from __future__ import absolute_import import os import sys import llvmbuild.componentinfo as componentinfo import llvmbuild.configutil as configutil from llvmbuild.util import * ### def cmake_quote_string(value): """ cmake_quote_string(value) -> str Return a quoted form of the given value that is suitable for use in CMake language files. """ # Currently, we only handle escaping backslashes. value = value.replace("\\", "\\\\") return value def cmake_quote_path(value): """ cmake_quote_path(value) -> str Return a quoted form of the given value that is suitable for use in CMake language files. """ # CMake has a bug in it's Makefile generator that doesn't properly quote # strings it generates. So instead of using proper quoting, we just use "/" # style paths. Currently, we only handle escaping backslashes. value = value.replace("\\", "/") return value def mk_quote_string_for_target(value): """ mk_quote_string_for_target(target_name) -> str Return a quoted form of the given target_name suitable for including in a Makefile as a target name. """ # The only quoting we currently perform is for ':', to support msys users. return value.replace(":", "\\:") def make_install_dir(path): """ make_install_dir(path) -> None Create the given directory path for installation, including any parents. """ # os.makedirs considers it an error to be called with an existent path. if not os.path.exists(path): os.makedirs(path) ### class LLVMProjectInfo(object): @staticmethod def load_infos_from_path(llvmbuild_source_root): def recurse(subpath): # Load the LLVMBuild file. llvmbuild_path = os.path.join(llvmbuild_source_root + subpath, 'LLVMBuild.txt') if not os.path.exists(llvmbuild_path): fatal("missing LLVMBuild.txt file at: %r" % (llvmbuild_path,)) # Parse the components from it. common,info_iter = componentinfo.load_from_path(llvmbuild_path, subpath) for info in info_iter: yield info # Recurse into the specified subdirectories. for subdir in common.get_list("subdirectories"): for item in recurse(os.path.join(subpath, subdir)): yield item return recurse("/") @staticmethod def load_from_path(source_root, llvmbuild_source_root): infos = list( LLVMProjectInfo.load_infos_from_path(llvmbuild_source_root)) return LLVMProjectInfo(source_root, infos) def __init__(self, source_root, component_infos): # Store our simple ivars. self.source_root = source_root self.component_infos = list(component_infos) self.component_info_map = None self.ordered_component_infos = None def validate_components(self): """validate_components() -> None Validate that the project components are well-defined. Among other things, this checks that: - Components have valid references. - Components references do not form cycles. We also construct the map from component names to info, and the topological ordering of components. """ # Create the component info map and validate that component names are # unique. self.component_info_map = {} for ci in self.component_infos: existing = self.component_info_map.get(ci.name) if existing is not None: # We found a duplicate component name, report it and error out. fatal("found duplicate component %r (at %r and %r)" % ( ci.name, ci.subpath, existing.subpath)) self.component_info_map[ci.name] = ci # Disallow 'all' as a component name, which is a special case. if 'all' in self.component_info_map: fatal("project is not allowed to define 'all' component") # Add the root component. if '$ROOT' in self.component_info_map: fatal("project is not allowed to define $ROOT component") self.component_info_map['$ROOT'] = componentinfo.GroupComponentInfo( '/', '$ROOT', None) self.component_infos.append(self.component_info_map['$ROOT']) # Topologically order the component information according to their # component references. def visit_component_info(ci, current_stack, current_set): # Check for a cycles. if ci in current_set: # We found a cycle, report it and error out. cycle_description = ' -> '.join( '%r (%s)' % (ci.name, relation) for relation,ci in current_stack) fatal("found cycle to %r after following: %s -> %s" % ( ci.name, cycle_description, ci.name)) # If we have already visited this item, we are done. if ci not in components_to_visit: return # Otherwise, mark the component info as visited and traverse. components_to_visit.remove(ci) # Validate the parent reference, which we treat specially. if ci.parent is not None: parent = self.component_info_map.get(ci.parent) if parent is None: fatal("component %r has invalid reference %r (via %r)" % ( ci.name, ci.parent, 'parent')) ci.set_parent_instance(parent) for relation,referent_name in ci.get_component_references(): # Validate that the reference is ok. referent = self.component_info_map.get(referent_name) if referent is None: fatal("component %r has invalid reference %r (via %r)" % ( ci.name, referent_name, relation)) # Visit the reference. current_stack.append((relation,ci)) current_set.add(ci) visit_component_info(referent, current_stack, current_set) current_set.remove(ci) current_stack.pop() # Finally, add the component info to the ordered list. self.ordered_component_infos.append(ci) # FIXME: We aren't actually correctly checking for cycles along the # parent edges. Haven't decided how I want to handle this -- I thought # about only checking cycles by relation type. If we do that, it falls # out easily. If we don't, we should special case the check. self.ordered_component_infos = [] components_to_visit = sorted( set(self.component_infos), key = lambda c: c.name) while components_to_visit: visit_component_info(components_to_visit[0], [], set()) # Canonicalize children lists. for c in self.ordered_component_infos: c.children.sort(key = lambda c: c.name) def print_tree(self): def visit(node, depth = 0): print('%s%-40s (%s)' % (' '*depth, node.name, node.type_name)) for c in node.children: visit(c, depth + 1) visit(self.component_info_map['$ROOT']) def write_components(self, output_path): # Organize all the components by the directory their LLVMBuild file # should go in. info_basedir = {} for ci in self.component_infos: # Ignore the $ROOT component. if ci.parent is None: continue info_basedir[ci.subpath] = info_basedir.get(ci.subpath, []) + [ci] # Compute the list of subdirectories to scan. subpath_subdirs = {} for ci in self.component_infos: # Ignore root components. if ci.subpath == '/': continue # Otherwise, append this subpath to the parent list. parent_path = os.path.dirname(ci.subpath) subpath_subdirs[parent_path] = parent_list = subpath_subdirs.get( parent_path, set()) parent_list.add(os.path.basename(ci.subpath)) # Generate the build files. for subpath, infos in info_basedir.items(): # Order the components by name to have a canonical ordering. infos.sort(key = lambda ci: ci.name) # Format the components into llvmbuild fragments. fragments = [] # Add the common fragments. subdirectories = subpath_subdirs.get(subpath) if subdirectories: fragment = """\ subdirectories = %s """ % (" ".join(sorted(subdirectories)),) fragments.append(("common", fragment)) # Add the component fragments. num_common_fragments = len(fragments) for ci in infos: fragment = ci.get_llvmbuild_fragment() if fragment is None: continue name = "component_%d" % (len(fragments) - num_common_fragments) fragments.append((name, fragment)) if not fragments: continue assert subpath.startswith('/') directory_path = os.path.join(output_path, subpath[1:]) # Create the directory if it does not already exist. if not os.path.exists(directory_path): os.makedirs(directory_path) # In an effort to preserve comments (which aren't parsed), read in # the original file and extract the comments. We only know how to # associate comments that prefix a section name. f = open(infos[0]._source_path) comments_map = {} comment_block = "" for ln in f: if ln.startswith(';'): comment_block += ln elif ln.startswith('[') and ln.endswith(']\n'): comments_map[ln[1:-2]] = comment_block else: comment_block = "" f.close() # Create the LLVMBuild fil[e. file_path = os.path.join(directory_path, 'LLVMBuild.txt') f = open(file_path, "w") # Write the header. header_fmt = ';===- %s %s-*- Conf -*--===;' header_name = '.' + os.path.join(subpath, 'LLVMBuild.txt') header_pad = '-' * (80 - len(header_fmt % (header_name, ''))) header_string = header_fmt % (header_name, header_pad) f.write("""\ %s ; ; The LLVM Compiler Infrastructure ; ; This file is distributed under the University of Illinois Open Source ; License. See LICENSE.TXT for details. ; ;===------------------------------------------------------------------------===; ; ; This is an LLVMBuild description file for the components in this subdirectory. ; ; For more information on the LLVMBuild system, please see: ; ; http://llvm.org/docs/LLVMBuild.html ; ;===------------------------------------------------------------------------===; """ % header_string) # Write out each fragment.each component fragment. for name,fragment in fragments: comment = comments_map.get(name) if comment is not None: f.write(comment) f.write("[%s]\n" % name) f.write(fragment) if fragment is not fragments[-1][1]: f.write('\n') f.close() def write_library_table(self, output_path, enabled_optional_components): # Write out the mapping from component names to required libraries. # # We do this in topological order so that we know we can append the # dependencies for added library groups. entries = {} for c in self.ordered_component_infos: # Skip optional components which are not enabled. if c.type_name == 'OptionalLibrary' \ and c.name not in enabled_optional_components: continue # Skip target groups which are not enabled. tg = c.get_parent_target_group() if tg and not tg.enabled: continue # Only certain components are in the table. if c.type_name not in ('Library', 'OptionalLibrary', \ 'LibraryGroup', 'TargetGroup'): continue # Compute the llvm-config "component name". For historical reasons, # this is lowercased based on the library name. llvmconfig_component_name = c.get_llvmconfig_component_name() # Get the library name, or None for LibraryGroups. if c.type_name == 'Library' or c.type_name == 'OptionalLibrary': library_name = c.get_prefixed_library_name() is_installed = c.installed else: library_name = None is_installed = True # Get the component names of all the required libraries. required_llvmconfig_component_names = [ self.component_info_map[dep].get_llvmconfig_component_name() for dep in c.required_libraries] # Insert the entries for library groups we should add to. for dep in c.add_to_library_groups: entries[dep][2].append(llvmconfig_component_name) # Add the entry. entries[c.name] = (llvmconfig_component_name, library_name, required_llvmconfig_component_names, is_installed) # Convert to a list of entries and sort by name. entries = list(entries.values()) # Create an 'all' pseudo component. We keep the dependency list small by # only listing entries that have no other dependents. root_entries = set(e[0] for e in entries) for _,_,deps,_ in entries: root_entries -= set(deps) entries.append(('all', None, root_entries, True)) entries.sort() # Compute the maximum number of required libraries, plus one so there is # always a sentinel. max_required_libraries = max(len(deps) for _,_,deps,_ in entries) + 1 # Write out the library table. make_install_dir(os.path.dirname(output_path)) f = open(output_path, 'w') f.write("""\ //===- llvm-build generated file --------------------------------*- C++ -*-===// // // Component Library Depenedency Table // // Automatically generated file, do not edit! // //===----------------------------------------------------------------------===// """) f.write('struct AvailableComponent {\n') f.write(' /// The name of the component.\n') f.write(' const char *Name;\n') f.write('\n') f.write(' /// The name of the library for this component (or NULL).\n') f.write(' const char *Library;\n') f.write('\n') f.write(' /// Whether the component is installed.\n') f.write(' bool IsInstalled;\n') f.write('\n') f.write('\ /// The list of libraries required when linking this component.\n') f.write(' const char *RequiredLibraries[%d];\n' % ( max_required_libraries)) f.write('} AvailableComponents[%d] = {\n' % len(entries)) for name,library_name,required_names,is_installed in entries: if library_name is None: library_name_as_cstr = '0' else: library_name_as_cstr = '"lib%s.a"' % library_name f.write(' { "%s", %s, %d, { %s } },\n' % ( name, library_name_as_cstr, is_installed, ', '.join('"%s"' % dep for dep in required_names))) f.write('};\n') f.close() def get_required_libraries_for_component(self, ci, traverse_groups = False): """ get_required_libraries_for_component(component_info) -> iter Given a Library component info descriptor, return an iterator over all of the directly required libraries for linking with this component. If traverse_groups is True, then library and target groups will be traversed to include their required libraries. """ assert ci.type_name in ('Library', 'LibraryGroup', 'TargetGroup') for name in ci.required_libraries: # Get the dependency info. dep = self.component_info_map[name] # If it is a library, yield it. if dep.type_name == 'Library': yield dep continue # Otherwise if it is a group, yield or traverse depending on what # was requested. if dep.type_name in ('LibraryGroup', 'TargetGroup'): if not traverse_groups: yield dep continue for res in self.get_required_libraries_for_component(dep, True): yield res def get_fragment_dependencies(self): """ get_fragment_dependencies() -> iter Compute the list of files (as absolute paths) on which the output fragments depend (i.e., files for which a modification should trigger a rebuild of the fragment). """ # Construct a list of all the dependencies of the Makefile fragment # itself. These include all the LLVMBuild files themselves, as well as # all of our own sources. # # Many components may come from the same file, so we make sure to unique # these. build_paths = set() for ci in self.component_infos: p = os.path.join(self.source_root, ci.subpath[1:], 'LLVMBuild.txt') if p not in build_paths: yield p build_paths.add(p) # Gather the list of necessary sources by just finding all loaded # modules that are inside the LLVM source tree. for module in sys.modules.values(): # Find the module path. if not hasattr(module, '__file__'): continue path = getattr(module, '__file__') if not path: continue # Strip off any compiled suffix. if os.path.splitext(path)[1] in ['.pyc', '.pyo', '.pyd']: path = path[:-1] # If the path exists and is in the source tree, consider it a # dependency. if (path.startswith(self.source_root) and os.path.exists(path)): yield path def write_cmake_fragment(self, output_path): """ write_cmake_fragment(output_path) -> None Generate a CMake fragment which includes all of the collated LLVMBuild information in a format that is easily digestible by a CMake. The exact contents of this are closely tied to how the CMake configuration integrates LLVMBuild, see CMakeLists.txt in the top-level. """ dependencies = list(self.get_fragment_dependencies()) # Write out the CMake fragment. make_install_dir(os.path.dirname(output_path)) f = open(output_path, 'w') # Write the header. header_fmt = '\ #===-- %s - LLVMBuild Configuration for LLVM %s-*- CMake -*--===#' header_name = os.path.basename(output_path) header_pad = '-' * (80 - len(header_fmt % (header_name, ''))) header_string = header_fmt % (header_name, header_pad) f.write("""\ %s # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# # # This file contains the LLVMBuild project information in a format easily # consumed by the CMake based build system. # # This file is autogenerated by llvm-build, do not edit! # #===------------------------------------------------------------------------===# """ % header_string) # Write the dependency information in the best way we can. f.write(""" # LLVMBuild CMake fragment dependencies. # # CMake has no builtin way to declare that the configuration depends on # a particular file. However, a side effect of configure_file is to add # said input file to CMake's internal dependency list. So, we use that # and a dummy output file to communicate the dependency information to # CMake. # # FIXME: File a CMake RFE to get a properly supported version of this # feature. """) for dep in dependencies: f.write("""\ configure_file(\"%s\" ${CMAKE_CURRENT_BINARY_DIR}/DummyConfigureOutput)\n""" % ( cmake_quote_path(dep),)) # Write the properties we use to encode the required library dependency # information in a form CMake can easily use directly. f.write(""" # Explicit library dependency information. # # The following property assignments effectively create a map from component # names to required libraries, in a way that is easily accessed from CMake. """) for ci in self.ordered_component_infos: # We only write the information for libraries currently. if ci.type_name != 'Library': continue f.write("""\ set_property(GLOBAL PROPERTY LLVMBUILD_LIB_DEPS_%s %s)\n""" % ( ci.get_prefixed_library_name(), " ".join(sorted( dep.get_prefixed_library_name() for dep in self.get_required_libraries_for_component(ci))))) f.close() def write_cmake_exports_fragment(self, output_path): """ write_cmake_exports_fragment(output_path) -> None Generate a CMake fragment which includes LLVMBuild library dependencies expressed similarly to how CMake would write them via install(EXPORT). """ dependencies = list(self.get_fragment_dependencies()) # Write out the CMake exports fragment. make_install_dir(os.path.dirname(output_path)) f = open(output_path, 'w') f.write("""\ # Explicit library dependency information. # # The following property assignments tell CMake about link # dependencies of libraries imported from LLVM. """) for ci in self.ordered_component_infos: # We only write the information for libraries currently. if ci.type_name != 'Library': continue # Skip disabled targets. tg = ci.get_parent_target_group() if tg and not tg.enabled: continue f.write("""\ set_property(TARGET %s PROPERTY IMPORTED_LINK_INTERFACE_LIBRARIES %s)\n""" % ( ci.get_prefixed_library_name(), " ".join(sorted( dep.get_prefixed_library_name() for dep in self.get_required_libraries_for_component(ci))))) f.close() def write_make_fragment(self, output_path): """ write_make_fragment(output_path) -> None Generate a Makefile fragment which includes all of the collated LLVMBuild information in a format that is easily digestible by a Makefile. The exact contents of this are closely tied to how the LLVM Makefiles integrate LLVMBuild, see Makefile.rules in the top-level. """ dependencies = list(self.get_fragment_dependencies()) # Write out the Makefile fragment. make_install_dir(os.path.dirname(output_path)) f = open(output_path, 'w') # Write the header. header_fmt = '\ #===-- %s - LLVMBuild Configuration for LLVM %s-*- Makefile -*--===#' header_name = os.path.basename(output_path) header_pad = '-' * (80 - len(header_fmt % (header_name, ''))) header_string = header_fmt % (header_name, header_pad) f.write("""\ %s # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# # # This file contains the LLVMBuild project information in a format easily # consumed by the Makefile based build system. # # This file is autogenerated by llvm-build, do not edit! # #===------------------------------------------------------------------------===# """ % header_string) # Write the dependencies for the fragment. # # FIXME: Technically, we need to properly quote for Make here. f.write("""\ # Clients must explicitly enable LLVMBUILD_INCLUDE_DEPENDENCIES to get # these dependencies. This is a compromise to help improve the # performance of recursive Make systems. """) f.write('ifeq ($(LLVMBUILD_INCLUDE_DEPENDENCIES),1)\n') f.write("# The dependencies for this Makefile fragment itself.\n") f.write("%s: \\\n" % (mk_quote_string_for_target(output_path),)) for dep in dependencies: f.write("\t%s \\\n" % (dep,)) f.write('\n') # Generate dummy rules for each of the dependencies, so that things # continue to work correctly if any of those files are moved or removed. f.write("""\ # The dummy targets to allow proper regeneration even when files are moved or # removed. """) for dep in dependencies: f.write("%s:\n" % (mk_quote_string_for_target(dep),)) f.write('endif\n') f.close() def add_magic_target_components(parser, project, opts): """add_magic_target_components(project, opts) -> None Add the "magic" target based components to the project, which can only be determined based on the target configuration options. This currently is responsible for populating the required_libraries list of the "all-targets", "Native", "NativeCodeGen", and "Engine" components. """ # Determine the available targets. available_targets = dict((ci.name,ci) for ci in project.component_infos if ci.type_name == 'TargetGroup') # Find the configured native target. # We handle a few special cases of target names here for historical # reasons, as these are the names configure currently comes up with. native_target_name = { 'x86' : 'X86', 'x86_64' : 'X86', 'Unknown' : None }.get(opts.native_target, opts.native_target) if native_target_name is None: native_target = None else: native_target = available_targets.get(native_target_name) if native_target is None: parser.error("invalid native target: %r (not in project)" % ( opts.native_target,)) if native_target.type_name != 'TargetGroup': parser.error("invalid native target: %r (not a target)" % ( opts.native_target,)) # Find the list of targets to enable. if opts.enable_targets is None: enable_targets = available_targets.values() else: # We support both space separated and semi-colon separated lists. if ' ' in opts.enable_targets: enable_target_names = opts.enable_targets.split() else: enable_target_names = opts.enable_targets.split(';') enable_targets = [] for name in enable_target_names: target = available_targets.get(name) if target is None: parser.error("invalid target to enable: %r (not in project)" % ( name,)) if target.type_name != 'TargetGroup': parser.error("invalid target to enable: %r (not a target)" % ( name,)) enable_targets.append(target) # Find the special library groups we are going to populate. We enforce that # these appear in the project (instead of just adding them) so that they at # least have an explicit representation in the project LLVMBuild files (and # comments explaining how they are populated). def find_special_group(name): info = info_map.get(name) if info is None: fatal("expected project to contain special %r component" % ( name,)) if info.type_name != 'LibraryGroup': fatal("special component %r should be a LibraryGroup" % ( name,)) if info.required_libraries: fatal("special component %r must have empty %r list" % ( name, 'required_libraries')) if info.add_to_library_groups: fatal("special component %r must have empty %r list" % ( name, 'add_to_library_groups')) info._is_special_group = True return info info_map = dict((ci.name, ci) for ci in project.component_infos) all_targets = find_special_group('all-targets') native_group = find_special_group('Native') native_codegen_group = find_special_group('NativeCodeGen') engine_group = find_special_group('Engine') # Set the enabled bit in all the target groups, and append to the # all-targets list. for ci in enable_targets: all_targets.required_libraries.append(ci.name) ci.enabled = True # If we have a native target, then that defines the native and # native_codegen libraries. if native_target and native_target.enabled: native_group.required_libraries.append(native_target.name) native_codegen_group.required_libraries.append( '%sCodeGen' % native_target.name) # If we have a native target with a JIT, use that for the engine. Otherwise, # use the interpreter. if native_target and native_target.enabled and native_target.has_jit: engine_group.required_libraries.append('JIT') engine_group.required_libraries.append(native_group.name) else: engine_group.required_libraries.append('Interpreter') def main(): from optparse import OptionParser, OptionGroup parser = OptionParser("usage: %prog [options]") group = OptionGroup(parser, "Input Options") group.add_option("", "--source-root", dest="source_root", metavar="PATH", help="Path to the LLVM source (inferred if not given)", action="store", default=None) group.add_option("", "--llvmbuild-source-root", dest="llvmbuild_source_root", help=( "If given, an alternate path to search for LLVMBuild.txt files"), action="store", default=None, metavar="PATH") group.add_option("", "--build-root", dest="build_root", metavar="PATH", help="Path to the build directory (if needed) [%default]", action="store", default=None) parser.add_option_group(group) group = OptionGroup(parser, "Output Options") group.add_option("", "--print-tree", dest="print_tree", help="Print out the project component tree [%default]", action="store_true", default=False) group.add_option("", "--write-llvmbuild", dest="write_llvmbuild", help="Write out the LLVMBuild.txt files to PATH", action="store", default=None, metavar="PATH") group.add_option("", "--write-library-table", dest="write_library_table", metavar="PATH", help="Write the C++ library dependency table to PATH", action="store", default=None) group.add_option("", "--write-cmake-fragment", dest="write_cmake_fragment", metavar="PATH", help="Write the CMake project information to PATH", action="store", default=None) group.add_option("", "--write-cmake-exports-fragment", dest="write_cmake_exports_fragment", metavar="PATH", help="Write the CMake exports information to PATH", action="store", default=None) group.add_option("", "--write-make-fragment", dest="write_make_fragment", metavar="PATH", help="Write the Makefile project information to PATH", action="store", default=None) group.add_option("", "--configure-target-def-file", dest="configure_target_def_files", help="""Configure the given file at SUBPATH (relative to the inferred or given source root, and with a '.in' suffix) by replacing certain substitution variables with lists of targets that support certain features (for example, targets with AsmPrinters) and write the result to the build root (as given by --build-root) at the same SUBPATH""", metavar="SUBPATH", action="append", default=None) parser.add_option_group(group) group = OptionGroup(parser, "Configuration Options") group.add_option("", "--native-target", dest="native_target", metavar="NAME", help=("Treat the named target as the 'native' one, if " "given [%default]"), action="store", default=None) group.add_option("", "--enable-targets", dest="enable_targets", metavar="NAMES", help=("Enable the given space or semi-colon separated " "list of targets, or all targets if not present"), action="store", default=None) group.add_option("", "--enable-optional-components", dest="optional_components", metavar="NAMES", help=("Enable the given space or semi-colon separated " "list of optional components"), action="store", default="") parser.add_option_group(group) (opts, args) = parser.parse_args() # Determine the LLVM source path, if not given. source_root = opts.source_root if source_root: if not os.path.exists(os.path.join(source_root, 'lib', 'IR', 'Function.cpp')): parser.error('invalid LLVM source root: %r' % source_root) else: llvmbuild_path = os.path.dirname(__file__) llvm_build_path = os.path.dirname(llvmbuild_path) utils_path = os.path.dirname(llvm_build_path) source_root = os.path.dirname(utils_path) if not os.path.exists(os.path.join(source_root, 'lib', 'IR', 'Function.cpp')): parser.error('unable to infer LLVM source root, please specify') # Construct the LLVM project information. llvmbuild_source_root = opts.llvmbuild_source_root or source_root project_info = LLVMProjectInfo.load_from_path( source_root, llvmbuild_source_root) # Add the magic target based components. add_magic_target_components(parser, project_info, opts) # Validate the project component info. project_info.validate_components() # Print the component tree, if requested. if opts.print_tree: project_info.print_tree() # Write out the components, if requested. This is useful for auto-upgrading # the schema. if opts.write_llvmbuild: project_info.write_components(opts.write_llvmbuild) # Write out the required library table, if requested. if opts.write_library_table: project_info.write_library_table(opts.write_library_table, opts.optional_components) # Write out the make fragment, if requested. if opts.write_make_fragment: project_info.write_make_fragment(opts.write_make_fragment) # Write out the cmake fragment, if requested. if opts.write_cmake_fragment: project_info.write_cmake_fragment(opts.write_cmake_fragment) if opts.write_cmake_exports_fragment: project_info.write_cmake_exports_fragment(opts.write_cmake_exports_fragment) # Configure target definition files, if requested. if opts.configure_target_def_files: # Verify we were given a build root. if not opts.build_root: parser.error("must specify --build-root when using " "--configure-target-def-file") # Create the substitution list. available_targets = [ci for ci in project_info.component_infos if ci.type_name == 'TargetGroup'] substitutions = [ ("@LLVM_ENUM_TARGETS@", ' '.join('LLVM_TARGET(%s)' % ci.name for ci in available_targets)), ("@LLVM_ENUM_ASM_PRINTERS@", ' '.join('LLVM_ASM_PRINTER(%s)' % ci.name for ci in available_targets if ci.has_asmprinter)), ("@LLVM_ENUM_ASM_PARSERS@", ' '.join('LLVM_ASM_PARSER(%s)' % ci.name for ci in available_targets if ci.has_asmparser)), ("@LLVM_ENUM_DISASSEMBLERS@", ' '.join('LLVM_DISASSEMBLER(%s)' % ci.name for ci in available_targets if ci.has_disassembler))] # Configure the given files. for subpath in opts.configure_target_def_files: inpath = os.path.join(source_root, subpath + '.in') outpath = os.path.join(opts.build_root, subpath) result = configutil.configure_file(inpath, outpath, substitutions) if not result: note("configured file %r hasn't changed" % outpath) if __name__=='__main__': main()