//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file contains the declarations of the Vectorization Plan base classes: /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual /// VPBlockBase, together implementing a Hierarchical CFG; /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be /// treated as proper graphs for generic algorithms; /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained /// within VPBasicBlocks; /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned /// instruction; /// 5. The VPlan class holding a candidate for vectorization; /// 6. The VPlanPrinter class providing a way to print a plan in dot format; /// These are documented in docs/VectorizationPlan.rst. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H #include "VPlanLoopInfo.h" #include "VPlanValue.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/IRBuilder.h" #include #include #include #include #include namespace llvm { class BasicBlock; class DominatorTree; class InnerLoopVectorizer; class LoopInfo; class raw_ostream; class RecurrenceDescriptor; class Value; class VPBasicBlock; class VPRegionBlock; class VPlan; class VPlanSlp; /// A range of powers-of-2 vectorization factors with fixed start and /// adjustable end. The range includes start and excludes end, e.g.,: /// [1, 9) = {1, 2, 4, 8} struct VFRange { // A power of 2. const ElementCount Start; // Need not be a power of 2. If End <= Start range is empty. ElementCount End; bool isEmpty() const { return End.getKnownMinValue() <= Start.getKnownMinValue(); } VFRange(const ElementCount &Start, const ElementCount &End) : Start(Start), End(End) { assert(Start.isScalable() == End.isScalable() && "Both Start and End should have the same scalable flag"); assert(isPowerOf2_32(Start.getKnownMinValue()) && "Expected Start to be a power of 2"); } }; using VPlanPtr = std::unique_ptr; /// In what follows, the term "input IR" refers to code that is fed into the /// vectorizer whereas the term "output IR" refers to code that is generated by /// the vectorizer. /// VPIteration represents a single point in the iteration space of the output /// (vectorized and/or unrolled) IR loop. struct VPIteration { /// in [0..UF) unsigned Part; /// in [0..VF) unsigned Lane; }; /// This is a helper struct for maintaining vectorization state. It's used for /// mapping values from the original loop to their corresponding values in /// the new loop. Two mappings are maintained: one for vectorized values and /// one for scalarized values. Vectorized values are represented with UF /// vector values in the new loop, and scalarized values are represented with /// UF x VF scalar values in the new loop. UF and VF are the unroll and /// vectorization factors, respectively. /// /// Entries can be added to either map with setVectorValue and setScalarValue, /// which assert that an entry was not already added before. If an entry is to /// replace an existing one, call resetVectorValue and resetScalarValue. This is /// currently needed to modify the mapped values during "fix-up" operations that /// occur once the first phase of widening is complete. These operations include /// type truncation and the second phase of recurrence widening. /// /// Entries from either map can be retrieved using the getVectorValue and /// getScalarValue functions, which assert that the desired value exists. struct VectorizerValueMap { friend struct VPTransformState; private: /// The unroll factor. Each entry in the vector map contains UF vector values. unsigned UF; /// The vectorization factor. Each entry in the scalar map contains UF x VF /// scalar values. ElementCount VF; /// The vector and scalar map storage. We use std::map and not DenseMap /// because insertions to DenseMap invalidate its iterators. using VectorParts = SmallVector; using ScalarParts = SmallVector, 2>; std::map VectorMapStorage; std::map ScalarMapStorage; public: /// Construct an empty map with the given unroll and vectorization factors. VectorizerValueMap(unsigned UF, ElementCount VF) : UF(UF), VF(VF) {} /// \return True if the map has any vector entry for \p Key. bool hasAnyVectorValue(Value *Key) const { return VectorMapStorage.count(Key); } /// \return True if the map has a vector entry for \p Key and \p Part. bool hasVectorValue(Value *Key, unsigned Part) const { assert(Part < UF && "Queried Vector Part is too large."); if (!hasAnyVectorValue(Key)) return false; const VectorParts &Entry = VectorMapStorage.find(Key)->second; assert(Entry.size() == UF && "VectorParts has wrong dimensions."); return Entry[Part] != nullptr; } /// \return True if the map has any scalar entry for \p Key. bool hasAnyScalarValue(Value *Key) const { return ScalarMapStorage.count(Key); } /// \return True if the map has a scalar entry for \p Key and \p Instance. bool hasScalarValue(Value *Key, const VPIteration &Instance) const { assert(Instance.Part < UF && "Queried Scalar Part is too large."); assert(Instance.Lane < VF.getKnownMinValue() && "Queried Scalar Lane is too large."); assert(!VF.isScalable() && "VF is assumed to be non scalable."); if (!hasAnyScalarValue(Key)) return false; const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); assert(Entry[Instance.Part].size() == VF.getKnownMinValue() && "ScalarParts has wrong dimensions."); return Entry[Instance.Part][Instance.Lane] != nullptr; } /// Retrieve the existing vector value that corresponds to \p Key and /// \p Part. Value *getVectorValue(Value *Key, unsigned Part) { assert(hasVectorValue(Key, Part) && "Getting non-existent value."); return VectorMapStorage[Key][Part]; } /// Retrieve the existing scalar value that corresponds to \p Key and /// \p Instance. Value *getScalarValue(Value *Key, const VPIteration &Instance) { assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; } /// Set a vector value associated with \p Key and \p Part. Assumes such a /// value is not already set. If it is, use resetVectorValue() instead. void setVectorValue(Value *Key, unsigned Part, Value *Vector) { assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); if (!VectorMapStorage.count(Key)) { VectorParts Entry(UF); VectorMapStorage[Key] = Entry; } VectorMapStorage[Key][Part] = Vector; } /// Set a scalar value associated with \p Key and \p Instance. Assumes such a /// value is not already set. void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); if (!ScalarMapStorage.count(Key)) { ScalarParts Entry(UF); // TODO: Consider storing uniform values only per-part, as they occupy // lane 0 only, keeping the other VF-1 redundant entries null. for (unsigned Part = 0; Part < UF; ++Part) Entry[Part].resize(VF.getKnownMinValue(), nullptr); ScalarMapStorage[Key] = Entry; } ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; } /// Reset the vector value associated with \p Key for the given \p Part. /// This function can be used to update values that have already been /// vectorized. This is the case for "fix-up" operations including type /// truncation and the second phase of recurrence vectorization. void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { assert(hasVectorValue(Key, Part) && "Vector value not set for part"); VectorMapStorage[Key][Part] = Vector; } /// Reset the scalar value associated with \p Key for \p Part and \p Lane. /// This function can be used to update values that have already been /// scalarized. This is the case for "fix-up" operations including scalar phi /// nodes for scalarized and predicated instructions. void resetScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { assert(hasScalarValue(Key, Instance) && "Scalar value not set for part and lane"); ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; } }; /// This class is used to enable the VPlan to invoke a method of ILV. This is /// needed until the method is refactored out of ILV and becomes reusable. struct VPCallback { virtual ~VPCallback() {} virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; virtual Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance) = 0; }; /// VPTransformState holds information passed down when "executing" a VPlan, /// needed for generating the output IR. struct VPTransformState { VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilder<> &Builder, VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV, VPCallback &Callback) : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} /// The chosen Vectorization and Unroll Factors of the loop being vectorized. ElementCount VF; unsigned UF; /// Hold the indices to generate specific scalar instructions. Null indicates /// that all instances are to be generated, using either scalar or vector /// instructions. Optional Instance; struct DataState { /// A type for vectorized values in the new loop. Each value from the /// original loop, when vectorized, is represented by UF vector values in /// the new unrolled loop, where UF is the unroll factor. typedef SmallVector PerPartValuesTy; DenseMap PerPartOutput; } Data; /// Get the generated Value for a given VPValue and a given Part. Note that /// as some Defs are still created by ILV and managed in its ValueMap, this /// method will delegate the call to ILV in such cases in order to provide /// callers a consistent API. /// \see set. Value *get(VPValue *Def, unsigned Part) { // If Values have been set for this Def return the one relevant for \p Part. if (Data.PerPartOutput.count(Def)) return Data.PerPartOutput[Def][Part]; // Def is managed by ILV: bring the Values from ValueMap. return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); } /// Get the generated Value for a given VPValue and given Part and Lane. Value *get(VPValue *Def, const VPIteration &Instance) { // If the Def is managed directly by VPTransformState, extract the lane from // the relevant part. Note that currently only VPInstructions and external // defs are managed by VPTransformState. Other Defs are still created by ILV // and managed in its ValueMap. For those this method currently just // delegates the call to ILV below. if (Data.PerPartOutput.count(Def)) { auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; if (!VecPart->getType()->isVectorTy()) { assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar"); return VecPart; } // TODO: Cache created scalar values. return Builder.CreateExtractElement(VecPart, Builder.getInt32(Instance.Lane)); } return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance); } /// Set the generated Value for a given VPValue and a given Part. void set(VPValue *Def, Value *V, unsigned Part) { if (!Data.PerPartOutput.count(Def)) { DataState::PerPartValuesTy Entry(UF); Data.PerPartOutput[Def] = Entry; } Data.PerPartOutput[Def][Part] = V; } void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part); /// Hold state information used when constructing the CFG of the output IR, /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. struct CFGState { /// The previous VPBasicBlock visited. Initially set to null. VPBasicBlock *PrevVPBB = nullptr; /// The previous IR BasicBlock created or used. Initially set to the new /// header BasicBlock. BasicBlock *PrevBB = nullptr; /// The last IR BasicBlock in the output IR. Set to the new latch /// BasicBlock, used for placing the newly created BasicBlocks. BasicBlock *LastBB = nullptr; /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case /// of replication, maps the BasicBlock of the last replica created. SmallDenseMap VPBB2IRBB; /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed /// up at the end of vector code generation. SmallVector VPBBsToFix; CFGState() = default; } CFG; /// Hold a pointer to LoopInfo to register new basic blocks in the loop. LoopInfo *LI; /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. DominatorTree *DT; /// Hold a reference to the IRBuilder used to generate output IR code. IRBuilder<> &Builder; /// Hold a reference to the Value state information used when generating the /// Values of the output IR. VectorizerValueMap &ValueMap; /// Hold a reference to a mapping between VPValues in VPlan and original /// Values they correspond to. VPValue2ValueTy VPValue2Value; /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). Value *CanonicalIV = nullptr; /// Hold the trip count of the scalar loop. Value *TripCount = nullptr; /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. InnerLoopVectorizer *ILV; VPCallback &Callback; }; /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. class VPBlockBase { friend class VPBlockUtils; const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). /// An optional name for the block. std::string Name; /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if /// it is a topmost VPBlockBase. VPRegionBlock *Parent = nullptr; /// List of predecessor blocks. SmallVector Predecessors; /// List of successor blocks. SmallVector Successors; /// Successor selector, null for zero or single successor blocks. VPValue *CondBit = nullptr; /// Current block predicate - null if the block does not need a predicate. VPValue *Predicate = nullptr; /// VPlan containing the block. Can only be set on the entry block of the /// plan. VPlan *Plan = nullptr; /// Add \p Successor as the last successor to this block. void appendSuccessor(VPBlockBase *Successor) { assert(Successor && "Cannot add nullptr successor!"); Successors.push_back(Successor); } /// Add \p Predecessor as the last predecessor to this block. void appendPredecessor(VPBlockBase *Predecessor) { assert(Predecessor && "Cannot add nullptr predecessor!"); Predecessors.push_back(Predecessor); } /// Remove \p Predecessor from the predecessors of this block. void removePredecessor(VPBlockBase *Predecessor) { auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); assert(Pos && "Predecessor does not exist"); Predecessors.erase(Pos); } /// Remove \p Successor from the successors of this block. void removeSuccessor(VPBlockBase *Successor) { auto Pos = std::find(Successors.begin(), Successors.end(), Successor); assert(Pos && "Successor does not exist"); Successors.erase(Pos); } protected: VPBlockBase(const unsigned char SC, const std::string &N) : SubclassID(SC), Name(N) {} public: /// An enumeration for keeping track of the concrete subclass of VPBlockBase /// that are actually instantiated. Values of this enumeration are kept in the /// SubclassID field of the VPBlockBase objects. They are used for concrete /// type identification. using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; using VPBlocksTy = SmallVectorImpl; virtual ~VPBlockBase() = default; const std::string &getName() const { return Name; } void setName(const Twine &newName) { Name = newName.str(); } /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPBlockID() const { return SubclassID; } VPRegionBlock *getParent() { return Parent; } const VPRegionBlock *getParent() const { return Parent; } /// \return A pointer to the plan containing the current block. VPlan *getPlan(); const VPlan *getPlan() const; /// Sets the pointer of the plan containing the block. The block must be the /// entry block into the VPlan. void setPlan(VPlan *ParentPlan); void setParent(VPRegionBlock *P) { Parent = P; } /// \return the VPBasicBlock that is the entry of this VPBlockBase, /// recursively, if the latter is a VPRegionBlock. Otherwise, if this /// VPBlockBase is a VPBasicBlock, it is returned. const VPBasicBlock *getEntryBasicBlock() const; VPBasicBlock *getEntryBasicBlock(); /// \return the VPBasicBlock that is the exit of this VPBlockBase, /// recursively, if the latter is a VPRegionBlock. Otherwise, if this /// VPBlockBase is a VPBasicBlock, it is returned. const VPBasicBlock *getExitBasicBlock() const; VPBasicBlock *getExitBasicBlock(); const VPBlocksTy &getSuccessors() const { return Successors; } VPBlocksTy &getSuccessors() { return Successors; } const VPBlocksTy &getPredecessors() const { return Predecessors; } VPBlocksTy &getPredecessors() { return Predecessors; } /// \return the successor of this VPBlockBase if it has a single successor. /// Otherwise return a null pointer. VPBlockBase *getSingleSuccessor() const { return (Successors.size() == 1 ? *Successors.begin() : nullptr); } /// \return the predecessor of this VPBlockBase if it has a single /// predecessor. Otherwise return a null pointer. VPBlockBase *getSinglePredecessor() const { return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); } size_t getNumSuccessors() const { return Successors.size(); } size_t getNumPredecessors() const { return Predecessors.size(); } /// An Enclosing Block of a block B is any block containing B, including B /// itself. \return the closest enclosing block starting from "this", which /// has successors. \return the root enclosing block if all enclosing blocks /// have no successors. VPBlockBase *getEnclosingBlockWithSuccessors(); /// \return the closest enclosing block starting from "this", which has /// predecessors. \return the root enclosing block if all enclosing blocks /// have no predecessors. VPBlockBase *getEnclosingBlockWithPredecessors(); /// \return the successors either attached directly to this VPBlockBase or, if /// this VPBlockBase is the exit block of a VPRegionBlock and has no /// successors of its own, search recursively for the first enclosing /// VPRegionBlock that has successors and return them. If no such /// VPRegionBlock exists, return the (empty) successors of the topmost /// VPBlockBase reached. const VPBlocksTy &getHierarchicalSuccessors() { return getEnclosingBlockWithSuccessors()->getSuccessors(); } /// \return the hierarchical successor of this VPBlockBase if it has a single /// hierarchical successor. Otherwise return a null pointer. VPBlockBase *getSingleHierarchicalSuccessor() { return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); } /// \return the predecessors either attached directly to this VPBlockBase or, /// if this VPBlockBase is the entry block of a VPRegionBlock and has no /// predecessors of its own, search recursively for the first enclosing /// VPRegionBlock that has predecessors and return them. If no such /// VPRegionBlock exists, return the (empty) predecessors of the topmost /// VPBlockBase reached. const VPBlocksTy &getHierarchicalPredecessors() { return getEnclosingBlockWithPredecessors()->getPredecessors(); } /// \return the hierarchical predecessor of this VPBlockBase if it has a /// single hierarchical predecessor. Otherwise return a null pointer. VPBlockBase *getSingleHierarchicalPredecessor() { return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); } /// \return the condition bit selecting the successor. VPValue *getCondBit() { return CondBit; } const VPValue *getCondBit() const { return CondBit; } void setCondBit(VPValue *CV) { CondBit = CV; } VPValue *getPredicate() { return Predicate; } const VPValue *getPredicate() const { return Predicate; } void setPredicate(VPValue *Pred) { Predicate = Pred; } /// Set a given VPBlockBase \p Successor as the single successor of this /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. /// This VPBlockBase must have no successors. void setOneSuccessor(VPBlockBase *Successor) { assert(Successors.empty() && "Setting one successor when others exist."); appendSuccessor(Successor); } /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two /// successors of this VPBlockBase. \p Condition is set as the successor /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p /// IfFalse. This VPBlockBase must have no successors. void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition) { assert(Successors.empty() && "Setting two successors when others exist."); assert(Condition && "Setting two successors without condition!"); CondBit = Condition; appendSuccessor(IfTrue); appendSuccessor(IfFalse); } /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. /// This VPBlockBase must have no predecessors. This VPBlockBase is not added /// as successor of any VPBasicBlock in \p NewPreds. void setPredecessors(ArrayRef NewPreds) { assert(Predecessors.empty() && "Block predecessors already set."); for (auto *Pred : NewPreds) appendPredecessor(Pred); } /// Remove all the predecessor of this block. void clearPredecessors() { Predecessors.clear(); } /// Remove all the successors of this block and set to null its condition bit void clearSuccessors() { Successors.clear(); CondBit = nullptr; } /// The method which generates the output IR that correspond to this /// VPBlockBase, thereby "executing" the VPlan. virtual void execute(struct VPTransformState *State) = 0; /// Delete all blocks reachable from a given VPBlockBase, inclusive. static void deleteCFG(VPBlockBase *Entry); void printAsOperand(raw_ostream &OS, bool PrintType) const { OS << getName(); } void print(raw_ostream &OS) const { // TODO: Only printing VPBB name for now since we only have dot printing // support for VPInstructions/Recipes. printAsOperand(OS, false); } /// Return true if it is legal to hoist instructions into this block. bool isLegalToHoistInto() { // There are currently no constraints that prevent an instruction to be // hoisted into a VPBlockBase. return true; } }; /// VPRecipeBase is a base class modeling a sequence of one or more output IR /// instructions. class VPRecipeBase : public ilist_node_with_parent { friend VPBasicBlock; friend class VPBlockUtils; const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). /// Each VPRecipe belongs to a single VPBasicBlock. VPBasicBlock *Parent = nullptr; public: /// An enumeration for keeping track of the concrete subclass of VPRecipeBase /// that is actually instantiated. Values of this enumeration are kept in the /// SubclassID field of the VPRecipeBase objects. They are used for concrete /// type identification. using VPRecipeTy = enum { VPBlendSC, VPBranchOnMaskSC, VPInstructionSC, VPInterleaveSC, VPPredInstPHISC, VPReductionSC, VPReplicateSC, VPWidenCallSC, VPWidenCanonicalIVSC, VPWidenGEPSC, VPWidenIntOrFpInductionSC, VPWidenMemoryInstructionSC, VPWidenPHISC, VPWidenSC, VPWidenSelectSC }; VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} virtual ~VPRecipeBase() = default; /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPRecipeID() const { return SubclassID; } /// \return the VPBasicBlock which this VPRecipe belongs to. VPBasicBlock *getParent() { return Parent; } const VPBasicBlock *getParent() const { return Parent; } /// The method which generates the output IR instructions that correspond to /// this VPRecipe, thereby "executing" the VPlan. virtual void execute(struct VPTransformState &State) = 0; /// Each recipe prints itself. virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const = 0; /// Dump the recipe to stderr (for debugging). void dump() const; /// Insert an unlinked recipe into a basic block immediately before /// the specified recipe. void insertBefore(VPRecipeBase *InsertPos); /// Insert an unlinked Recipe into a basic block immediately after /// the specified Recipe. void insertAfter(VPRecipeBase *InsertPos); /// Unlink this recipe from its current VPBasicBlock and insert it into /// the VPBasicBlock that MovePos lives in, right after MovePos. void moveAfter(VPRecipeBase *MovePos); /// This method unlinks 'this' from the containing basic block, but does not /// delete it. void removeFromParent(); /// This method unlinks 'this' from the containing basic block and deletes it. /// /// \returns an iterator pointing to the element after the erased one iplist::iterator eraseFromParent(); /// Returns a pointer to a VPUser, if the recipe inherits from VPUser or /// nullptr otherwise. VPUser *toVPUser(); /// Returns a pointer to a VPValue, if the recipe inherits from VPValue or /// nullptr otherwise. VPValue *toVPValue(); const VPValue *toVPValue() const; /// Returns the underlying instruction, if the recipe is a VPValue or nullptr /// otherwise. Instruction *getUnderlyingInstr() { if (auto *VPV = toVPValue()) return cast_or_null(VPV->getUnderlyingValue()); return nullptr; } const Instruction *getUnderlyingInstr() const { if (auto *VPV = toVPValue()) return cast_or_null(VPV->getUnderlyingValue()); return nullptr; } }; inline bool VPUser::classof(const VPRecipeBase *Recipe) { return Recipe->getVPRecipeID() == VPRecipeBase::VPInstructionSC || Recipe->getVPRecipeID() == VPRecipeBase::VPWidenSC || Recipe->getVPRecipeID() == VPRecipeBase::VPWidenCallSC || Recipe->getVPRecipeID() == VPRecipeBase::VPWidenSelectSC || Recipe->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC || Recipe->getVPRecipeID() == VPRecipeBase::VPBlendSC || Recipe->getVPRecipeID() == VPRecipeBase::VPInterleaveSC || Recipe->getVPRecipeID() == VPRecipeBase::VPReplicateSC || Recipe->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC || Recipe->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; } /// This is a concrete Recipe that models a single VPlan-level instruction. /// While as any Recipe it may generate a sequence of IR instructions when /// executed, these instructions would always form a single-def expression as /// the VPInstruction is also a single def-use vertex. class VPInstruction : public VPUser, public VPValue, public VPRecipeBase { friend class VPlanSlp; public: /// VPlan opcodes, extending LLVM IR with idiomatics instructions. enum { Not = Instruction::OtherOpsEnd + 1, ICmpULE, SLPLoad, SLPStore, ActiveLaneMask, }; private: typedef unsigned char OpcodeTy; OpcodeTy Opcode; /// Utility method serving execute(): generates a single instance of the /// modeled instruction. void generateInstruction(VPTransformState &State, unsigned Part); protected: void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } public: VPInstruction(unsigned Opcode, ArrayRef Operands) : VPUser(Operands), VPValue(VPValue::VPInstructionSC), VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} VPInstruction(unsigned Opcode, std::initializer_list Operands) : VPInstruction(Opcode, ArrayRef(Operands)) {} /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPValue *V) { return V->getVPValueID() == VPValue::VPInstructionSC; } VPInstruction *clone() const { SmallVector Operands(operands()); return new VPInstruction(Opcode, Operands); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *R) { return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; } unsigned getOpcode() const { return Opcode; } /// Generate the instruction. /// TODO: We currently execute only per-part unless a specific instance is /// provided. void execute(VPTransformState &State) override; /// Print the Recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; /// Print the VPInstruction. void print(raw_ostream &O) const; void print(raw_ostream &O, VPSlotTracker &SlotTracker) const; /// Return true if this instruction may modify memory. bool mayWriteToMemory() const { // TODO: we can use attributes of the called function to rule out memory // modifications. return Opcode == Instruction::Store || Opcode == Instruction::Call || Opcode == Instruction::Invoke || Opcode == SLPStore; } bool hasResult() const { // CallInst may or may not have a result, depending on the called function. // Conservatively return calls have results for now. switch (getOpcode()) { case Instruction::Ret: case Instruction::Br: case Instruction::Store: case Instruction::Switch: case Instruction::IndirectBr: case Instruction::Resume: case Instruction::CatchRet: case Instruction::Unreachable: case Instruction::Fence: case Instruction::AtomicRMW: return false; default: return true; } } }; /// VPWidenRecipe is a recipe for producing a copy of vector type its /// ingredient. This recipe covers most of the traditional vectorization cases /// where each ingredient transforms into a vectorized version of itself. class VPWidenRecipe : public VPRecipeBase, public VPUser { /// Hold the instruction to be widened. Instruction &Ingredient; public: template VPWidenRecipe(Instruction &I, iterator_range Operands) : VPRecipeBase(VPWidenSC), VPUser(Operands), Ingredient(I) {} ~VPWidenRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; } /// Produce widened copies of all Ingredients. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for widening Call instructions. class VPWidenCallRecipe : public VPRecipeBase, public VPValue, public VPUser { public: template VPWidenCallRecipe(CallInst &I, iterator_range CallArguments) : VPRecipeBase(VPRecipeBase::VPWidenCallSC), VPValue(VPValue::VPVWidenCallSC, &I), VPUser(CallArguments) {} ~VPWidenCallRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenCallSC; } /// Produce a widened version of the call instruction. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for widening select instructions. class VPWidenSelectRecipe : public VPRecipeBase, public VPUser { private: /// Hold the select to be widened. SelectInst &Ingredient; /// Is the condition of the select loop invariant? bool InvariantCond; public: template VPWidenSelectRecipe(SelectInst &I, iterator_range Operands, bool InvariantCond) : VPRecipeBase(VPWidenSelectSC), VPUser(Operands), Ingredient(I), InvariantCond(InvariantCond) {} ~VPWidenSelectRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenSelectSC; } /// Produce a widened version of the select instruction. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for handling GEP instructions. class VPWidenGEPRecipe : public VPRecipeBase, public VPUser { GetElementPtrInst *GEP; bool IsPtrLoopInvariant; SmallBitVector IsIndexLoopInvariant; public: template VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range Operands) : VPRecipeBase(VPWidenGEPSC), VPUser(Operands), GEP(GEP), IsIndexLoopInvariant(GEP->getNumIndices(), false) {} template VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range Operands, Loop *OrigLoop) : VPRecipeBase(VPWidenGEPSC), VPUser(Operands), GEP(GEP), IsIndexLoopInvariant(GEP->getNumIndices(), false) { IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); for (auto Index : enumerate(GEP->indices())) IsIndexLoopInvariant[Index.index()] = OrigLoop->isLoopInvariant(Index.value().get()); } ~VPWidenGEPRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC; } /// Generate the gep nodes. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for handling phi nodes of integer and floating-point inductions, /// producing their vector and scalar values. class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { PHINode *IV; TruncInst *Trunc; public: VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} ~VPWidenIntOrFpInductionRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; } /// Generate the vectorized and scalarized versions of the phi node as /// needed by their users. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for handling all phi nodes except for integer and FP inductions. class VPWidenPHIRecipe : public VPRecipeBase { PHINode *Phi; public: VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} ~VPWidenPHIRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; } /// Generate the phi/select nodes. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for vectorizing a phi-node as a sequence of mask-based select /// instructions. class VPBlendRecipe : public VPRecipeBase, public VPUser { PHINode *Phi; public: /// The blend operation is a User of the incoming values and of their /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value /// might be incoming with a full mask for which there is no VPValue. VPBlendRecipe(PHINode *Phi, ArrayRef Operands) : VPRecipeBase(VPBlendSC), VPUser(Operands), Phi(Phi) { assert(Operands.size() > 0 && ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && "Expected either a single incoming value or a positive even number " "of operands"); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; } /// Return the number of incoming values, taking into account that a single /// incoming value has no mask. unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } /// Return incoming value number \p Idx. VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } /// Return mask number \p Idx. VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } /// Generate the phi/select nodes. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// VPInterleaveRecipe is a recipe for transforming an interleave group of load /// or stores into one wide load/store and shuffles. class VPInterleaveRecipe : public VPRecipeBase, public VPUser { const InterleaveGroup *IG; public: VPInterleaveRecipe(const InterleaveGroup *IG, VPValue *Addr, VPValue *Mask) : VPRecipeBase(VPInterleaveSC), VPUser({Addr}), IG(IG) { if (Mask) addOperand(Mask); } ~VPInterleaveRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; } /// Return the address accessed by this recipe. VPValue *getAddr() const { return getOperand(0); // Address is the 1st, mandatory operand. } /// Return the mask used by this recipe. Note that a full mask is represented /// by a nullptr. VPValue *getMask() const { // Mask is optional and therefore the last, currently 2nd operand. return getNumOperands() == 2 ? getOperand(1) : nullptr; } /// Generate the wide load or store, and shuffles. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; const InterleaveGroup *getInterleaveGroup() { return IG; } }; /// A recipe to represent inloop reduction operations, performing a reduction on /// a vector operand into a scalar value, and adding the result to a chain. class VPReductionRecipe : public VPRecipeBase { /// The recurrence decriptor for the reduction in question. RecurrenceDescriptor *RdxDesc; /// The original instruction being converted to a reduction. Instruction *I; /// The VPValue of the vector value to be reduced. VPValue *VecOp; /// The VPValue of the scalar Chain being accumulated. VPValue *ChainOp; /// The VPValue of the condition for the block. VPValue *CondOp; /// Fast math flags to use for the resulting reduction operation. bool NoNaN; /// Pointer to the TTI, needed to create the target reduction const TargetTransformInfo *TTI; public: VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, bool NoNaN, const TargetTransformInfo *TTI) : VPRecipeBase(VPReductionSC), RdxDesc(R), I(I), VecOp(VecOp), ChainOp(ChainOp), CondOp(CondOp), NoNaN(NoNaN), TTI(TTI) {} ~VPReductionRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPReductionSC; } /// Generate the reduction in the loop void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// VPReplicateRecipe replicates a given instruction producing multiple scalar /// copies of the original scalar type, one per lane, instead of producing a /// single copy of widened type for all lanes. If the instruction is known to be /// uniform only one copy, per lane zero, will be generated. class VPReplicateRecipe : public VPRecipeBase, public VPUser { /// The instruction being replicated. Instruction *Ingredient; /// Indicator if only a single replica per lane is needed. bool IsUniform; /// Indicator if the replicas are also predicated. bool IsPredicated; /// Indicator if the scalar values should also be packed into a vector. bool AlsoPack; public: template VPReplicateRecipe(Instruction *I, iterator_range Operands, bool IsUniform, bool IsPredicated = false) : VPRecipeBase(VPReplicateSC), VPUser(Operands), Ingredient(I), IsUniform(IsUniform), IsPredicated(IsPredicated) { // Retain the previous behavior of predicateInstructions(), where an // insert-element of a predicated instruction got hoisted into the // predicated basic block iff it was its only user. This is achieved by // having predicated instructions also pack their values into a vector by // default unless they have a replicated user which uses their scalar value. AlsoPack = IsPredicated && !I->use_empty(); } ~VPReplicateRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; } /// Generate replicas of the desired Ingredient. Replicas will be generated /// for all parts and lanes unless a specific part and lane are specified in /// the \p State. void execute(VPTransformState &State) override; void setAlsoPack(bool Pack) { AlsoPack = Pack; } /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A recipe for generating conditional branches on the bits of a mask. class VPBranchOnMaskRecipe : public VPRecipeBase, public VPUser { public: VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { if (BlockInMask) // nullptr means all-one mask. addOperand(BlockInMask); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; } /// Generate the extraction of the appropriate bit from the block mask and the /// conditional branch. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override { O << " +\n" << Indent << "\"BRANCH-ON-MASK "; if (VPValue *Mask = getMask()) Mask->print(O, SlotTracker); else O << " All-One"; O << "\\l\""; } /// Return the mask used by this recipe. Note that a full mask is represented /// by a nullptr. VPValue *getMask() const { assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); // Mask is optional. return getNumOperands() == 1 ? getOperand(0) : nullptr; } }; /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when /// control converges back from a Branch-on-Mask. The phi nodes are needed in /// order to merge values that are set under such a branch and feed their uses. /// The phi nodes can be scalar or vector depending on the users of the value. /// This recipe works in concert with VPBranchOnMaskRecipe. class VPPredInstPHIRecipe : public VPRecipeBase { Instruction *PredInst; public: /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi /// nodes after merging back from a Branch-on-Mask. VPPredInstPHIRecipe(Instruction *PredInst) : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} ~VPPredInstPHIRecipe() override = default; /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; } /// Generates phi nodes for live-outs as needed to retain SSA form. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A Recipe for widening load/store operations. /// The recipe uses the following VPValues: /// - For load: Address, optional mask /// - For store: Address, stored value, optional mask /// TODO: We currently execute only per-part unless a specific instance is /// provided. class VPWidenMemoryInstructionRecipe : public VPRecipeBase, public VPValue, public VPUser { void setMask(VPValue *Mask) { if (!Mask) return; addOperand(Mask); } bool isMasked() const { return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; } public: VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask) : VPRecipeBase(VPWidenMemoryInstructionSC), VPValue(VPValue::VPMemoryInstructionSC, &Load), VPUser({Addr}) { setMask(Mask); } VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredValue, VPValue *Mask) : VPRecipeBase(VPWidenMemoryInstructionSC), VPValue(VPValue::VPMemoryInstructionSC, &Store), VPUser({Addr, StoredValue}) { setMask(Mask); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; } /// Return the address accessed by this recipe. VPValue *getAddr() const { return getOperand(0); // Address is the 1st, mandatory operand. } /// Return the mask used by this recipe. Note that a full mask is represented /// by a nullptr. VPValue *getMask() const { // Mask is optional and therefore the last operand. return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; } /// Returns true if this recipe is a store. bool isStore() const { return isa(getUnderlyingInstr()); } /// Return the address accessed by this recipe. VPValue *getStoredValue() const { assert(isStore() && "Stored value only available for store instructions"); return getOperand(1); // Stored value is the 2nd, mandatory operand. } /// Generate the wide load/store. void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// A Recipe for widening the canonical induction variable of the vector loop. class VPWidenCanonicalIVRecipe : public VPRecipeBase { /// A VPValue representing the canonical vector IV. VPValue Val; public: VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC) {} ~VPWidenCanonicalIVRecipe() override = default; /// Return the VPValue representing the canonical vector induction variable of /// the vector loop. const VPValue *getVPValue() const { return &Val; } VPValue *getVPValue() { return &Val; } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPRecipeBase *V) { return V->getVPRecipeID() == VPRecipeBase::VPWidenCanonicalIVSC; } /// Generate a canonical vector induction variable of the vector loop, with /// start = { for 0 <= Part < UF}, and /// step = . void execute(VPTransformState &State) override; /// Print the recipe. void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override; }; /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It /// holds a sequence of zero or more VPRecipe's each representing a sequence of /// output IR instructions. class VPBasicBlock : public VPBlockBase { public: using RecipeListTy = iplist; private: /// The VPRecipes held in the order of output instructions to generate. RecipeListTy Recipes; public: VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) : VPBlockBase(VPBasicBlockSC, Name.str()) { if (Recipe) appendRecipe(Recipe); } ~VPBasicBlock() override { Recipes.clear(); } /// Instruction iterators... using iterator = RecipeListTy::iterator; using const_iterator = RecipeListTy::const_iterator; using reverse_iterator = RecipeListTy::reverse_iterator; using const_reverse_iterator = RecipeListTy::const_reverse_iterator; //===--------------------------------------------------------------------===// /// Recipe iterator methods /// inline iterator begin() { return Recipes.begin(); } inline const_iterator begin() const { return Recipes.begin(); } inline iterator end() { return Recipes.end(); } inline const_iterator end() const { return Recipes.end(); } inline reverse_iterator rbegin() { return Recipes.rbegin(); } inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } inline reverse_iterator rend() { return Recipes.rend(); } inline const_reverse_iterator rend() const { return Recipes.rend(); } inline size_t size() const { return Recipes.size(); } inline bool empty() const { return Recipes.empty(); } inline const VPRecipeBase &front() const { return Recipes.front(); } inline VPRecipeBase &front() { return Recipes.front(); } inline const VPRecipeBase &back() const { return Recipes.back(); } inline VPRecipeBase &back() { return Recipes.back(); } /// Returns a reference to the list of recipes. RecipeListTy &getRecipeList() { return Recipes; } /// Returns a pointer to a member of the recipe list. static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { return &VPBasicBlock::Recipes; } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPBlockBase *V) { return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; } void insert(VPRecipeBase *Recipe, iterator InsertPt) { assert(Recipe && "No recipe to append."); assert(!Recipe->Parent && "Recipe already in VPlan"); Recipe->Parent = this; Recipes.insert(InsertPt, Recipe); } /// Augment the existing recipes of a VPBasicBlock with an additional /// \p Recipe as the last recipe. void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } /// The method which generates the output IR instructions that correspond to /// this VPBasicBlock, thereby "executing" the VPlan. void execute(struct VPTransformState *State) override; /// Replace all operands of VPUsers in the block with \p NewValue and also /// replaces all uses of VPValues defined in the block with NewValue. void dropAllReferences(VPValue *NewValue); /// Return the position of the first non-phi node recipe in the block. iterator getFirstNonPhi(); private: /// Create an IR BasicBlock to hold the output instructions generated by this /// VPBasicBlock, and return it. Update the CFGState accordingly. BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); }; /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. /// A VPRegionBlock may indicate that its contents are to be replicated several /// times. This is designed to support predicated scalarization, in which a /// scalar if-then code structure needs to be generated VF * UF times. Having /// this replication indicator helps to keep a single model for multiple /// candidate VF's. The actual replication takes place only once the desired VF /// and UF have been determined. class VPRegionBlock : public VPBlockBase { /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. VPBlockBase *Entry; /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. VPBlockBase *Exit; /// An indicator whether this region is to generate multiple replicated /// instances of output IR corresponding to its VPBlockBases. bool IsReplicator; public: VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, const std::string &Name = "", bool IsReplicator = false) : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), IsReplicator(IsReplicator) { assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); assert(Exit->getSuccessors().empty() && "Exit block has successors."); Entry->setParent(this); Exit->setParent(this); } VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), IsReplicator(IsReplicator) {} ~VPRegionBlock() override { if (Entry) deleteCFG(Entry); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPBlockBase *V) { return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; } const VPBlockBase *getEntry() const { return Entry; } VPBlockBase *getEntry() { return Entry; } /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p /// EntryBlock must have no predecessors. void setEntry(VPBlockBase *EntryBlock) { assert(EntryBlock->getPredecessors().empty() && "Entry block cannot have predecessors."); Entry = EntryBlock; EntryBlock->setParent(this); } // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a // specific interface of llvm::Function, instead of using // GraphTraints::getEntryNode. We should add a new template parameter to // DominatorTreeBase representing the Graph type. VPBlockBase &front() const { return *Entry; } const VPBlockBase *getExit() const { return Exit; } VPBlockBase *getExit() { return Exit; } /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p /// ExitBlock must have no successors. void setExit(VPBlockBase *ExitBlock) { assert(ExitBlock->getSuccessors().empty() && "Exit block cannot have successors."); Exit = ExitBlock; ExitBlock->setParent(this); } /// An indicator whether this region is to generate multiple replicated /// instances of output IR corresponding to its VPBlockBases. bool isReplicator() const { return IsReplicator; } /// The method which generates the output IR instructions that correspond to /// this VPRegionBlock, thereby "executing" the VPlan. void execute(struct VPTransformState *State) override; }; //===----------------------------------------------------------------------===// // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // //===----------------------------------------------------------------------===// // The following set of template specializations implement GraphTraits to treat // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the // VPBlockBase is a VPRegionBlock, this specialization provides access to its // successors/predecessors but not to the blocks inside the region. template <> struct GraphTraits { using NodeRef = VPBlockBase *; using ChildIteratorType = SmallVectorImpl::iterator; static NodeRef getEntryNode(NodeRef N) { return N; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getSuccessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getSuccessors().end(); } }; template <> struct GraphTraits { using NodeRef = const VPBlockBase *; using ChildIteratorType = SmallVectorImpl::const_iterator; static NodeRef getEntryNode(NodeRef N) { return N; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getSuccessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getSuccessors().end(); } }; // Inverse order specialization for VPBasicBlocks. Predecessors are used instead // of successors for the inverse traversal. template <> struct GraphTraits> { using NodeRef = VPBlockBase *; using ChildIteratorType = SmallVectorImpl::iterator; static NodeRef getEntryNode(Inverse B) { return B.Graph; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getPredecessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getPredecessors().end(); } }; // The following set of template specializations implement GraphTraits to // treat VPRegionBlock as a graph and recurse inside its nodes. It's important // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so // there won't be automatic recursion into other VPBlockBases that turn to be // VPRegionBlocks. template <> struct GraphTraits : public GraphTraits { using GraphRef = VPRegionBlock *; using nodes_iterator = df_iterator; static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } static nodes_iterator nodes_begin(GraphRef N) { return nodes_iterator::begin(N->getEntry()); } static nodes_iterator nodes_end(GraphRef N) { // df_iterator::end() returns an empty iterator so the node used doesn't // matter. return nodes_iterator::end(N); } }; template <> struct GraphTraits : public GraphTraits { using GraphRef = const VPRegionBlock *; using nodes_iterator = df_iterator; static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } static nodes_iterator nodes_begin(GraphRef N) { return nodes_iterator::begin(N->getEntry()); } static nodes_iterator nodes_end(GraphRef N) { // df_iterator::end() returns an empty iterator so the node used doesn't // matter. return nodes_iterator::end(N); } }; template <> struct GraphTraits> : public GraphTraits> { using GraphRef = VPRegionBlock *; using nodes_iterator = df_iterator; static NodeRef getEntryNode(Inverse N) { return N.Graph->getExit(); } static nodes_iterator nodes_begin(GraphRef N) { return nodes_iterator::begin(N->getExit()); } static nodes_iterator nodes_end(GraphRef N) { // df_iterator::end() returns an empty iterator so the node used doesn't // matter. return nodes_iterator::end(N); } }; /// VPlan models a candidate for vectorization, encoding various decisions take /// to produce efficient output IR, including which branches, basic-blocks and /// output IR instructions to generate, and their cost. VPlan holds a /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry /// VPBlock. class VPlan { friend class VPlanPrinter; friend class VPSlotTracker; /// Hold the single entry to the Hierarchical CFG of the VPlan. VPBlockBase *Entry; /// Holds the VFs applicable to this VPlan. SmallSetVector VFs; /// Holds the name of the VPlan, for printing. std::string Name; /// Holds all the external definitions created for this VPlan. // TODO: Introduce a specific representation for external definitions in // VPlan. External definitions must be immutable and hold a pointer to its // underlying IR that will be used to implement its structural comparison // (operators '==' and '<'). SmallPtrSet VPExternalDefs; /// Represents the backedge taken count of the original loop, for folding /// the tail. VPValue *BackedgeTakenCount = nullptr; /// Holds a mapping between Values and their corresponding VPValue inside /// VPlan. Value2VPValueTy Value2VPValue; /// Contains all VPValues that been allocated by addVPValue directly and need /// to be free when the plan's destructor is called. SmallVector VPValuesToFree; /// Holds the VPLoopInfo analysis for this VPlan. VPLoopInfo VPLInfo; /// Holds the condition bit values built during VPInstruction to VPRecipe transformation. SmallVector VPCBVs; public: VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { if (Entry) Entry->setPlan(this); } ~VPlan() { if (Entry) VPBlockBase::deleteCFG(Entry); for (VPValue *VPV : VPValuesToFree) delete VPV; if (BackedgeTakenCount) delete BackedgeTakenCount; for (VPValue *Def : VPExternalDefs) delete Def; for (VPValue *CBV : VPCBVs) delete CBV; } /// Generate the IR code for this VPlan. void execute(struct VPTransformState *State); VPBlockBase *getEntry() { return Entry; } const VPBlockBase *getEntry() const { return Entry; } VPBlockBase *setEntry(VPBlockBase *Block) { Entry = Block; Block->setPlan(this); return Entry; } /// The backedge taken count of the original loop. VPValue *getOrCreateBackedgeTakenCount() { if (!BackedgeTakenCount) BackedgeTakenCount = new VPValue(); return BackedgeTakenCount; } void addVF(ElementCount VF) { VFs.insert(VF); } bool hasVF(ElementCount VF) { return VFs.count(VF); } const std::string &getName() const { return Name; } void setName(const Twine &newName) { Name = newName.str(); } /// Add \p VPVal to the pool of external definitions if it's not already /// in the pool. void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } /// Add \p CBV to the vector of condition bit values. void addCBV(VPValue *CBV) { VPCBVs.push_back(CBV); } void addVPValue(Value *V) { assert(V && "Trying to add a null Value to VPlan"); assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); VPValue *VPV = new VPValue(V); Value2VPValue[V] = VPV; VPValuesToFree.push_back(VPV); } void addVPValue(Value *V, VPValue *VPV) { assert(V && "Trying to add a null Value to VPlan"); assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); Value2VPValue[V] = VPV; } void addOrReplaceVPValue(Value *V, VPValue *VPV) { assert(V && "Trying to add a null Value to VPlan"); auto I = Value2VPValue.find(V); if (I == Value2VPValue.end()) Value2VPValue[V] = VPV; else I->second = VPV; } VPValue *getVPValue(Value *V) { assert(V && "Trying to get the VPValue of a null Value"); assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); return Value2VPValue[V]; } VPValue *getOrAddVPValue(Value *V) { assert(V && "Trying to get or add the VPValue of a null Value"); if (!Value2VPValue.count(V)) addVPValue(V); return getVPValue(V); } void removeVPValueFor(Value *V) { Value2VPValue.erase(V); } /// Return the VPLoopInfo analysis for this VPlan. VPLoopInfo &getVPLoopInfo() { return VPLInfo; } const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } /// Dump the plan to stderr (for debugging). void dump() const; /// Returns a range mapping the values the range \p Operands to their /// corresponding VPValues. iterator_range>> mapToVPValues(User::op_range Operands) { std::function Fn = [this](Value *Op) { return getOrAddVPValue(Op); }; return map_range(Operands, Fn); } private: /// Add to the given dominator tree the header block and every new basic block /// that was created between it and the latch block, inclusive. static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, BasicBlock *LoopPreHeaderBB, BasicBlock *LoopExitBB); }; /// VPlanPrinter prints a given VPlan to a given output stream. The printing is /// indented and follows the dot format. class VPlanPrinter { friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan); friend inline raw_ostream &operator<<(raw_ostream &OS, const struct VPlanIngredient &I); private: raw_ostream &OS; const VPlan &Plan; unsigned Depth = 0; unsigned TabWidth = 2; std::string Indent; unsigned BID = 0; SmallDenseMap BlockID; VPSlotTracker SlotTracker; VPlanPrinter(raw_ostream &O, const VPlan &P) : OS(O), Plan(P), SlotTracker(&P) {} /// Handle indentation. void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } /// Print a given \p Block of the Plan. void dumpBlock(const VPBlockBase *Block); /// Print the information related to the CFG edges going out of a given /// \p Block, followed by printing the successor blocks themselves. void dumpEdges(const VPBlockBase *Block); /// Print a given \p BasicBlock, including its VPRecipes, followed by printing /// its successor blocks. void dumpBasicBlock(const VPBasicBlock *BasicBlock); /// Print a given \p Region of the Plan. void dumpRegion(const VPRegionBlock *Region); unsigned getOrCreateBID(const VPBlockBase *Block) { return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; } const Twine getOrCreateName(const VPBlockBase *Block); const Twine getUID(const VPBlockBase *Block); /// Print the information related to a CFG edge between two VPBlockBases. void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, const Twine &Label); void dump(); static void printAsIngredient(raw_ostream &O, const Value *V); }; struct VPlanIngredient { const Value *V; VPlanIngredient(const Value *V) : V(V) {} }; inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { VPlanPrinter::printAsIngredient(OS, I.V); return OS; } inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { VPlanPrinter Printer(OS, Plan); Printer.dump(); return OS; } //===----------------------------------------------------------------------===// // VPlan Utilities //===----------------------------------------------------------------------===// /// Class that provides utilities for VPBlockBases in VPlan. class VPBlockUtils { public: VPBlockUtils() = delete; /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr /// has more than one successor, its conditional bit is propagated to \p /// NewBlock. \p NewBlock must have neither successors nor predecessors. static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { assert(NewBlock->getSuccessors().empty() && "Can't insert new block with successors."); // TODO: move successors from BlockPtr to NewBlock when this functionality // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr // already has successors. BlockPtr->setOneSuccessor(NewBlock); NewBlock->setPredecessors({BlockPtr}); NewBlock->setParent(BlockPtr->getParent()); } /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse /// must have neither successors nor predecessors. static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition, VPBlockBase *BlockPtr) { assert(IfTrue->getSuccessors().empty() && "Can't insert IfTrue with successors."); assert(IfFalse->getSuccessors().empty() && "Can't insert IfFalse with successors."); BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); IfTrue->setPredecessors({BlockPtr}); IfFalse->setPredecessors({BlockPtr}); IfTrue->setParent(BlockPtr->getParent()); IfFalse->setParent(BlockPtr->getParent()); } /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to /// the successors of \p From and \p From to the predecessors of \p To. Both /// VPBlockBases must have the same parent, which can be null. Both /// VPBlockBases can be already connected to other VPBlockBases. static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { assert((From->getParent() == To->getParent()) && "Can't connect two block with different parents"); assert(From->getNumSuccessors() < 2 && "Blocks can't have more than two successors."); From->appendSuccessor(To); To->appendPredecessor(From); } /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To /// from the successors of \p From and \p From from the predecessors of \p To. static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { assert(To && "Successor to disconnect is null."); From->removeSuccessor(To); To->removePredecessor(From); } /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. static bool isBackEdge(const VPBlockBase *FromBlock, const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { assert(FromBlock->getParent() == ToBlock->getParent() && FromBlock->getParent() && "Must be in same region"); const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); if (!FromLoop || !ToLoop || FromLoop != ToLoop) return false; // A back-edge is a branch from the loop latch to its header. return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); } /// Returns true if \p Block is a loop latch static bool blockIsLoopLatch(const VPBlockBase *Block, const VPLoopInfo *VPLInfo) { if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) return ParentVPL->isLoopLatch(Block); return false; } /// Count and return the number of succesors of \p PredBlock excluding any /// backedges. static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, VPLoopInfo *VPLI) { unsigned Count = 0; for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) Count++; } return Count; } }; class VPInterleavedAccessInfo { DenseMap *> InterleaveGroupMap; /// Type for mapping of instruction based interleave groups to VPInstruction /// interleave groups using Old2NewTy = DenseMap *, InterleaveGroup *>; /// Recursively \p Region and populate VPlan based interleave groups based on /// \p IAI. void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, InterleavedAccessInfo &IAI); /// Recursively traverse \p Block and populate VPlan based interleave groups /// based on \p IAI. void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, InterleavedAccessInfo &IAI); public: VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); ~VPInterleavedAccessInfo() { SmallPtrSet *, 4> DelSet; // Avoid releasing a pointer twice. for (auto &I : InterleaveGroupMap) DelSet.insert(I.second); for (auto *Ptr : DelSet) delete Ptr; } /// Get the interleave group that \p Instr belongs to. /// /// \returns nullptr if doesn't have such group. InterleaveGroup * getInterleaveGroup(VPInstruction *Instr) const { if (InterleaveGroupMap.count(Instr)) return InterleaveGroupMap.find(Instr)->second; return nullptr; } }; /// Class that maps (parts of) an existing VPlan to trees of combined /// VPInstructions. class VPlanSlp { enum class OpMode { Failed, Load, Opcode }; /// A DenseMapInfo implementation for using SmallVector as /// DenseMap keys. struct BundleDenseMapInfo { static SmallVector getEmptyKey() { return {reinterpret_cast(-1)}; } static SmallVector getTombstoneKey() { return {reinterpret_cast(-2)}; } static unsigned getHashValue(const SmallVector &V) { return static_cast(hash_combine_range(V.begin(), V.end())); } static bool isEqual(const SmallVector &LHS, const SmallVector &RHS) { return LHS == RHS; } }; /// Mapping of values in the original VPlan to a combined VPInstruction. DenseMap, VPInstruction *, BundleDenseMapInfo> BundleToCombined; VPInterleavedAccessInfo &IAI; /// Basic block to operate on. For now, only instructions in a single BB are /// considered. const VPBasicBlock &BB; /// Indicates whether we managed to combine all visited instructions or not. bool CompletelySLP = true; /// Width of the widest combined bundle in bits. unsigned WidestBundleBits = 0; using MultiNodeOpTy = typename std::pair>; // Input operand bundles for the current multi node. Each multi node operand // bundle contains values not matching the multi node's opcode. They will // be reordered in reorderMultiNodeOps, once we completed building a // multi node. SmallVector MultiNodeOps; /// Indicates whether we are building a multi node currently. bool MultiNodeActive = false; /// Check if we can vectorize Operands together. bool areVectorizable(ArrayRef Operands) const; /// Add combined instruction \p New for the bundle \p Operands. void addCombined(ArrayRef Operands, VPInstruction *New); /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. VPInstruction *markFailed(); /// Reorder operands in the multi node to maximize sequential memory access /// and commutative operations. SmallVector reorderMultiNodeOps(); /// Choose the best candidate to use for the lane after \p Last. The set of /// candidates to choose from are values with an opcode matching \p Last's /// or loads consecutive to \p Last. std::pair getBest(OpMode Mode, VPValue *Last, SmallPtrSetImpl &Candidates, VPInterleavedAccessInfo &IAI); /// Print bundle \p Values to dbgs(). void dumpBundle(ArrayRef Values); public: VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} ~VPlanSlp() = default; /// Tries to build an SLP tree rooted at \p Operands and returns a /// VPInstruction combining \p Operands, if they can be combined. VPInstruction *buildGraph(ArrayRef Operands); /// Return the width of the widest combined bundle in bits. unsigned getWidestBundleBits() const { return WidestBundleBits; } /// Return true if all visited instruction can be combined. bool isCompletelySLP() const { return CompletelySLP; } }; } // end namespace llvm #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H