and process the contents. if (this->Obj.getHeader().e_type == ELF::ET_REL) this->printRelocatableStackSizes(PrintHeader); else this->printNonRelocatableStackSizes(PrintHeader); } template void GNUStyle::printMipsGOT(const MipsGOTParser &Parser) { size_t Bias = ELFT::Is64Bits ? 8 : 0; auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { OS.PadToColumn(2); OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); OS.PadToColumn(11 + Bias); OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; OS.PadToColumn(22 + Bias); OS << format_hex_no_prefix(*E, 8 + Bias); OS.PadToColumn(31 + 2 * Bias); OS << Purpose << "\n"; }; OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); OS << " Canonical gp value: " << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; OS << " Reserved entries:\n"; if (ELFT::Is64Bits) OS << " Address Access Initial Purpose\n"; else OS << " Address Access Initial Purpose\n"; PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); if (Parser.getGotModulePointer()) PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); if (!Parser.getLocalEntries().empty()) { OS << "\n"; OS << " Local entries:\n"; if (ELFT::Is64Bits) OS << " Address Access Initial\n"; else OS << " Address Access Initial\n"; for (auto &E : Parser.getLocalEntries()) PrintEntry(&E, ""); } if (Parser.IsStatic) return; if (!Parser.getGlobalEntries().empty()) { OS << "\n"; OS << " Global entries:\n"; if (ELFT::Is64Bits) OS << " Address Access Initial Sym.Val." << " Type Ndx Name\n"; else OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; for (auto &E : Parser.getGlobalEntries()) { const Elf_Sym &Sym = *Parser.getGotSym(&E); const Elf_Sym &FirstSym = this->dumper().dynamic_symbols()[0]; std::string SymName = this->dumper().getFullSymbolName( Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false); OS.PadToColumn(2); OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); OS.PadToColumn(11 + Bias); OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; OS.PadToColumn(22 + Bias); OS << to_string(format_hex_no_prefix(E, 8 + Bias)); OS.PadToColumn(31 + 2 * Bias); OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); OS.PadToColumn(40 + 3 * Bias); OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); OS.PadToColumn(48 + 3 * Bias); OS << getSymbolSectionNdx( Sym, &Sym - this->dumper().dynamic_symbols().begin()); OS.PadToColumn(52 + 3 * Bias); OS << SymName << "\n"; } } if (!Parser.getOtherEntries().empty()) OS << "\n Number of TLS and multi-GOT entries " << Parser.getOtherEntries().size() << "\n"; } template void GNUStyle::printMipsPLT(const MipsGOTParser &Parser) { size_t Bias = ELFT::Is64Bits ? 8 : 0; auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { OS.PadToColumn(2); OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); OS.PadToColumn(11 + Bias); OS << format_hex_no_prefix(*E, 8 + Bias); OS.PadToColumn(20 + 2 * Bias); OS << Purpose << "\n"; }; OS << "PLT GOT:\n\n"; OS << " Reserved entries:\n"; OS << " Address Initial Purpose\n"; PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); if (Parser.getPltModulePointer()) PrintEntry(Parser.getPltModulePointer(), "Module pointer"); if (!Parser.getPltEntries().empty()) { OS << "\n"; OS << " Entries:\n"; OS << " Address Initial Sym.Val. Type Ndx Name\n"; for (auto &E : Parser.getPltEntries()) { const Elf_Sym &Sym = *Parser.getPltSym(&E); const Elf_Sym &FirstSym = *cantFail(this->Obj.template getEntry( *Parser.getPltSymTable(), 0)); std::string SymName = this->dumper().getFullSymbolName( Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false); OS.PadToColumn(2); OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); OS.PadToColumn(11 + Bias); OS << to_string(format_hex_no_prefix(E, 8 + Bias)); OS.PadToColumn(20 + 2 * Bias); OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); OS.PadToColumn(29 + 3 * Bias); OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); OS.PadToColumn(37 + 3 * Bias); OS << getSymbolSectionNdx( Sym, &Sym - this->dumper().dynamic_symbols().begin()); OS.PadToColumn(41 + 3 * Bias); OS << SymName << "\n"; } } } template Expected *> getMipsAbiFlagsSection(const ELFDumper &Dumper) { const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); if (Sec == nullptr) return nullptr; constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; Expected> DataOrErr = Dumper.getElfObject().getELFFile()->getSectionContents(*Sec); if (!DataOrErr) return createError(ErrPrefix + toString(DataOrErr.takeError())); if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags)) return createError(ErrPrefix + "it has a wrong size (" + Twine(DataOrErr->size()) + ")"); return reinterpret_cast *>(DataOrErr->data()); } template void GNUStyle::printMipsABIFlags() { const Elf_Mips_ABIFlags *Flags = nullptr; if (Expected *> SecOrErr = getMipsAbiFlagsSection(this->dumper())) Flags = *SecOrErr; else this->reportUniqueWarning(SecOrErr.takeError()); if (!Flags) return; OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; OS << "ISA: MIPS" << int(Flags->isa_level); if (Flags->isa_rev > 1) OS << "r" << int(Flags->isa_rev); OS << "\n"; OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n"; OS << "ISA Extension: " << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; if (Flags->ases == 0) OS << "ASEs: None\n"; else // FIXME: Print each flag on a separate line. OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) << "\n"; OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; OS << "\n"; } template void LLVMStyle::printFileHeaders() { const Elf_Ehdr &E = this->Obj.getHeader(); { DictScope D(W, "ElfHeader"); { DictScope D(W, "Ident"); W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4)); W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); auto OSABI = makeArrayRef(ElfOSABI); if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { switch (E.e_machine) { case ELF::EM_AMDGPU: OSABI = makeArrayRef(AMDGPUElfOSABI); break; case ELF::EM_ARM: OSABI = makeArrayRef(ARMElfOSABI); break; case ELF::EM_TI_C6000: OSABI = makeArrayRef(C6000ElfOSABI); break; } } W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD)); } W.printEnum("Type", E.e_type, makeArrayRef(ElfObjectFileType)); W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType)); W.printNumber("Version", E.e_version); W.printHex("Entry", E.e_entry); W.printHex("ProgramHeaderOffset", E.e_phoff); W.printHex("SectionHeaderOffset", E.e_shoff); if (E.e_machine == EM_MIPS) W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); else if (E.e_machine == EM_AMDGPU) W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAMDGPUFlags), unsigned(ELF::EF_AMDGPU_MACH)); else if (E.e_machine == EM_RISCV) W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); else W.printFlags("Flags", E.e_flags); W.printNumber("HeaderSize", E.e_ehsize); W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); W.printNumber("ProgramHeaderCount", E.e_phnum); W.printNumber("SectionHeaderEntrySize", E.e_shentsize); W.printString("SectionHeaderCount", getSectionHeadersNumString(this->Obj, this->FileName)); W.printString("StringTableSectionIndex", getSectionHeaderTableIndexString(this->Obj, this->FileName)); } } template void LLVMStyle::printGroupSections() { DictScope Lists(W, "Groups"); std::vector V = getGroups(this->Obj, this->FileName); DenseMap Map = mapSectionsToGroups(V); for (const GroupSection &G : V) { DictScope D(W, "Group"); W.printNumber("Name", G.Name, G.ShName); W.printNumber("Index", G.Index); W.printNumber("Link", G.Link); W.printNumber("Info", G.Info); W.printHex("Type", getGroupType(G.Type), G.Type); W.startLine() << "Signature: " << G.Signature << "\n"; ListScope L(W, "Section(s) in group"); for (const GroupMember &GM : G.Members) { const GroupSection *MainGroup = Map[GM.Index]; if (MainGroup != &G) this->reportUniqueWarning( createError("section with index " + Twine(GM.Index) + ", included in the group section with index " + Twine(MainGroup->Index) + ", was also found in the group section with index " + Twine(G.Index))); W.startLine() << GM.Name << " (" << GM.Index << ")\n"; } } if (V.empty()) W.startLine() << "There are no group sections in the file.\n"; } template void LLVMStyle::printRelocations() { ListScope D(W, "Relocations"); for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { if (!isRelocationSec(Sec)) continue; StringRef Name = this->getPrintableSectionName(Sec); unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n"; W.indent(); this->printRelocationsHelper(Sec); W.unindent(); W.startLine() << "}\n"; } } template void LLVMStyle::printRelrReloc(const Elf_Relr &R) { W.startLine() << W.hex(R) << "\n"; } template void LLVMStyle::printReloc(const Relocation &R, unsigned RelIndex, const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { Expected> Target = this->dumper().getRelocationTarget(R, SymTab); if (!Target) { this->reportUniqueWarning(createError( "unable to print relocation " + Twine(RelIndex) + " in " + describe(this->Obj, Sec) + ": " + toString(Target.takeError()))); return; } printRelRelaReloc(R, Target->Name); } template void LLVMStyle::printRelRelaReloc(const Relocation &R, StringRef SymbolName) { SmallString<32> RelocName; this->Obj.getRelocationTypeName(R.Type, RelocName); uintX_t Addend = R.Addend.getValueOr(0); if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", R.Offset); W.printNumber("Type", RelocName, R.Type); W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); W.printHex("Addend", Addend); } else { raw_ostream &OS = W.startLine(); OS << W.hex(R.Offset) << " " << RelocName << " " << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Addend) << "\n"; } } template void LLVMStyle::printSectionHeaders() { ListScope SectionsD(W, "Sections"); int SectionIndex = -1; std::vector> FlagsList = getSectionFlagsForTarget(this->Obj.getHeader().e_machine); for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { DictScope SectionD(W, "Section"); W.printNumber("Index", ++SectionIndex); W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); W.printHex("Type", object::getELFSectionTypeName(this->Obj.getHeader().e_machine, Sec.sh_type), Sec.sh_type); W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList)); W.printHex("Address", Sec.sh_addr); W.printHex("Offset", Sec.sh_offset); W.printNumber("Size", Sec.sh_size); W.printNumber("Link", Sec.sh_link); W.printNumber("Info", Sec.sh_info); W.printNumber("AddressAlignment", Sec.sh_addralign); W.printNumber("EntrySize", Sec.sh_entsize); if (opts::SectionRelocations) { ListScope D(W, "Relocations"); this->printRelocationsHelper(Sec); } if (opts::SectionSymbols) { ListScope D(W, "Symbols"); if (const Elf_Shdr *Symtab = this->dumper().getDotSymtabSec()) { StringRef StrTable = unwrapOrError( this->FileName, this->Obj.getStringTableForSymtab(*Symtab)); typename ELFT::SymRange Symbols = unwrapOrError(this->FileName, this->Obj.symbols(Symtab)); for (const Elf_Sym &Sym : Symbols) { const Elf_Shdr *SymSec = unwrapOrError( this->FileName, this->Obj.getSection( Sym, Symtab, this->dumper().getShndxTable())); if (SymSec == &Sec) printSymbol(Sym, &Sym - &Symbols[0], StrTable, false, false); } } } if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { ArrayRef Data = unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); W.printBinaryBlock( "SectionData", StringRef(reinterpret_cast(Data.data()), Data.size())); } } } template void LLVMStyle::printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex) { auto GetSectionSpecialType = [&]() -> Optional { if (Symbol.isUndefined()) return StringRef("Undefined"); if (Symbol.isProcessorSpecific()) return StringRef("Processor Specific"); if (Symbol.isOSSpecific()) return StringRef("Operating System Specific"); if (Symbol.isAbsolute()) return StringRef("Absolute"); if (Symbol.isCommon()) return StringRef("Common"); if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) return StringRef("Reserved"); return None; }; if (Optional Type = GetSectionSpecialType()) { W.printHex("Section", *Type, Symbol.st_shndx); return; } Expected SectionIndex = this->dumper().getSymbolSectionIndex(Symbol, SymIndex); if (!SectionIndex) { assert(Symbol.st_shndx == SHN_XINDEX && "getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"); this->reportUniqueWarning(SectionIndex.takeError()); W.printHex("Section", "Reserved", SHN_XINDEX); return; } Expected SectionName = this->dumper().getSymbolSectionName(Symbol, *SectionIndex); if (!SectionName) { // Don't report an invalid section name if the section headers are missing. // In such situations, all sections will be "invalid". if (!this->dumper().getElfObject().sections().empty()) this->reportUniqueWarning(SectionName.takeError()); else consumeError(SectionName.takeError()); W.printHex("Section", "", *SectionIndex); } else { W.printHex("Section", *SectionName, *SectionIndex); } } template void LLVMStyle::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, Optional StrTable, bool IsDynamic, bool /*NonVisibilityBitsUsed*/) { std::string FullSymbolName = this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic); unsigned char SymbolType = Symbol.getType(); DictScope D(W, "Symbol"); W.printNumber("Name", FullSymbolName, Symbol.st_name); W.printHex("Value", Symbol.st_value); W.printNumber("Size", Symbol.st_size); W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); if (Symbol.st_other == 0) // Usually st_other flag is zero. Do not pollute the output // by flags enumeration in that case. W.printNumber("Other", 0); else { std::vector> SymOtherFlags(std::begin(ElfSymOtherFlags), std::end(ElfSymOtherFlags)); if (this->Obj.getHeader().e_machine == EM_MIPS) { // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 // flag overlapped with other ST_MIPS_xxx flags. So consider both // cases separately. if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfMips16SymOtherFlags), std::end(ElfMips16SymOtherFlags)); else SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfMipsSymOtherFlags), std::end(ElfMipsSymOtherFlags)); } W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u); } printSymbolSection(Symbol, SymIndex); } template void LLVMStyle::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) { if (PrintSymbols) printSymbols(); if (PrintDynamicSymbols) printDynamicSymbols(); } template void LLVMStyle::printSymbols() { ListScope Group(W, "Symbols"); this->dumper().printSymbolsHelper(false); } template void LLVMStyle::printDynamicSymbols() { ListScope Group(W, "DynamicSymbols"); this->dumper().printSymbolsHelper(true); } template void LLVMStyle::printDynamic() { Elf_Dyn_Range Table = this->dumper().dynamic_table(); if (Table.empty()) return; W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); // The "Name/Value" column should be indented from the "Type" column by N // spaces, where N = MaxTagSize - length of "Type" (4) + trailing // space (1) = -3. W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; for (auto Entry : Table) { uintX_t Tag = Entry.getTag(); std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal()); W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) << " " << format(ValueFmt.c_str(), this->Obj.getDynamicTagAsString(Tag).c_str()) << Value << "\n"; } W.startLine() << "]\n"; } template void LLVMStyle::printDynamicRelocations() { W.startLine() << "Dynamic Relocations {\n"; W.indent(); this->printDynamicRelocationsHelper(); W.unindent(); W.startLine() << "}\n"; } template void LLVMStyle::printDynamicReloc(const Relocation &R) { RelSymbol S = getSymbolForReloc(this->Obj, this->FileName, this->dumper(), R); printRelRelaReloc(R, S.Name); } template void LLVMStyle::printProgramHeaders( bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { if (PrintProgramHeaders) printProgramHeaders(); if (PrintSectionMapping == cl::BOU_TRUE) printSectionMapping(); } template void LLVMStyle::printProgramHeaders() { ListScope L(W, "ProgramHeaders"); Expected> PhdrsOrErr = this->Obj.program_headers(); if (!PhdrsOrErr) { this->reportUniqueWarning(createError("unable to dump program headers: " + toString(PhdrsOrErr.takeError()))); return; } for (const Elf_Phdr &Phdr : *PhdrsOrErr) { DictScope P(W, "ProgramHeader"); StringRef Type = segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); W.printHex("Offset", Phdr.p_offset); W.printHex("VirtualAddress", Phdr.p_vaddr); W.printHex("PhysicalAddress", Phdr.p_paddr); W.printNumber("FileSize", Phdr.p_filesz); W.printNumber("MemSize", Phdr.p_memsz); W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); W.printNumber("Alignment", Phdr.p_align); } } template void LLVMStyle::printVersionSymbolSection(const Elf_Shdr *Sec) { ListScope SS(W, "VersionSymbols"); if (!Sec) return; StringRef StrTable; ArrayRef Syms; Expected> VerTableOrErr = this->dumper().getVersionTable(*Sec, &Syms, &StrTable); if (!VerTableOrErr) { this->reportUniqueWarning(VerTableOrErr.takeError()); return; } if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) return; for (size_t I = 0, E = Syms.size(); I < E; ++I) { DictScope S(W, "Symbol"); W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); W.printString("Name", this->dumper().getFullSymbolName(Syms[I], I, StrTable, /*IsDynamic=*/true)); } } static const EnumEntry SymVersionFlags[] = { {"Base", "BASE", VER_FLG_BASE}, {"Weak", "WEAK", VER_FLG_WEAK}, {"Info", "INFO", VER_FLG_INFO}}; template void LLVMStyle::printVersionDefinitionSection(const Elf_Shdr *Sec) { ListScope SD(W, "VersionDefinitions"); if (!Sec) return; Expected> V = this->dumper().getVersionDefinitions(*Sec); if (!V) { this->reportUniqueWarning(V.takeError()); return; } for (const VerDef &D : *V) { DictScope Def(W, "Definition"); W.printNumber("Version", D.Version); W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags)); W.printNumber("Index", D.Ndx); W.printNumber("Hash", D.Hash); W.printString("Name", D.Name.c_str()); W.printList( "Predecessors", D.AuxV, [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); } } template void LLVMStyle::printVersionDependencySection(const Elf_Shdr *Sec) { ListScope SD(W, "VersionRequirements"); if (!Sec) return; Expected> V = this->dumper().getVersionDependencies(*Sec); if (!V) { this->reportUniqueWarning(V.takeError()); return; } for (const VerNeed &VN : *V) { DictScope Entry(W, "Dependency"); W.printNumber("Version", VN.Version); W.printNumber("Count", VN.Cnt); W.printString("FileName", VN.File.c_str()); ListScope L(W, "Entries"); for (const VernAux &Aux : VN.AuxV) { DictScope Entry(W, "Entry"); W.printNumber("Hash", Aux.Hash); W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags)); W.printNumber("Index", Aux.Other); W.printString("Name", Aux.Name.c_str()); } } } template void LLVMStyle::printHashHistograms() { W.startLine() << "Hash Histogram not implemented!\n"; } template void LLVMStyle::printCGProfile() { ListScope L(W, "CGProfile"); if (!this->dumper().getDotCGProfileSec()) return; Expected> CGProfileOrErr = this->Obj.template getSectionContentsAsArray( *this->dumper().getDotCGProfileSec()); if (!CGProfileOrErr) { this->reportUniqueWarning( createError("unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " + toString(CGProfileOrErr.takeError()))); return; } for (const Elf_CGProfile &CGPE : *CGProfileOrErr) { DictScope D(W, "CGProfileEntry"); W.printNumber("From", this->dumper().getStaticSymbolName(CGPE.cgp_from), CGPE.cgp_from); W.printNumber("To", this->dumper().getStaticSymbolName(CGPE.cgp_to), CGPE.cgp_to); W.printNumber("Weight", CGPE.cgp_weight); } } static Expected> toULEB128Array(ArrayRef Data) { std::vector Ret; const uint8_t *Cur = Data.begin(); const uint8_t *End = Data.end(); while (Cur != End) { unsigned Size; const char *Err; Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); if (Err) return createError(Err); Cur += Size; } return Ret; } template void LLVMStyle::printAddrsig() { ListScope L(W, "Addrsig"); const Elf_Shdr *Sec = this->dumper().getDotAddrsigSec(); if (!Sec) return; Expected> ContentsOrErr = this->Obj.getSectionContents(*Sec); if (!ContentsOrErr) { this->reportUniqueWarning(ContentsOrErr.takeError()); return; } Expected> SymsOrErr = toULEB128Array(*ContentsOrErr); if (!SymsOrErr) { this->reportUniqueWarning(createError("unable to decode " + describe(this->Obj, *Sec) + ": " + toString(SymsOrErr.takeError()))); return; } for (uint64_t Sym : *SymsOrErr) W.printNumber("Sym", this->dumper().getStaticSymbolName(Sym), Sym); } template static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef Desc, ScopedPrinter &W) { switch (NoteType) { default: return; case ELF::NT_GNU_ABI_TAG: { const GNUAbiTag &AbiTag = getGNUAbiTag(Desc); if (!AbiTag.IsValid) { W.printString("ABI", ""); } else { W.printString("OS", AbiTag.OSName); W.printString("ABI", AbiTag.ABI); } break; } case ELF::NT_GNU_BUILD_ID: { W.printString("Build ID", getGNUBuildId(Desc)); break; } case ELF::NT_GNU_GOLD_VERSION: W.printString("Version", getGNUGoldVersion(Desc)); break; case ELF::NT_GNU_PROPERTY_TYPE_0: ListScope D(W, "Property"); for (const std::string &Property : getGNUPropertyList(Desc)) W.printString(Property); break; } } static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { W.printNumber("Page Size", Note.PageSize); for (const CoreFileMapping &Mapping : Note.Mappings) { ListScope D(W, "Mapping"); W.printHex("Start", Mapping.Start); W.printHex("End", Mapping.End); W.printHex("Offset", Mapping.Offset); W.printString("Filename", Mapping.Filename); } } template void LLVMStyle::printNotes() { ListScope L(W, "Notes"); auto PrintHeader = [&](Optional SecName, const typename ELFT::Off Offset, const typename ELFT::Addr Size) { W.printString("Name", SecName ? *SecName : ""); W.printHex("Offset", Offset); W.printHex("Size", Size); }; auto ProcessNote = [&](const Elf_Note &Note) { DictScope D2(W, "Note"); StringRef Name = Note.getName(); ArrayRef Descriptor = Note.getDesc(); Elf_Word Type = Note.getType(); // Print the note owner/type. W.printString("Owner", Name); W.printHex("Data size", Descriptor.size()); StringRef NoteType = getNoteTypeName(Note, this->Obj.getHeader().e_type); if (!NoteType.empty()) W.printString("Type", NoteType); else W.printString("Type", "Unknown (" + to_string(format_hex(Type, 10)) + ")"); // Print the description, or fallback to printing raw bytes for unknown // owners. if (Name == "GNU") { printGNUNoteLLVMStyle(Type, Descriptor, W); } else if (Name == "AMD") { const AMDNote N = getAMDNote(Type, Descriptor); if (!N.Type.empty()) W.printString(N.Type, N.Value); } else if (Name == "AMDGPU") { const AMDGPUNote N = getAMDGPUNote(Type, Descriptor); if (!N.Type.empty()) W.printString(N.Type, N.Value); } else if (Name == "CORE") { if (Type == ELF::NT_FILE) { DataExtractor DescExtractor(Descriptor, ELFT::TargetEndianness == support::little, sizeof(Elf_Addr)); Expected Note = readCoreNote(DescExtractor); if (Note) printCoreNoteLLVMStyle(*Note, W); else reportWarning(Note.takeError(), this->FileName); } } else if (!Descriptor.empty()) { W.printBinaryBlock("Description data", Descriptor); } }; ArrayRef Sections = cantFail(this->Obj.sections()); if (this->Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) { for (const Elf_Shdr &S : Sections) { if (S.sh_type != SHT_NOTE) continue; DictScope D(W, "NoteSection"); PrintHeader(expectedToOptional(this->Obj.getSectionName(S)), S.sh_offset, S.sh_size); Error Err = Error::success(); for (auto Note : this->Obj.notes(S, Err)) ProcessNote(Note); if (Err) reportError(std::move(Err), this->FileName); } } else { Expected> PhdrsOrErr = this->Obj.program_headers(); if (!PhdrsOrErr) { this->reportUniqueWarning(createError( "unable to read program headers to locate the PT_NOTE segment: " + toString(PhdrsOrErr.takeError()))); return; } for (const Elf_Phdr &P : *PhdrsOrErr) { if (P.p_type != PT_NOTE) continue; DictScope D(W, "NoteSection"); PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz); Error Err = Error::success(); for (auto Note : this->Obj.notes(P, Err)) ProcessNote(Note); if (Err) reportError(std::move(Err), this->FileName); } } } template void LLVMStyle::printELFLinkerOptions() { ListScope L(W, "LinkerOptions"); unsigned I = -1; for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { ++I; if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) continue; Expected> ContentsOrErr = this->Obj.getSectionContents(Shdr); if (!ContentsOrErr) { this->reportUniqueWarning( createError("unable to read the content of the " "SHT_LLVM_LINKER_OPTIONS section: " + toString(ContentsOrErr.takeError()))); continue; } if (ContentsOrErr->empty()) continue; if (ContentsOrErr->back() != 0) { this->reportUniqueWarning( createError("SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + " is broken: the " "content is not null-terminated")); continue; } SmallVector Strings; toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); if (Strings.size() % 2 != 0) { this->reportUniqueWarning(createError( "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + " is broken: an incomplete " "key-value pair was found. The last possible key was: \"" + Strings.back() + "\"")); continue; } for (size_t I = 0; I < Strings.size(); I += 2) W.printString(Strings[I], Strings[I + 1]); } } template void LLVMStyle::printDependentLibs() { ListScope L(W, "DependentLibs"); this->printDependentLibsHelper( [](const Elf_Shdr &) {}, [this](StringRef Lib, uint64_t) { W.printString(Lib); }); } template void LLVMStyle::printStackSizes() { ListScope L(W, "StackSizes"); if (this->Obj.getHeader().e_type == ELF::ET_REL) this->printRelocatableStackSizes([]() {}); else this->printNonRelocatableStackSizes([]() {}); } template void LLVMStyle::printStackSizeEntry(uint64_t Size, StringRef FuncName) { DictScope D(W, "Entry"); W.printString("Function", FuncName); W.printHex("Size", Size); } template void LLVMStyle::printMipsGOT(const MipsGOTParser &Parser) { auto PrintEntry = [&](const Elf_Addr *E) { W.printHex("Address", Parser.getGotAddress(E)); W.printNumber("Access", Parser.getGotOffset(E)); W.printHex("Initial", *E); }; DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); W.printHex("Canonical gp value", Parser.getGp()); { ListScope RS(W, "Reserved entries"); { DictScope D(W, "Entry"); PrintEntry(Parser.getGotLazyResolver()); W.printString("Purpose", StringRef("Lazy resolver")); } if (Parser.getGotModulePointer()) { DictScope D(W, "Entry"); PrintEntry(Parser.getGotModulePointer()); W.printString("Purpose", StringRef("Module pointer (GNU extension)")); } } { ListScope LS(W, "Local entries"); for (auto &E : Parser.getLocalEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); } } if (Parser.IsStatic) return; { ListScope GS(W, "Global entries"); for (auto &E : Parser.getGlobalEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); const Elf_Sym &Sym = *Parser.getGotSym(&E); W.printHex("Value", Sym.st_value); W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); const unsigned SymIndex = &Sym - this->dumper().dynamic_symbols().begin(); printSymbolSection(Sym, SymIndex); std::string SymName = this->dumper().getFullSymbolName( Sym, SymIndex, this->dumper().getDynamicStringTable(), true); W.printNumber("Name", SymName, Sym.st_name); } } W.printNumber("Number of TLS and multi-GOT entries", uint64_t(Parser.getOtherEntries().size())); } template void LLVMStyle::printMipsPLT(const MipsGOTParser &Parser) { auto PrintEntry = [&](const Elf_Addr *E) { W.printHex("Address", Parser.getPltAddress(E)); W.printHex("Initial", *E); }; DictScope GS(W, "PLT GOT"); { ListScope RS(W, "Reserved entries"); { DictScope D(W, "Entry"); PrintEntry(Parser.getPltLazyResolver()); W.printString("Purpose", StringRef("PLT lazy resolver")); } if (auto E = Parser.getPltModulePointer()) { DictScope D(W, "Entry"); PrintEntry(E); W.printString("Purpose", StringRef("Module pointer")); } } { ListScope LS(W, "Entries"); for (auto &E : Parser.getPltEntries()) { DictScope D(W, "Entry"); PrintEntry(&E); const Elf_Sym &Sym = *Parser.getPltSym(&E); W.printHex("Value", Sym.st_value); W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); printSymbolSection(Sym, &Sym - this->dumper().dynamic_symbols().begin()); const Elf_Sym *FirstSym = cantFail(this->Obj.template getEntry( *Parser.getPltSymTable(), 0)); std::string SymName = this->dumper().getFullSymbolName( Sym, &Sym - FirstSym, Parser.getPltStrTable(), true); W.printNumber("Name", SymName, Sym.st_name); } } } template void LLVMStyle::printMipsABIFlags() { const Elf_Mips_ABIFlags *Flags; if (Expected *> SecOrErr = getMipsAbiFlagsSection(this->dumper())) { Flags = *SecOrErr; if (!Flags) { W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; return; } } else { this->reportUniqueWarning(SecOrErr.takeError()); return; } raw_ostream &OS = W.getOStream(); DictScope GS(W, "MIPS ABI Flags"); W.printNumber("Version", Flags->version); W.startLine() << "ISA: "; if (Flags->isa_rev <= 1) OS << format("MIPS%u", Flags->isa_level); else OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); OS << "\n"; W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); W.printHex("Flags 2", Flags->flags2); }