//===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Wasm object file writer information. // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/BinaryFormat/Wasm.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionWasm.h" #include "llvm/MC/MCSymbolWasm.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/MCWasmObjectWriter.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/StringSaver.h" #include using namespace llvm; #define DEBUG_TYPE "mc" namespace { // Went we ceate the indirect function table we start at 1, so that there is // and emtpy slot at 0 and therefore calling a null function pointer will trap. static const uint32_t kInitialTableOffset = 1; // For patching purposes, we need to remember where each section starts, both // for patching up the section size field, and for patching up references to // locations within the section. struct SectionBookkeeping { // Where the size of the section is written. uint64_t SizeOffset; // Where the contents of the section starts (after the header). uint64_t ContentsOffset; }; // The signature of a wasm function, in a struct capable of being used as a // DenseMap key. struct WasmFunctionType { // Support empty and tombstone instances, needed by DenseMap. enum { Plain, Empty, Tombstone } State; // The return types of the function. SmallVector Returns; // The parameter types of the function. SmallVector Params; WasmFunctionType() : State(Plain) {} bool operator==(const WasmFunctionType &Other) const { return State == Other.State && Returns == Other.Returns && Params == Other.Params; } }; // Traits for using WasmFunctionType in a DenseMap. struct WasmFunctionTypeDenseMapInfo { static WasmFunctionType getEmptyKey() { WasmFunctionType FuncTy; FuncTy.State = WasmFunctionType::Empty; return FuncTy; } static WasmFunctionType getTombstoneKey() { WasmFunctionType FuncTy; FuncTy.State = WasmFunctionType::Tombstone; return FuncTy; } static unsigned getHashValue(const WasmFunctionType &FuncTy) { uintptr_t Value = FuncTy.State; for (wasm::ValType Ret : FuncTy.Returns) Value += DenseMapInfo::getHashValue(int32_t(Ret)); for (wasm::ValType Param : FuncTy.Params) Value += DenseMapInfo::getHashValue(int32_t(Param)); return Value; } static bool isEqual(const WasmFunctionType &LHS, const WasmFunctionType &RHS) { return LHS == RHS; } }; // A wasm data segment. A wasm binary contains only a single data section // but that can contain many segments, each with their own virtual location // in memory. Each MCSection data created by llvm is modeled as its own // wasm data segment. struct WasmDataSegment { MCSectionWasm *Section; StringRef Name; uint32_t Offset; uint32_t Alignment; uint32_t Flags; SmallVector Data; }; // A wasm function to be written into the function section. struct WasmFunction { int32_t Type; const MCSymbolWasm *Sym; }; // A wasm global to be written into the global section. struct WasmGlobal { wasm::WasmGlobalType Type; uint64_t InitialValue; }; // Information about a single item which is part of a COMDAT. For each data // segment or function which is in the COMDAT, there is a corresponding // WasmComdatEntry. struct WasmComdatEntry { unsigned Kind; uint32_t Index; }; // Information about a single relocation. struct WasmRelocationEntry { uint64_t Offset; // Where is the relocation. const MCSymbolWasm *Symbol; // The symbol to relocate with. int64_t Addend; // A value to add to the symbol. unsigned Type; // The type of the relocation. const MCSectionWasm *FixupSection;// The section the relocation is targeting. WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, int64_t Addend, unsigned Type, const MCSectionWasm *FixupSection) : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), FixupSection(FixupSection) {} bool hasAddend() const { switch (Type) { case wasm::R_WEBASSEMBLY_MEMORY_ADDR_LEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_SLEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32: return true; default: return false; } } void print(raw_ostream &Out) const { Out << "Off=" << Offset << ", Sym=" << *Symbol << ", Addend=" << Addend << ", Type=" << Type << ", FixupSection=" << FixupSection->getSectionName(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { print(dbgs()); } #endif }; #if !defined(NDEBUG) raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { Rel.print(OS); return OS; } #endif class WasmObjectWriter : public MCObjectWriter { /// The target specific Wasm writer instance. std::unique_ptr TargetObjectWriter; // Relocations for fixing up references in the code section. std::vector CodeRelocations; // Relocations for fixing up references in the data section. std::vector DataRelocations; // Index values to use for fixing up call_indirect type indices. // Maps function symbols to the index of the type of the function DenseMap TypeIndices; // Maps function symbols to the table element index space. Used // for TABLE_INDEX relocation types (i.e. address taken functions). DenseMap TableIndices; // Maps function/global symbols to the (shared) Symbol index space. DenseMap SymbolIndices; // Maps function/global symbols to the function/global Wasm index space. DenseMap WasmIndices; // Maps data symbols to the Wasm segment and offset/size with the segment. DenseMap DataLocations; DenseMap FunctionTypeIndices; SmallVector FunctionTypes; SmallVector Globals; SmallVector DataSegments; unsigned NumFunctionImports = 0; unsigned NumGlobalImports = 0; // TargetObjectWriter wrappers. bool is64Bit() const { return TargetObjectWriter->is64Bit(); } unsigned getRelocType(const MCValue &Target, const MCFixup &Fixup) const { return TargetObjectWriter->getRelocType(Target, Fixup); } void startSection(SectionBookkeeping &Section, unsigned SectionId, const char *Name = nullptr); void endSection(SectionBookkeeping &Section); public: WasmObjectWriter(std::unique_ptr MOTW, raw_pwrite_stream &OS) : MCObjectWriter(OS, /*IsLittleEndian=*/true), TargetObjectWriter(std::move(MOTW)) {} ~WasmObjectWriter() override; private: void reset() override { CodeRelocations.clear(); DataRelocations.clear(); TypeIndices.clear(); SymbolIndices.clear(); WasmIndices.clear(); TableIndices.clear(); DataLocations.clear(); FunctionTypeIndices.clear(); FunctionTypes.clear(); Globals.clear(); DataSegments.clear(); MCObjectWriter::reset(); NumFunctionImports = 0; NumGlobalImports = 0; } void writeHeader(const MCAssembler &Asm); void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) override; void executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) override; void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; void writeString(const StringRef Str) { encodeULEB128(Str.size(), getStream()); writeBytes(Str); } void writeValueType(wasm::ValType Ty) { write8(static_cast(Ty)); } void writeTypeSection(ArrayRef FunctionTypes); void writeImportSection(ArrayRef Imports, uint32_t DataSize, uint32_t NumElements); void writeFunctionSection(ArrayRef Functions); void writeGlobalSection(); void writeExportSection(ArrayRef Exports); void writeElemSection(ArrayRef TableElems); void writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, ArrayRef Functions); void writeDataSection(); void writeCodeRelocSection(); void writeDataRelocSection(); void writeLinkingMetaDataSection( ArrayRef SymbolInfos, ArrayRef> InitFuncs, const std::map> &Comdats); uint32_t getProvisionalValue(const WasmRelocationEntry &RelEntry); void applyRelocations(ArrayRef Relocations, uint64_t ContentsOffset); void writeRelocations(ArrayRef Relocations); uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); uint32_t getFunctionType(const MCSymbolWasm& Symbol); uint32_t registerFunctionType(const MCSymbolWasm& Symbol); }; } // end anonymous namespace WasmObjectWriter::~WasmObjectWriter() {} // Write out a section header and a patchable section size field. void WasmObjectWriter::startSection(SectionBookkeeping &Section, unsigned SectionId, const char *Name) { assert((Name != nullptr) == (SectionId == wasm::WASM_SEC_CUSTOM) && "Only custom sections can have names"); DEBUG(dbgs() << "startSection " << SectionId << ": " << Name << "\n"); write8(SectionId); Section.SizeOffset = getStream().tell(); // The section size. We don't know the size yet, so reserve enough space // for any 32-bit value; we'll patch it later. encodeULEB128(UINT32_MAX, getStream()); // The position where the section starts, for measuring its size. Section.ContentsOffset = getStream().tell(); // Custom sections in wasm also have a string identifier. if (SectionId == wasm::WASM_SEC_CUSTOM) { assert(Name); writeString(StringRef(Name)); } } // Now that the section is complete and we know how big it is, patch up the // section size field at the start of the section. void WasmObjectWriter::endSection(SectionBookkeeping &Section) { uint64_t Size = getStream().tell() - Section.ContentsOffset; if (uint32_t(Size) != Size) report_fatal_error("section size does not fit in a uint32_t"); DEBUG(dbgs() << "endSection size=" << Size << "\n"); // Write the final section size to the payload_len field, which follows // the section id byte. uint8_t Buffer[16]; unsigned SizeLen = encodeULEB128(Size, Buffer, 5); assert(SizeLen == 5); getStream().pwrite((char *)Buffer, SizeLen, Section.SizeOffset); } // Emit the Wasm header. void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { writeBytes(StringRef(wasm::WasmMagic, sizeof(wasm::WasmMagic))); writeLE32(wasm::WasmVersion); } void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { } void WasmObjectWriter::recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { MCAsmBackend &Backend = Asm.getBackend(); bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel; const auto &FixupSection = cast(*Fragment->getParent()); uint64_t C = Target.getConstant(); uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); MCContext &Ctx = Asm.getContext(); // The .init_array isn't translated as data, so don't do relocations in it. if (FixupSection.getSectionName().startswith(".init_array")) return; // TODO(sbc): Add support for debug sections. if (FixupSection.getKind().isMetadata()) return; if (const MCSymbolRefExpr *RefB = Target.getSymB()) { assert(RefB->getKind() == MCSymbolRefExpr::VK_None && "Should not have constructed this"); // Let A, B and C being the components of Target and R be the location of // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). // If it is pcrel, we want to compute (A - B + C - R). // In general, Wasm has no relocations for -B. It can only represent (A + C) // or (A + C - R). If B = R + K and the relocation is not pcrel, we can // replace B to implement it: (A - R - K + C) if (IsPCRel) { Ctx.reportError( Fixup.getLoc(), "No relocation available to represent this relative expression"); return; } const auto &SymB = cast(RefB->getSymbol()); if (SymB.isUndefined()) { Ctx.reportError(Fixup.getLoc(), Twine("symbol '") + SymB.getName() + "' can not be undefined in a subtraction expression"); return; } assert(!SymB.isAbsolute() && "Should have been folded"); const MCSection &SecB = SymB.getSection(); if (&SecB != &FixupSection) { Ctx.reportError(Fixup.getLoc(), "Cannot represent a difference across sections"); return; } uint64_t SymBOffset = Layout.getSymbolOffset(SymB); uint64_t K = SymBOffset - FixupOffset; IsPCRel = true; C -= K; } // We either rejected the fixup or folded B into C at this point. const MCSymbolRefExpr *RefA = Target.getSymA(); const auto *SymA = RefA ? cast(&RefA->getSymbol()) : nullptr; if (SymA && SymA->isVariable()) { const MCExpr *Expr = SymA->getVariableValue(); const auto *Inner = cast(Expr); if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) llvm_unreachable("weakref used in reloc not yet implemented"); } // Put any constant offset in an addend. Offsets can be negative, and // LLVM expects wrapping, in contrast to wasm's immediates which can't // be negative and don't wrap. FixedValue = 0; if (SymA) SymA->setUsedInReloc(); assert(!IsPCRel); assert(SymA); unsigned Type = getRelocType(Target, Fixup); WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); // Relocation other than R_WEBASSEMBLY_TYPE_INDEX_LEB are currently required // to be against a named symbol. // TODO(sbc): Add support for relocations against unnamed temporaries such // as those generated by llvm's `blockaddress`. // See: test/MC/WebAssembly/blockaddress.ll if (SymA->getName().empty() && Type != wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB) report_fatal_error("relocations against un-named temporaries are not yet " "supported by wasm"); if (FixupSection.isWasmData()) DataRelocations.push_back(Rec); else if (FixupSection.getKind().isText()) CodeRelocations.push_back(Rec); else llvm_unreachable("unexpected section type"); } // Write X as an (unsigned) LEB value at offset Offset in Stream, padded // to allow patching. static void WritePatchableLEB(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { uint8_t Buffer[5]; unsigned SizeLen = encodeULEB128(X, Buffer, 5); assert(SizeLen == 5); Stream.pwrite((char *)Buffer, SizeLen, Offset); } // Write X as an signed LEB value at offset Offset in Stream, padded // to allow patching. static void WritePatchableSLEB(raw_pwrite_stream &Stream, int32_t X, uint64_t Offset) { uint8_t Buffer[5]; unsigned SizeLen = encodeSLEB128(X, Buffer, 5); assert(SizeLen == 5); Stream.pwrite((char *)Buffer, SizeLen, Offset); } // Write X as a plain integer value at offset Offset in Stream. static void WriteI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { uint8_t Buffer[4]; support::endian::write32le(Buffer, X); Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); } static const MCSymbolWasm* ResolveSymbol(const MCSymbolWasm& Symbol) { if (Symbol.isVariable()) { const MCExpr *Expr = Symbol.getVariableValue(); auto *Inner = cast(Expr); return cast(&Inner->getSymbol()); } return &Symbol; } // Compute a value to write into the code at the location covered // by RelEntry. This value isn't used by the static linker; it just serves // to make the object format more readable and more likely to be directly // useable. uint32_t WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry) { switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: { // Provisional value is table address of the resolved symbol itself const MCSymbolWasm *Sym = ResolveSymbol(*RelEntry.Symbol); assert(Sym->isFunction()); return TableIndices[Sym]; } case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB: // Provisional value is same as the index return getRelocationIndexValue(RelEntry); case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB: case wasm::R_WEBASSEMBLY_GLOBAL_INDEX_LEB: // Provisional value is function/global Wasm index if (!WasmIndices.count(RelEntry.Symbol)) report_fatal_error("symbol not found in wasm index space: " + RelEntry.Symbol->getName()); return WasmIndices[RelEntry.Symbol]; case wasm::R_WEBASSEMBLY_MEMORY_ADDR_LEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_SLEB: { // Provisional value is address of the global const MCSymbolWasm *Sym = ResolveSymbol(*RelEntry.Symbol); // For undefined symbols, use zero if (!Sym->isDefined()) return 0; const wasm::WasmDataReference &Ref = DataLocations[Sym]; const WasmDataSegment &Segment = DataSegments[Ref.Segment]; // Ignore overflow. LLVM allows address arithmetic to silently wrap. return Segment.Offset + Ref.Offset + RelEntry.Addend; } default: llvm_unreachable("invalid relocation type"); } } static void addData(SmallVectorImpl &DataBytes, MCSectionWasm &DataSection) { DEBUG(errs() << "addData: " << DataSection.getSectionName() << "\n"); DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); for (const MCFragment &Frag : DataSection) { if (Frag.hasInstructions()) report_fatal_error("only data supported in data sections"); if (auto *Align = dyn_cast(&Frag)) { if (Align->getValueSize() != 1) report_fatal_error("only byte values supported for alignment"); // If nops are requested, use zeros, as this is the data section. uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); uint64_t Size = std::min(alignTo(DataBytes.size(), Align->getAlignment()), DataBytes.size() + Align->getMaxBytesToEmit()); DataBytes.resize(Size, Value); } else if (auto *Fill = dyn_cast(&Frag)) { int64_t Size; if (!Fill->getSize().evaluateAsAbsolute(Size)) llvm_unreachable("The fill should be an assembler constant"); DataBytes.insert(DataBytes.end(), Size, Fill->getValue()); } else { const auto &DataFrag = cast(Frag); const SmallVectorImpl &Contents = DataFrag.getContents(); DataBytes.insert(DataBytes.end(), Contents.begin(), Contents.end()); } } DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); } uint32_t WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { if (RelEntry.Type == wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB) { if (!TypeIndices.count(RelEntry.Symbol)) report_fatal_error("symbol not found in type index space: " + RelEntry.Symbol->getName()); return TypeIndices[RelEntry.Symbol]; } if (!SymbolIndices.count(RelEntry.Symbol)) report_fatal_error("symbol not found in symbol index space: " + RelEntry.Symbol->getName()); return SymbolIndices[RelEntry.Symbol]; } // Apply the portions of the relocation records that we can handle ourselves // directly. void WasmObjectWriter::applyRelocations( ArrayRef Relocations, uint64_t ContentsOffset) { raw_pwrite_stream &Stream = getStream(); for (const WasmRelocationEntry &RelEntry : Relocations) { uint64_t Offset = ContentsOffset + RelEntry.FixupSection->getSectionOffset() + RelEntry.Offset; DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); uint32_t Value = getProvisionalValue(RelEntry); switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB: case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB: case wasm::R_WEBASSEMBLY_GLOBAL_INDEX_LEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_LEB: WritePatchableLEB(Stream, Value, Offset); break; case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32: WriteI32(Stream, Value, Offset); break; case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_MEMORY_ADDR_SLEB: WritePatchableSLEB(Stream, Value, Offset); break; default: llvm_unreachable("invalid relocation type"); } } } // Write out the portions of the relocation records that the linker will // need to handle. void WasmObjectWriter::writeRelocations( ArrayRef Relocations) { raw_pwrite_stream &Stream = getStream(); for (const WasmRelocationEntry& RelEntry : Relocations) { uint64_t Offset = RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); uint32_t Index = getRelocationIndexValue(RelEntry); write8(RelEntry.Type); encodeULEB128(Offset, Stream); encodeULEB128(Index, Stream); if (RelEntry.hasAddend()) encodeSLEB128(RelEntry.Addend, Stream); } } void WasmObjectWriter::writeTypeSection( ArrayRef FunctionTypes) { if (FunctionTypes.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_TYPE); encodeULEB128(FunctionTypes.size(), getStream()); for (const WasmFunctionType &FuncTy : FunctionTypes) { write8(wasm::WASM_TYPE_FUNC); encodeULEB128(FuncTy.Params.size(), getStream()); for (wasm::ValType Ty : FuncTy.Params) writeValueType(Ty); encodeULEB128(FuncTy.Returns.size(), getStream()); for (wasm::ValType Ty : FuncTy.Returns) writeValueType(Ty); } endSection(Section); } void WasmObjectWriter::writeImportSection(ArrayRef Imports, uint32_t DataSize, uint32_t NumElements) { if (Imports.empty()) return; uint32_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_IMPORT); encodeULEB128(Imports.size(), getStream()); for (const wasm::WasmImport &Import : Imports) { writeString(Import.Module); writeString(Import.Field); write8(Import.Kind); switch (Import.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: encodeULEB128(Import.SigIndex, getStream()); break; case wasm::WASM_EXTERNAL_GLOBAL: write8(Import.Global.Type); write8(Import.Global.Mutable ? 1 : 0); break; case wasm::WASM_EXTERNAL_MEMORY: encodeULEB128(0, getStream()); // flags encodeULEB128(NumPages, getStream()); // initial break; case wasm::WASM_EXTERNAL_TABLE: write8(Import.Table.ElemType); encodeULEB128(0, getStream()); // flags encodeULEB128(NumElements, getStream()); // initial break; default: llvm_unreachable("unsupported import kind"); } } endSection(Section); } void WasmObjectWriter::writeFunctionSection(ArrayRef Functions) { if (Functions.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_FUNCTION); encodeULEB128(Functions.size(), getStream()); for (const WasmFunction &Func : Functions) encodeULEB128(Func.Type, getStream()); endSection(Section); } void WasmObjectWriter::writeGlobalSection() { if (Globals.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_GLOBAL); encodeULEB128(Globals.size(), getStream()); for (const WasmGlobal &Global : Globals) { writeValueType(static_cast(Global.Type.Type)); write8(Global.Type.Mutable); write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(Global.InitialValue, getStream()); write8(wasm::WASM_OPCODE_END); } endSection(Section); } void WasmObjectWriter::writeExportSection(ArrayRef Exports) { if (Exports.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_EXPORT); encodeULEB128(Exports.size(), getStream()); for (const wasm::WasmExport &Export : Exports) { writeString(Export.Name); write8(Export.Kind); encodeULEB128(Export.Index, getStream()); } endSection(Section); } void WasmObjectWriter::writeElemSection(ArrayRef TableElems) { if (TableElems.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_ELEM); encodeULEB128(1, getStream()); // number of "segments" encodeULEB128(0, getStream()); // the table index // init expr for starting offset write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(kInitialTableOffset, getStream()); write8(wasm::WASM_OPCODE_END); encodeULEB128(TableElems.size(), getStream()); for (uint32_t Elem : TableElems) encodeULEB128(Elem, getStream()); endSection(Section); } void WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, ArrayRef Functions) { if (Functions.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CODE); encodeULEB128(Functions.size(), getStream()); for (const WasmFunction &Func : Functions) { auto &FuncSection = static_cast(Func.Sym->getSection()); int64_t Size = 0; if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) report_fatal_error(".size expression must be evaluatable"); encodeULEB128(Size, getStream()); FuncSection.setSectionOffset(getStream().tell() - Section.ContentsOffset); Asm.writeSectionData(&FuncSection, Layout); } // Apply fixups. applyRelocations(CodeRelocations, Section.ContentsOffset); endSection(Section); } void WasmObjectWriter::writeDataSection() { if (DataSegments.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_DATA); encodeULEB128(DataSegments.size(), getStream()); // count for (const WasmDataSegment &Segment : DataSegments) { encodeULEB128(0, getStream()); // memory index write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(Segment.Offset, getStream()); // offset write8(wasm::WASM_OPCODE_END); encodeULEB128(Segment.Data.size(), getStream()); // size Segment.Section->setSectionOffset(getStream().tell() - Section.ContentsOffset); writeBytes(Segment.Data); // data } // Apply fixups. applyRelocations(DataRelocations, Section.ContentsOffset); endSection(Section); } void WasmObjectWriter::writeCodeRelocSection() { // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md // for descriptions of the reloc sections. if (CodeRelocations.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "reloc.CODE"); encodeULEB128(wasm::WASM_SEC_CODE, getStream()); encodeULEB128(CodeRelocations.size(), getStream()); writeRelocations(CodeRelocations); endSection(Section); } void WasmObjectWriter::writeDataRelocSection() { // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md // for descriptions of the reloc sections. if (DataRelocations.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "reloc.DATA"); encodeULEB128(wasm::WASM_SEC_DATA, getStream()); encodeULEB128(DataRelocations.size(), getStream()); writeRelocations(DataRelocations); endSection(Section); } void WasmObjectWriter::writeLinkingMetaDataSection( ArrayRef SymbolInfos, ArrayRef> InitFuncs, const std::map> &Comdats) { SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "linking"); SectionBookkeeping SubSection; if (SymbolInfos.size() != 0) { startSection(SubSection, wasm::WASM_SYMBOL_TABLE); encodeULEB128(SymbolInfos.size(), getStream()); for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { encodeULEB128(Sym.Kind, getStream()); encodeULEB128(Sym.Flags, getStream()); switch (Sym.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: case wasm::WASM_SYMBOL_TYPE_GLOBAL: encodeULEB128(Sym.ElementIndex, getStream()); if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) writeString(Sym.Name); break; case wasm::WASM_SYMBOL_TYPE_DATA: writeString(Sym.Name); if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { encodeULEB128(Sym.DataRef.Segment, getStream()); encodeULEB128(Sym.DataRef.Offset, getStream()); encodeULEB128(Sym.DataRef.Size, getStream()); } break; default: llvm_unreachable("unexpected kind"); } } endSection(SubSection); } if (DataSegments.size()) { startSection(SubSection, wasm::WASM_SEGMENT_INFO); encodeULEB128(DataSegments.size(), getStream()); for (const WasmDataSegment &Segment : DataSegments) { writeString(Segment.Name); encodeULEB128(Segment.Alignment, getStream()); encodeULEB128(Segment.Flags, getStream()); } endSection(SubSection); } if (!InitFuncs.empty()) { startSection(SubSection, wasm::WASM_INIT_FUNCS); encodeULEB128(InitFuncs.size(), getStream()); for (auto &StartFunc : InitFuncs) { encodeULEB128(StartFunc.first, getStream()); // priority encodeULEB128(StartFunc.second, getStream()); // function index } endSection(SubSection); } if (Comdats.size()) { startSection(SubSection, wasm::WASM_COMDAT_INFO); encodeULEB128(Comdats.size(), getStream()); for (const auto &C : Comdats) { writeString(C.first); encodeULEB128(0, getStream()); // flags for future use encodeULEB128(C.second.size(), getStream()); for (const WasmComdatEntry &Entry : C.second) { encodeULEB128(Entry.Kind, getStream()); encodeULEB128(Entry.Index, getStream()); } } endSection(SubSection); } endSection(Section); } uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm& Symbol) { assert(Symbol.isFunction()); assert(TypeIndices.count(&Symbol)); return TypeIndices[&Symbol]; } uint32_t WasmObjectWriter::registerFunctionType(const MCSymbolWasm& Symbol) { assert(Symbol.isFunction()); WasmFunctionType F; const MCSymbolWasm* ResolvedSym = ResolveSymbol(Symbol); F.Returns = ResolvedSym->getReturns(); F.Params = ResolvedSym->getParams(); auto Pair = FunctionTypeIndices.insert(std::make_pair(F, FunctionTypes.size())); if (Pair.second) FunctionTypes.push_back(F); TypeIndices[&Symbol] = Pair.first->second; DEBUG(dbgs() << "registerFunctionType: " << Symbol << " new:" << Pair.second << "\n"); DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); return Pair.first->second; } void WasmObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); MCContext &Ctx = Asm.getContext(); // Collect information from the available symbols. SmallVector Functions; SmallVector TableElems; SmallVector Imports; SmallVector Exports; SmallVector SymbolInfos; SmallVector, 2> InitFuncs; std::map> Comdats; uint32_t DataSize = 0; // For now, always emit the memory import, since loads and stores are not // valid without it. In the future, we could perhaps be more clever and omit // it if there are no loads or stores. MCSymbolWasm *MemorySym = cast(Ctx.getOrCreateSymbol("__linear_memory")); wasm::WasmImport MemImport; MemImport.Module = MemorySym->getModuleName(); MemImport.Field = MemorySym->getName(); MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; Imports.push_back(MemImport); // For now, always emit the table section, since indirect calls are not // valid without it. In the future, we could perhaps be more clever and omit // it if there are no indirect calls. MCSymbolWasm *TableSym = cast(Ctx.getOrCreateSymbol("__indirect_function_table")); wasm::WasmImport TableImport; TableImport.Module = TableSym->getModuleName(); TableImport.Field = TableSym->getName(); TableImport.Kind = wasm::WASM_EXTERNAL_TABLE; TableImport.Table.ElemType = wasm::WASM_TYPE_ANYFUNC; Imports.push_back(TableImport); // Populate FunctionTypeIndices, and Imports and WasmIndices for undefined // symbols. This must be done before populating WasmIndices for defined // symbols. for (const MCSymbol &S : Asm.symbols()) { const auto &WS = static_cast(S); // Register types for all functions, including those with private linkage // (because wasm always needs a type signature). if (WS.isFunction()) registerFunctionType(WS); if (WS.isTemporary()) continue; // If the symbol is not defined in this translation unit, import it. if (!WS.isDefined() && !WS.isComdat()) { if (WS.isFunction()) { wasm::WasmImport Import; Import.Module = WS.getModuleName(); Import.Field = WS.getName(); Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; Import.SigIndex = getFunctionType(WS); Imports.push_back(Import); WasmIndices[&WS] = NumFunctionImports++; } else if (WS.isGlobal()) { wasm::WasmImport Import; Import.Module = WS.getModuleName(); Import.Field = WS.getName(); Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; Import.Global = WS.getGlobalType(); Imports.push_back(Import); WasmIndices[&WS] = NumGlobalImports++; } } } // Populate DataSegments, which must be done before populating DataLocations. for (MCSection &Sec : Asm) { auto &Section = static_cast(Sec); if (!Section.isWasmData()) continue; // .init_array sections are handled specially elsewhere. if (cast(Sec).getSectionName().startswith(".init_array")) continue; uint32_t SegmentIndex = DataSegments.size(); DataSize = alignTo(DataSize, Section.getAlignment()); DataSegments.emplace_back(); WasmDataSegment &Segment = DataSegments.back(); Segment.Name = Section.getSectionName(); Segment.Offset = DataSize; Segment.Section = &Section; addData(Segment.Data, Section); Segment.Alignment = Section.getAlignment(); Segment.Flags = 0; DataSize += Segment.Data.size(); Section.setSegmentIndex(SegmentIndex); if (const MCSymbolWasm *C = Section.getGroup()) { Comdats[C->getName()].emplace_back( WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); } } // Populate WasmIndices and DataLocations for defined symbols. for (const MCSymbol &S : Asm.symbols()) { // Ignore unnamed temporary symbols, which aren't ever exported, imported, // or used in relocations. if (S.isTemporary() && S.getName().empty()) continue; const auto &WS = static_cast(S); DEBUG(dbgs() << "MCSymbol: '" << S << "'" << " isDefined=" << S.isDefined() << " isExternal=" << S.isExternal() << " isTemporary=" << S.isTemporary() << " isFunction=" << WS.isFunction() << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() << " isVariable=" << WS.isVariable() << "\n"); if (WS.isVariable()) continue; if (WS.isComdat() && !WS.isDefined()) continue; if (WS.isFunction()) { unsigned Index; if (WS.isDefined()) { if (WS.getOffset() != 0) report_fatal_error( "function sections must contain one function each"); if (WS.getSize() == 0) report_fatal_error( "function symbols must have a size set with .size"); // A definition. Write out the function body. Index = NumFunctionImports + Functions.size(); WasmFunction Func; Func.Type = getFunctionType(WS); Func.Sym = &WS; WasmIndices[&WS] = Index; Functions.push_back(Func); auto &Section = static_cast(WS.getSection()); if (const MCSymbolWasm *C = Section.getGroup()) { Comdats[C->getName()].emplace_back( WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); } } else { // An import; the index was assigned above. Index = WasmIndices.find(&WS)->second; } DEBUG(dbgs() << " -> function index: " << Index << "\n"); } else if (WS.isData()) { if (WS.isTemporary() && !WS.getSize()) continue; if (!WS.isDefined()) { DEBUG(dbgs() << " -> segment index: -1"); continue; } if (!WS.getSize()) report_fatal_error("data symbols must have a size set with .size: " + WS.getName()); int64_t Size = 0; if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) report_fatal_error(".size expression must be evaluatable"); auto &DataSection = static_cast(WS.getSection()); assert(DataSection.isWasmData()); // For each data symbol, export it in the symtab as a reference to the // corresponding Wasm data segment. wasm::WasmDataReference Ref = wasm::WasmDataReference{ DataSection.getSegmentIndex(), static_cast(Layout.getSymbolOffset(WS)), static_cast(Size)}; DataLocations[&WS] = Ref; DEBUG(dbgs() << " -> segment index: " << Ref.Segment); } else { // A "true" Wasm global (currently just __stack_pointer) if (WS.isDefined()) report_fatal_error("don't yet support defined globals"); // An import; the index was assigned above DEBUG(dbgs() << " -> global index: " << WasmIndices.find(&WS)->second << "\n"); } } // Populate WasmIndices and DataLocations for aliased symbols. We need to // process these in a separate pass because we need to have processed the // target of the alias before the alias itself and the symbols are not // necessarily ordered in this way. for (const MCSymbol &S : Asm.symbols()) { if (!S.isVariable()) continue; assert(S.isDefined()); // Find the target symbol of this weak alias and export that index const auto &WS = static_cast(S); const MCSymbolWasm *ResolvedSym = ResolveSymbol(WS); DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *ResolvedSym << "'\n"); if (WS.isFunction()) { assert(WasmIndices.count(ResolvedSym) > 0); uint32_t WasmIndex = WasmIndices.find(ResolvedSym)->second; WasmIndices[&WS] = WasmIndex; DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); } else if (WS.isData()) { assert(DataLocations.count(ResolvedSym) > 0); const wasm::WasmDataReference &Ref = DataLocations.find(ResolvedSym)->second; DataLocations[&WS] = Ref; DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); } else { report_fatal_error("don't yet support global aliases"); } } // Finally, populate the symbol table itself, in its "natural" order. for (const MCSymbol &S : Asm.symbols()) { const auto &WS = static_cast(S); if (WS.isTemporary() && WS.getName().empty()) continue; if (WS.isComdat() && !WS.isDefined()) continue; if (WS.isTemporary() && WS.isData() && !WS.getSize()) continue; uint32_t Flags = 0; if (WS.isWeak()) Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; if (WS.isHidden()) Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; if (!WS.isExternal() && WS.isDefined()) Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; if (WS.isUndefined()) Flags |= wasm::WASM_SYMBOL_UNDEFINED; wasm::WasmSymbolInfo Info; Info.Name = WS.getName(); Info.Kind = WS.getType(); Info.Flags = Flags; if (!WS.isData()) Info.ElementIndex = WasmIndices.find(&WS)->second; else if (WS.isDefined()) Info.DataRef = DataLocations.find(&WS)->second; SymbolIndices[&WS] = SymbolInfos.size(); SymbolInfos.emplace_back(Info); } { auto HandleReloc = [&](const WasmRelocationEntry &Rel) { // Functions referenced by a relocation need to put in the table. This is // purely to make the object file's provisional values readable, and is // ignored by the linker, which re-calculates the relocations itself. if (Rel.Type != wasm::R_WEBASSEMBLY_TABLE_INDEX_I32 && Rel.Type != wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB) return; assert(Rel.Symbol->isFunction()); const MCSymbolWasm &WS = *ResolveSymbol(*Rel.Symbol); uint32_t FunctionIndex = WasmIndices.find(&WS)->second; uint32_t TableIndex = TableElems.size() + kInitialTableOffset; if (TableIndices.try_emplace(&WS, TableIndex).second) { DEBUG(dbgs() << " -> adding " << WS.getName() << " to table: " << TableIndex << "\n"); TableElems.push_back(FunctionIndex); registerFunctionType(WS); } }; for (const WasmRelocationEntry &RelEntry : CodeRelocations) HandleReloc(RelEntry); for (const WasmRelocationEntry &RelEntry : DataRelocations) HandleReloc(RelEntry); } // Translate .init_array section contents into start functions. for (const MCSection &S : Asm) { const auto &WS = static_cast(S); if (WS.getSectionName().startswith(".fini_array")) report_fatal_error(".fini_array sections are unsupported"); if (!WS.getSectionName().startswith(".init_array")) continue; if (WS.getFragmentList().empty()) continue; if (WS.getFragmentList().size() != 2) report_fatal_error("only one .init_array section fragment supported"); const MCFragment &AlignFrag = *WS.begin(); if (AlignFrag.getKind() != MCFragment::FT_Align) report_fatal_error(".init_array section should be aligned"); if (cast(AlignFrag).getAlignment() != (is64Bit() ? 8 : 4)) report_fatal_error(".init_array section should be aligned for pointers"); const MCFragment &Frag = *std::next(WS.begin()); if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) report_fatal_error("only data supported in .init_array section"); uint16_t Priority = UINT16_MAX; if (WS.getSectionName().size() != 11) { if (WS.getSectionName()[11] != '.') report_fatal_error(".init_array section priority should start with '.'"); if (WS.getSectionName().substr(12).getAsInteger(10, Priority)) report_fatal_error("invalid .init_array section priority"); } const auto &DataFrag = cast(Frag); const SmallVectorImpl &Contents = DataFrag.getContents(); for (const uint8_t *p = (const uint8_t *)Contents.data(), *end = (const uint8_t *)Contents.data() + Contents.size(); p != end; ++p) { if (*p != 0) report_fatal_error("non-symbolic data in .init_array section"); } for (const MCFixup &Fixup : DataFrag.getFixups()) { assert(Fixup.getKind() == MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); const MCExpr *Expr = Fixup.getValue(); auto *Sym = dyn_cast(Expr); if (!Sym) report_fatal_error("fixups in .init_array should be symbol references"); if (Sym->getKind() != MCSymbolRefExpr::VK_WebAssembly_FUNCTION) report_fatal_error("symbols in .init_array should be for functions"); auto I = SymbolIndices.find(cast(&Sym->getSymbol())); if (I == SymbolIndices.end()) report_fatal_error("symbols in .init_array should be defined"); uint32_t Index = I->second; InitFuncs.push_back(std::make_pair(Priority, Index)); } } // Write out the Wasm header. writeHeader(Asm); writeTypeSection(FunctionTypes); writeImportSection(Imports, DataSize, TableElems.size()); writeFunctionSection(Functions); // Skip the "table" section; we import the table instead. // Skip the "memory" section; we import the memory instead. writeGlobalSection(); writeExportSection(Exports); writeElemSection(TableElems); writeCodeSection(Asm, Layout, Functions); writeDataSection(); writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); writeCodeRelocSection(); writeDataRelocSection(); // TODO: Translate the .comment section to the output. // TODO: Translate debug sections to the output. } std::unique_ptr llvm::createWasmObjectWriter(std::unique_ptr MOTW, raw_pwrite_stream &OS) { return llvm::make_unique(std::move(MOTW), OS); }