//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// // // This library implements the functionality defined in llvm/Assembly/CWriter.h // // TODO : Recursive types. // //===-----------------------------------------------------------------------==// #include "llvm/Assembly/CWriter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/iOperators.h" #include "llvm/SymbolTable.h" #include "llvm/SlotCalculator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/InstIterator.h" #include "Support/StringExtras.h" #include "Support/STLExtras.h" #include #include using std::string; using std::map; using std::ostream; static std::string getConstStrValue(const Constant* CPV); static std::string getConstArrayStrValue(const Constant* CPV) { std::string Result; // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // const Type *ETy = cast(CPV->getType())->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); // Make sure the last character is a null char, as automatically added by C if (CPV->getNumOperands() == 0 || !cast(*(CPV->op_end()-1))->isNullValue()) isString = false; if (isString) { Result = "\""; // Do not include the last character, which we know is null for (unsigned i = 0, e = CPV->getNumOperands()-1; i != e; ++i) { unsigned char C = (ETy == Type::SByteTy) ? (unsigned char)cast(CPV->getOperand(i))->getValue() : (unsigned char)cast(CPV->getOperand(i))->getValue(); if (isprint(C)) { Result += C; } else { switch (C) { case '\n': Result += "\\n"; break; case '\t': Result += "\\t"; break; case '\r': Result += "\\r"; break; case '\v': Result += "\\v"; break; case '\a': Result += "\\a"; break; default: Result += "\\x"; Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'); Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'); break; } } } Result += "\""; } else { Result = "{"; if (CPV->getNumOperands()) { Result += " " + getConstStrValue(cast(CPV->getOperand(0))); for (unsigned i = 1; i < CPV->getNumOperands(); i++) Result += ", " + getConstStrValue(cast(CPV->getOperand(i))); } Result += " }"; } return Result; } static std::string getConstStrValue(const Constant* CPV) { switch (CPV->getType()->getPrimitiveID()) { case Type::BoolTyID: return CPV == ConstantBool::False ? "0" : "1"; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: return itostr(cast(CPV)->getValue()); case Type::LongTyID: return itostr(cast(CPV)->getValue())+"ll"; case Type::UByteTyID: case Type::UShortTyID:return utostr(cast(CPV)->getValue()); case Type::UIntTyID: return utostr(cast(CPV)->getValue())+"u"; case Type::ULongTyID:return utostr(cast(CPV)->getValue())+"ull"; case Type::FloatTyID: case Type::DoubleTyID: return ftostr(cast(CPV)->getValue()); case Type::ArrayTyID: return getConstArrayStrValue(CPV); case Type::StructTyID: { std::string Result = "{"; if (CPV->getNumOperands()) { Result += " " + getConstStrValue(cast(CPV->getOperand(0))); for (unsigned i = 1; i < CPV->getNumOperands(); i++) Result += ", " + getConstStrValue(cast(CPV->getOperand(i))); } return Result + " }"; } default: std::cerr << "Unknown constant type: " << CPV << "\n"; abort(); } } // Pass the Type* variable and and the variable name and this prints out the // variable declaration. // static string calcTypeNameVar(const Type *Ty, map &TypeNames, const string &NameSoFar, bool ignoreName = false){ if (Ty->isPrimitiveType()) switch (Ty->getPrimitiveID()) { case Type::VoidTyID: return "void " + NameSoFar; case Type::BoolTyID: return "bool " + NameSoFar; case Type::UByteTyID: return "unsigned char " + NameSoFar; case Type::SByteTyID: return "signed char " + NameSoFar; case Type::UShortTyID: return "unsigned short " + NameSoFar; case Type::ShortTyID: return "short " + NameSoFar; case Type::UIntTyID: return "unsigned " + NameSoFar; case Type::IntTyID: return "int " + NameSoFar; case Type::ULongTyID: return "unsigned long long " + NameSoFar; case Type::LongTyID: return "signed long long " + NameSoFar; case Type::FloatTyID: return "float " + NameSoFar; case Type::DoubleTyID: return "double " + NameSoFar; default : std::cerr << "Unknown primitive type: " << Ty << "\n"; abort(); } // Check to see if the type is named. if (!ignoreName) { map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return I->second + " " + NameSoFar; } string Result; switch (Ty->getPrimitiveID()) { case Type::FunctionTyID: { const FunctionType *MTy = cast(Ty); Result += calcTypeNameVar(MTy->getReturnType(), TypeNames, ""); Result += " " + NameSoFar + " ("; for (FunctionType::ParamTypes::const_iterator I = MTy->getParamTypes().begin(), E = MTy->getParamTypes().end(); I != E; ++I) { if (I != MTy->getParamTypes().begin()) Result += ", "; Result += calcTypeNameVar(*I, TypeNames, ""); } if (MTy->isVarArg()) { if (!MTy->getParamTypes().empty()) Result += ", "; Result += "..."; } return Result + ")"; } case Type::StructTyID: { const StructType *STy = cast(Ty); Result = NameSoFar + " {\n"; unsigned indx = 0; for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) { Result += " " +calcTypeNameVar(*I, TypeNames, "field" + utostr(indx++)); Result += ";\n"; } return Result + "}"; } case Type::PointerTyID: return calcTypeNameVar(cast(Ty)->getElementType(), TypeNames, "*" + NameSoFar); case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); int NumElements = ATy->getNumElements(); return calcTypeNameVar(ATy->getElementType(), TypeNames, NameSoFar + "[" + itostr(NumElements) + "]"); } default: assert(0 && "Unhandled case in getTypeProps!"); abort(); } return Result; } namespace { class CWriter : public InstVisitor { ostream& Out; SlotCalculator &Table; const Module *TheModule; map TypeNames; std::set MangledGlobals; public: inline CWriter(ostream &o, SlotCalculator &Tab, const Module *M) : Out(o), Table(Tab), TheModule(M) { } inline void write(Module *M) { printModule(M); } ostream& printType(const Type *Ty, const string &VariableName = "") { return Out << calcTypeNameVar(Ty, TypeNames, VariableName); } void writeOperand(Value *Operand); void writeOperandInternal(Value *Operand); string getValueName(const Value *V); private : void printModule(Module *M); void printSymbolTable(const SymbolTable &ST); void printGlobal(const GlobalVariable *GV); void printFunctionSignature(const Function *F); void printFunctionDecl(const Function *F); // Print just the forward decl void printFunction(Function *); // isInlinableInst - Attempt to inline instructions into their uses to build // trees as much as possible. To do this, we have to consistently decide // what is acceptable to inline, so that variable declarations don't get // printed and an extra copy of the expr is not emitted. // static bool isInlinableInst(const Instruction &I) { // Must be an expression, must be used exactly once. If it is dead, we // emit it inline where it would go. if (I.getType() == Type::VoidTy || I.use_size() != 1 || isa(I) || isa(I) || isa(I)) return false; // Only inline instruction it it's use is in the same BB as the inst. return I.getParent() == cast(I.use_back())->getParent(); } // Instruction visitation functions friend class InstVisitor; void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitPHINode(PHINode &I) {} void visitNot(GenericUnaryInst &I); void visitBinaryOperator(Instruction &I); void visitCastInst (CastInst &I); void visitCallInst (CallInst &I); void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } void visitMallocInst(MallocInst &I); void visitAllocaInst(AllocaInst &I); void visitFreeInst (FreeInst &I); void visitLoadInst (LoadInst &I); void visitStoreInst (StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitInstruction(Instruction &I) { std::cerr << "C Writer does not know about " << I; abort(); } void outputLValue(Instruction *I) { Out << " " << getValueName(I) << " = "; } void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, unsigned Indent); void printIndexingExpr(MemAccessInst &MAI); }; } // We dont want identifier names with ., space, - in them. // So we replace them with _ static string makeNameProper(string x) { string tmp; for (string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++) switch (*sI) { case '.': tmp += "d_"; break; case ' ': tmp += "s_"; break; case '-': tmp += "D_"; break; default: tmp += *sI; } return tmp; } string CWriter::getValueName(const Value *V) { if (V->hasName()) { // Print out the label if it exists... if (isa(V) && // Do not mangle globals... cast(V)->hasExternalLinkage() && // Unless it's internal or !MangledGlobals.count(V)) // Unless the name would collide if we don't return makeNameProper(V->getName()); return "l" + utostr(V->getType()->getUniqueID()) + "_" + makeNameProper(V->getName()); } int Slot = Table.getValSlot(V); assert(Slot >= 0 && "Invalid value!"); return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID()); } void CWriter::writeOperandInternal(Value *Operand) { if (Operand->hasName()) { Out << getValueName(Operand); } else if (Constant *CPV = dyn_cast(Operand)) { if (isa(CPV)) { Out << "(("; printType(CPV->getType(), ""); Out << ")NULL)"; } else Out << getConstStrValue(CPV); } else { int Slot = Table.getValSlot(Operand); assert(Slot >= 0 && "Malformed LLVM!"); Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID(); } } void CWriter::writeOperand(Value *Operand) { if (Instruction *I = dyn_cast(Operand)) if (isInlinableInst(*I)) { // Should we inline this instruction to build a tree? Out << "("; visit(*I); Out << ")"; return; } if (isa(Operand)) Out << "(&"; // Global variables are references as their addresses by llvm writeOperandInternal(Operand); if (isa(Operand)) Out << ")"; } void CWriter::printModule(Module *M) { // Calculate which global values have names that will collide when we throw // away type information. { // Scope to delete the FoundNames set when we are done with it... std::set FoundNames; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (I->hasName()) // If the global has a name... if (FoundNames.count(I->getName())) // And the name is already used MangledGlobals.insert(I); // Mangle the name else FoundNames.insert(I->getName()); // Otherwise, keep track of name for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) if (I->hasName()) // If the global has a name... if (FoundNames.count(I->getName())) // And the name is already used MangledGlobals.insert(I); // Mangle the name else FoundNames.insert(I->getName()); // Otherwise, keep track of name } // printing stdlib inclusion // Out << "#include \n"; // get declaration for alloca Out << "/* Provide Declarations */\n" << "#include \n" << "#include \n\n" // Provide a definition for null if one does not already exist. << "#ifndef NULL\n#define NULL 0\n#endif\n\n" << "typedef unsigned char bool;\n" << "\n\n/* Global Symbols */\n"; // Loop over the symbol table, emitting all named constants... if (M->hasSymbolTable()) printSymbolTable(*M->getSymbolTable()); Out << "\n\n/* Global Data */\n"; for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) { if (I->hasInternalLinkage()) Out << "static "; printType(I->getType()->getElementType(), getValueName(I)); if (I->hasInitializer()) { Out << " = " ; writeOperand(I->getInitializer()); } Out << ";\n"; } // First output all the declarations of the functions as C requires Functions // be declared before they are used. // Out << "\n\n/* Function Declarations */\n"; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) printFunctionDecl(I); // Output all of the functions... Out << "\n\n/* Function Bodies */\n"; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); } // printSymbolTable - Run through symbol table looking for named constants // if a named constant is found, emit it's declaration... // Assuming that symbol table has only types and constants. void CWriter::printSymbolTable(const SymbolTable &ST) { for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) { SymbolTable::type_const_iterator I = ST.type_begin(TI->first); SymbolTable::type_const_iterator End = ST.type_end(TI->first); for (; I != End; ++I) if (const Type *Ty = dyn_cast(I->second)) { string Name = "struct l_" + makeNameProper(I->first); Out << Name << ";\n"; TypeNames.insert(std::make_pair(Ty, Name)); } } Out << "\n"; for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) { SymbolTable::type_const_iterator I = ST.type_begin(TI->first); SymbolTable::type_const_iterator End = ST.type_end(TI->first); for (; I != End; ++I) { const Value *V = I->second; if (const Type *Ty = dyn_cast(V)) { string Name = "l_" + makeNameProper(I->first); if (isa(Ty)) Name = "struct " + makeNameProper(Name); else Out << "typedef "; Out << calcTypeNameVar(Ty, TypeNames, Name, true) << ";\n"; } } } } // printFunctionDecl - Print function declaration // void CWriter::printFunctionDecl(const Function *F) { printFunctionSignature(F); Out << ";\n"; } void CWriter::printFunctionSignature(const Function *F) { if (F->hasInternalLinkage()) Out << "static "; // Loop over the arguments, printing them... const FunctionType *FT = cast(F->getFunctionType()); // Print out the return type and name... printType(F->getReturnType()); Out << getValueName(F) << "("; if (!F->isExternal()) { if (!F->aempty()) { printType(F->afront().getType(), getValueName(F->abegin())); for (Function::const_aiterator I = ++F->abegin(), E = F->aend(); I != E; ++I) { Out << ", "; printType(I->getType(), getValueName(I)); } } } else { // Loop over the arguments, printing them... for (FunctionType::ParamTypes::const_iterator I = FT->getParamTypes().begin(), E = FT->getParamTypes().end(); I != E; ++I) { if (I != FT->getParamTypes().begin()) Out << ", "; printType(*I); } } // Finish printing arguments... if (FT->isVarArg()) { if (FT->getParamTypes().size()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ")"; } void CWriter::printFunction(Function *F) { if (F->isExternal()) return; Table.incorporateFunction(F); printFunctionSignature(F); Out << " {\n"; // print local variable information for the function for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) { Out << " "; printType((*I)->getType(), getValueName(*I)); Out << ";\n"; } // print the basic blocks for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { BasicBlock *Prev = BB->getPrev(); // Don't print the label for the basic block if there are no uses, or if the // only terminator use is the precessor basic block's terminator. We have // to scan the use list because PHI nodes use basic blocks too but do not // require a label to be generated. // bool NeedsLabel = false; for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end(); UI != UE; ++UI) if (TerminatorInst *TI = dyn_cast(*UI)) if (TI != Prev->getTerminator()) { NeedsLabel = true; break; } if (NeedsLabel) Out << getValueName(BB) << ":\n"; // Output all of the instructions in the basic block... for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){ if (!isInlinableInst(*II) && !isa(*II)) { if (II->getType() != Type::VoidTy) outputLValue(II); else Out << " "; visit(*II); Out << ";\n"; } } // Don't emit prefix or suffix for the terminator... visit(*BB->getTerminator()); } Out << "}\n\n"; Table.purgeFunction(); } // Specific Instruction type classes... note that all of the casts are // neccesary because we use the instruction classes as opaque types... // void CWriter::visitReturnInst(ReturnInst &I) { // Don't output a void return if this is the last basic block in the function if (I.getNumOperands() == 0 && &*--I.getParent()->getParent()->end() == I.getParent() && !I.getParent()->size() == 1) { return; } Out << " return"; if (I.getNumOperands()) { Out << " "; writeOperand(I.getOperand(0)); } Out << ";\n"; } static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) { // If PHI nodes need copies, we need the copy code... if (isa(To->front()) || From->getNext() != To) // Not directly successor, need goto return true; // Otherwise we don't need the code. return false; } void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, unsigned Indent) { for (BasicBlock::iterator I = Succ->begin(); PHINode *PN = dyn_cast(&*I); ++I) { // now we have to do the printing Out << string(Indent, ' '); outputLValue(PN); writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB))); Out << "; /* for PHI node */\n"; } if (CurBB->getNext() != Succ) { Out << string(Indent, ' ') << " goto "; writeOperand(Succ); Out << ";\n"; } } // Brach instruction printing - Avoid printing out a brach to a basic block that // immediately succeeds the current one. // void CWriter::visitBranchInst(BranchInst &I) { if (I.isConditional()) { if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) { Out << " if ("; writeOperand(I.getCondition()); Out << ") {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) { Out << " } else {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } } else { // First goto not neccesary, assume second one is... Out << " if (!"; writeOperand(I.getCondition()); Out << ") {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } Out << " }\n"; } else { printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); } Out << "\n"; } void CWriter::visitNot(GenericUnaryInst &I) { Out << "~"; writeOperand(I.getOperand(0)); } void CWriter::visitBinaryOperator(Instruction &I) { // binary instructions, shift instructions, setCond instructions. if (isa(I.getType())) { Out << "("; printType(I.getType()); Out << ")"; } if (isa(I.getType())) Out << "(long long)"; writeOperand(I.getOperand(0)); switch (I.getOpcode()) { case Instruction::Add: Out << " + "; break; case Instruction::Sub: Out << " - "; break; case Instruction::Mul: Out << "*"; break; case Instruction::Div: Out << "/"; break; case Instruction::Rem: Out << "%"; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::SetEQ: Out << " == "; break; case Instruction::SetNE: Out << " != "; break; case Instruction::SetLE: Out << " <= "; break; case Instruction::SetGE: Out << " >= "; break; case Instruction::SetLT: Out << " < "; break; case Instruction::SetGT: Out << " > "; break; case Instruction::Shl : Out << " << "; break; case Instruction::Shr : Out << " >> "; break; default: std::cerr << "Invalid operator type!" << I; abort(); } if (isa(I.getType())) Out << "(long long)"; writeOperand(I.getOperand(1)); } void CWriter::visitCastInst(CastInst &I) { Out << "("; printType(I.getType()); Out << ")"; writeOperand(I.getOperand(0)); } void CWriter::visitCallInst(CallInst &I) { const PointerType *PTy = cast(I.getCalledValue()->getType()); const FunctionType *FTy = cast(PTy->getElementType()); const Type *RetTy = FTy->getReturnType(); Out << getValueName(I.getOperand(0)) << "("; if (I.getNumOperands() > 1) { writeOperand(I.getOperand(1)); for (unsigned op = 2, Eop = I.getNumOperands(); op != Eop; ++op) { Out << ", "; writeOperand(I.getOperand(op)); } } Out << ")"; } void CWriter::visitMallocInst(MallocInst &I) { Out << "("; printType(I.getType()); Out << ")malloc(sizeof("; printType(I.getType()->getElementType()); Out << ")"; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ")"; } void CWriter::visitAllocaInst(AllocaInst &I) { Out << "("; printType(I.getType()); Out << ") alloca(sizeof("; printType(I.getType()->getElementType()); Out << ")"; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ")"; } void CWriter::visitFreeInst(FreeInst &I) { Out << "free("; writeOperand(I.getOperand(0)); Out << ")"; } void CWriter::printIndexingExpr(MemAccessInst &MAI) { MemAccessInst::op_iterator I = MAI.idx_begin(), E = MAI.idx_end(); if (I == E) { // If accessing a global value with no indexing, avoid *(&GV) syndrome if (GlobalValue *V = dyn_cast(MAI.getPointerOperand())) { writeOperandInternal(V); return; } Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]' } writeOperand(MAI.getPointerOperand()); if (I == E) return; // Print out the -> operator if possible... const Constant *CI = dyn_cast(I->get()); if (CI && CI->isNullValue() && I+1 != E && (*(I+1))->getType() == Type::UByteTy) { Out << "->field" << cast(*(I+1))->getValue(); I += 2; } for (; I != E; ++I) if ((*I)->getType() == Type::UIntTy) { Out << "["; writeOperand(*I); Out << "]"; } else { Out << ".field" << cast(*I)->getValue(); } } void CWriter::visitLoadInst(LoadInst &I) { printIndexingExpr(I); } void CWriter::visitStoreInst(StoreInst &I) { printIndexingExpr(I); Out << " = "; writeOperand(I.getOperand(0)); } void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { Out << "&"; printIndexingExpr(I); } //===----------------------------------------------------------------------===// // External Interface declaration //===----------------------------------------------------------------------===// void WriteToC(const Module *M, ostream &Out) { assert(M && "You can't write a null module!!"); SlotCalculator SlotTable(M, false); CWriter W(Out, SlotTable, M); W.write((Module*)M); Out.flush(); }