//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTIONS_H #define LLVM_INSTRUCTIONS_H #include "llvm/InstrTypes.h" namespace llvm { class BasicBlock; class ConstantInt; class PointerType; class PackedType; //===----------------------------------------------------------------------===// // AllocationInst Class //===----------------------------------------------------------------------===// /// AllocationInst - This class is the common base class of MallocInst and /// AllocaInst. /// class AllocationInst : public UnaryInstruction { unsigned Alignment; protected: AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name = "", Instruction *InsertBefore = 0); AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name, BasicBlock *InsertAtEnd); public: // Out of line virtual method, so the vtable, etc has a home. virtual ~AllocationInst(); /// isArrayAllocation - Return true if there is an allocation size parameter /// to the allocation instruction that is not 1. /// bool isArrayAllocation() const; /// getArraySize - Get the number of element allocated, for a simple /// allocation of a single element, this will return a constant 1 value. /// inline const Value *getArraySize() const { return getOperand(0); } inline Value *getArraySize() { return getOperand(0); } /// getType - Overload to return most specific pointer type /// inline const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getAllocatedType - Return the type that is being allocated by the /// instruction. /// const Type *getAllocatedType() const; /// getAlignment - Return the alignment of the memory that is being allocated /// by the instruction. /// unsigned getAlignment() const { return Alignment; } void setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); Alignment = Align; } virtual Instruction *clone() const = 0; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const AllocationInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Malloc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // MallocInst Class //===----------------------------------------------------------------------===// /// MallocInst - an instruction to allocated memory on the heap /// class MallocInst : public AllocationInst { MallocInst(const MallocInst &MI); public: explicit MallocInst(const Type *Ty, Value *ArraySize = 0, const std::string &Name = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Malloc, 0, Name, InsertBefore) {} MallocInst(const Type *Ty, Value *ArraySize, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Malloc, 0, Name, InsertAtEnd) {} MallocInst(const Type *Ty, const std::string &Name, Instruction *InsertBefore = 0) : AllocationInst(Ty, 0, Malloc, 0, Name, InsertBefore) {} MallocInst(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, 0, Malloc, 0, Name, InsertAtEnd) {} MallocInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Malloc, Align, Name, InsertAtEnd) {} MallocInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &Name = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Malloc, Align, Name, InsertBefore) {} virtual MallocInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const MallocInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Malloc); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===// /// AllocaInst - an instruction to allocate memory on the stack /// class AllocaInst : public AllocationInst { AllocaInst(const AllocaInst &); public: explicit AllocaInst(const Type *Ty, Value *ArraySize = 0, const std::string &Name = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Alloca, 0, Name, InsertBefore) {} AllocaInst(const Type *Ty, Value *ArraySize, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Alloca, 0, Name, InsertAtEnd) {} AllocaInst(const Type *Ty, const std::string &Name, Instruction *InsertBefore = 0) : AllocationInst(Ty, 0, Alloca, 0, Name, InsertBefore) {} AllocaInst(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, 0, Alloca, 0, Name, InsertAtEnd) {} AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &Name = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Alloca, Align, Name, InsertBefore) {} AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &Name, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Alloca, Align, Name, InsertAtEnd) {} virtual AllocaInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const AllocaInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FreeInst Class //===----------------------------------------------------------------------===// /// FreeInst - an instruction to deallocate memory /// class FreeInst : public UnaryInstruction { void AssertOK(); public: explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0); FreeInst(Value *Ptr, BasicBlock *InsertAfter); virtual FreeInst *clone() const; virtual bool mayWriteToMemory() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FreeInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Free); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===// /// LoadInst - an instruction for reading from memory. This uses the /// SubclassData field in Value to store whether or not the load is volatile. /// class LoadInst : public UnaryInstruction { LoadInst(const LoadInst &LI) : UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) { setVolatile(LI.isVolatile()); #ifndef NDEBUG AssertOK(); #endif } void AssertOK(); public: LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBefore); LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAtEnd); explicit LoadInst(Value *Ptr, const std::string &Name = "", bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a load from a volatile memory /// location. /// bool isVolatile() const { return SubclassData; } /// setVolatile - Specify whether this is a volatile load or not. /// void setVolatile(bool V) { SubclassData = V; } virtual LoadInst *clone() const; virtual bool mayWriteToMemory() const { return isVolatile(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const LoadInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===// /// StoreInst - an instruction for storing to memory /// class StoreInst : public Instruction { Use Ops[2]; StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store, Ops, 2) { Ops[0].init(SI.Ops[0], this); Ops[1].init(SI.Ops[1], this); setVolatile(SI.isVolatile()); #ifndef NDEBUG AssertOK(); #endif } void AssertOK(); public: StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a load from a volatile memory /// location. /// bool isVolatile() const { return SubclassData; } /// setVolatile - Specify whether this is a volatile load or not. /// void setVolatile(bool V) { SubclassData = V; } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < 2 && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < 2 && "setOperand() out of range!"); Ops[i] = Val; } unsigned getNumOperands() const { return 2; } virtual StoreInst *clone() const; virtual bool mayWriteToMemory() const { return true; } Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const StoreInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===// /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { GetElementPtrInst(const GetElementPtrInst &GEPI) : Instruction(reinterpret_cast(GEPI.getType()), GetElementPtr, 0, GEPI.getNumOperands()) { Use *OL = OperandList = new Use[NumOperands]; Use *GEPIOL = GEPI.OperandList; for (unsigned i = 0, E = NumOperands; i != E; ++i) OL[i].init(GEPIOL[i], this); } void init(Value *Ptr, Value* const *Idx, unsigned NumIdx); void init(Value *Ptr, Value *Idx0, Value *Idx1); void init(Value *Ptr, Value *Idx); public: /// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first ctor can optionally insert before an existing /// instruction, the second appends the new instruction to the specified /// BasicBlock. GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name = "", Instruction *InsertBefore =0); GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name, BasicBlock *InsertAtEnd); GetElementPtrInst(Value *Ptr, Value* const *Idx, unsigned NumIdx, const std::string &Name = "", Instruction *InsertBefore =0); GetElementPtrInst(Value *Ptr, Value* const *Idx, unsigned NumIdx, const std::string &Name, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index getelementptr instructions are so common. GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name = "", Instruction *InsertBefore =0); GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name, BasicBlock *InsertAtEnd); GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name = "", Instruction *InsertBefore =0); GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name, BasicBlock *InsertAtEnd); ~GetElementPtrInst(); virtual GetElementPtrInst *clone() const; // getType - Overload to return most specific pointer type... inline const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getIndexedType - Returns the type of the element that would be loaded with /// a load instruction with the specified parameters. /// /// A null type is returned if the indices are invalid for the specified /// pointer type. /// static const Type *getIndexedType(const Type *Ptr, Value* const *Idx, unsigned NumIdx, bool AllowStructLeaf = false); static const Type *getIndexedType(const Type *Ptr, const std::vector &Indices, bool AllowStructLeaf = false) { return getIndexedType(Ptr, &Indices[0], Indices.size(), AllowStructLeaf); } static const Type *getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1, bool AllowStructLeaf = false); static const Type *getIndexedType(const Type *Ptr, Value *Idx); inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand } inline unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } inline bool hasIndices() const { return getNumOperands() > 1; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const GetElementPtrInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers, pointers, or packed /// vectors of integrals. The two operands must be the same type. /// @brief Represent an integer comparison operator. class ICmpInst: public CmpInst { public: /// This enumeration lists the possible predicates for the ICmpInst. The /// values in the range 0-31 are reserved for FCmpInst while values in the /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the /// predicate values are not overlapping between the classes. enum Predicate { ICMP_EQ = 32, ///< equal ICMP_NE = 33, ///< not equal ICMP_UGT = 34, ///< unsigned greater than ICMP_UGE = 35, ///< unsigned greater or equal ICMP_ULT = 36, ///< unsigned less than ICMP_ULE = 37, ///< unsigned less or equal ICMP_SGT = 38, ///< signed greater than ICMP_SGE = 39, ///< signed greater or equal ICMP_SLT = 40, ///< signed less than ICMP_SLE = 41, ///< signed less or equal FIRST_ICMP_PREDICATE = ICMP_EQ, LAST_ICMP_PREDICATE = ICMP_SLE, BAD_ICMP_PREDICATE = ICMP_SLE + 1 }; /// @brief Constructor with insert-before-instruction semantics. ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &Name = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(Instruction::ICmp, pred, LHS, RHS, Name, InsertBefore) { } /// @brief Constructor with insert-at-block-end semantics. ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &Name, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(Instruction::ICmp, pred, LHS, RHS, Name, InsertAtEnd) { } /// @brief Return the predicate for this instruction. Predicate getPredicate() const { return Predicate(SubclassData); } /// @brief Set the predicate for this instruction to the specified value. void setPredicate(Predicate P) { SubclassData = P; } /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, etc. /// @returns the inverse predicate for the instruction's current predicate. /// @brief Return the inverse of the instruction's predicate. Predicate getInversePredicate() const { return getInversePredicate(getPredicate()); } /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, etc. /// @returns the inverse predicate for predicate provided in \p pred. /// @brief Return the inverse of a given predicate static Predicate getInversePredicate(Predicate pred); /// For example, EQ->EQ, SLE->SGE, ULT->UGT, etc. /// @returns the predicate that would be the result of exchanging the two /// operands of the ICmpInst instruction without changing the result /// produced. /// @brief Return the predicate as if the operands were swapped Predicate getSwappedPredicate() const { return getSwappedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction /// available. /// @brief Return the predicate as if the operands were swapped. static Predicate getSwappedPredicate(Predicate pred); /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// @brief Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// @brief Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred); /// This also tests for commutativity. If isEquality() returns true then /// the predicate is also commutative. /// @returns true if the predicate of this instruction is EQ or NE. /// @brief Determine if this is an equality predicate. bool isEquality() const { return SubclassData == ICMP_EQ || SubclassData == ICMP_NE; } /// @returns true if the predicate of this ICmpInst is commutative /// @brief Determine if this relation is commutative. bool isCommutative() const { return isEquality(); } /// @returns true if the predicate is relational (not EQ or NE). /// @brief Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// @returns true if the predicate of this ICmpInst is signed, false otherwise /// @brief Determine if this instruction's predicate is signed. bool isSignedPredicate() { return isSignedPredicate(getPredicate()); } /// @returns true if the predicate provided is signed, false otherwise /// @brief Determine if the predicate is signed. static bool isSignedPredicate(Predicate pred); /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// @brief Swap operands and adjust predicate. void swapOperands() { SubclassData = getSwappedPredicate(); std::swap(Ops[0], Ops[1]); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ICmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// @brief Represents a floating point comparison operator. class FCmpInst: public CmpInst { public: /// This enumeration lists the possible predicates for the FCmpInst. Values /// in the range 0-31 are reserved for FCmpInst. enum Predicate { // Opcode U L G E Intuitive operation FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded) FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans) FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y) FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal FCMP_UGT =10, ///< 1 0 1 0 True if unordered or greater than FCMP_UGE =11, ///< 1 0 1 1 True if unordered, greater than, or equal FCMP_ULT =12, ///< 1 1 0 0 True if unordered or less than FCMP_ULE =13, ///< 1 1 0 1 True if unordered, less than, or equal FCMP_UNE =14, ///< 1 1 1 0 True if unordered or not equal FCMP_TRUE =15, ///< 1 1 1 1 Always true (always folded) FIRST_FCMP_PREDICATE = FCMP_FALSE, LAST_FCMP_PREDICATE = FCMP_TRUE, BAD_FCMP_PREDICATE = FCMP_TRUE + 1 }; /// @brief Constructor with insert-before-instruction semantics. FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &Name = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(Instruction::FCmp, pred, LHS, RHS, Name, InsertBefore) { } /// @brief Constructor with insert-at-block-end semantics. FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &Name, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(Instruction::FCmp, pred, LHS, RHS, Name, InsertAtEnd) { } /// @brief Return the predicate for this instruction. Predicate getPredicate() const { return Predicate(SubclassData); } /// @brief Set the predicate for this instruction to the specified value. void setPredicate(Predicate P) { SubclassData = P; } /// For example, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. /// @returns the inverse predicate for the instructions current predicate. /// @brief Return the inverse of the predicate Predicate getInversePredicate() const { return getInversePredicate(getPredicate()); } /// For example, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. /// @returns the inverse predicate for \p pred. /// @brief Return the inverse of a given predicate static Predicate getInversePredicate(Predicate pred); /// For example, OEQ->OEQ, ULE->UGE, OLT->OGT, etc. /// @returns the predicate that would be the result of exchanging the two /// operands of the ICmpInst instruction without changing the result /// produced. /// @brief Return the predicate as if the operands were swapped Predicate getSwappedPredicate() const { return getSwappedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction /// available. /// @brief Return the predicate as if the operands were swapped. static Predicate getSwappedPredicate(Predicate Opcode); /// This also tests for commutativity. If isEquality() returns true then /// the predicate is also commutative. Only the equality predicates are /// commutative. /// @returns true if the predicate of this instruction is EQ or NE. /// @brief Determine if this is an equality predicate. bool isEquality() const { return SubclassData == FCMP_OEQ || SubclassData == FCMP_ONE || SubclassData == FCMP_UEQ || SubclassData == FCMP_UNE; } bool isCommutative() const { return isEquality(); } /// @returns true if the predicate is relational (not EQ or NE). /// @brief Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// @brief Swap operands and adjust predicate. void swapOperands() { SubclassData = getSwappedPredicate(); std::swap(Ops[0], Ops[1]); } /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FCmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // CallInst Class //===----------------------------------------------------------------------===// /// CallInst - This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public Instruction { CallInst(const CallInst &CI); void init(Value *Func, const std::vector &Params); void init(Value *Func, Value *Actual1, Value *Actual2); void init(Value *Func, Value *Actual); void init(Value *Func); public: CallInst(Value *F, const std::vector &Par, const std::string &Name = "", Instruction *InsertBefore = 0); CallInst(Value *F, const std::vector &Par, const std::string &Name, BasicBlock *InsertAtEnd); // Alternate CallInst ctors w/ two actuals, w/ one actual and no // actuals, respectively. CallInst(Value *F, Value *Actual1, Value *Actual2, const std::string& Name = "", Instruction *InsertBefore = 0); CallInst(Value *F, Value *Actual1, Value *Actual2, const std::string& Name, BasicBlock *InsertAtEnd); CallInst(Value *F, Value *Actual, const std::string& Name = "", Instruction *InsertBefore = 0); CallInst(Value *F, Value *Actual, const std::string& Name, BasicBlock *InsertAtEnd); explicit CallInst(Value *F, const std::string &Name = "", Instruction *InsertBefore = 0); CallInst(Value *F, const std::string &Name, BasicBlock *InsertAtEnd); ~CallInst(); virtual CallInst *clone() const; bool mayWriteToMemory() const { return true; } bool isTailCall() const { return SubclassData & 1; } void setTailCall(bool isTailCall = true) { SubclassData = (SubclassData & ~1) | unsigned(isTailCall); } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. unsigned getCallingConv() const { return SubclassData >> 1; } void setCallingConv(unsigned CC) { SubclassData = (SubclassData & 1) | (CC << 1); } /// getCalledFunction - Return the function being called by this instruction /// if it is a direct call. If it is a call through a function pointer, /// return null. Function *getCalledFunction() const { return static_cast(dyn_cast(getOperand(0))); } /// getCalledValue - Get a pointer to the function that is invoked by this /// instruction inline const Value *getCalledValue() const { return getOperand(0); } inline Value *getCalledValue() { return getOperand(0); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CallInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// SelectInst - This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction { Use Ops[3]; void init(Value *C, Value *S1, Value *S2) { Ops[0].init(C, this); Ops[1].init(S1, this); Ops[2].init(S2, this); } SelectInst(const SelectInst &SI) : Instruction(SI.getType(), SI.getOpcode(), Ops, 3) { init(SI.Ops[0], SI.Ops[1], SI.Ops[2]); } public: SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name = "", Instruction *InsertBefore = 0) : Instruction(S1->getType(), Instruction::Select, Ops, 3, Name, InsertBefore) { init(C, S1, S2); } SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, Ops, 3, Name, InsertAtEnd) { init(C, S1, S2); } Value *getCondition() const { return Ops[0]; } Value *getTrueValue() const { return Ops[1]; } Value *getFalseValue() const { return Ops[2]; } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < 3 && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < 3 && "setOperand() out of range!"); Ops[i] = Val; } unsigned getNumOperands() const { return 3; } OtherOps getOpcode() const { return static_cast(Instruction::getOpcode()); } virtual SelectInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SelectInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===// /// VAArgInst - This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { VAArgInst(const VAArgInst &VAA) : UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {} public: VAArgInst(Value *List, const Type *Ty, const std::string &Name = "", Instruction *InsertBefore = 0) : UnaryInstruction(Ty, VAArg, List, Name, InsertBefore) { } VAArgInst(Value *List, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, Name, InsertAtEnd) { } virtual VAArgInst *clone() const; bool mayWriteToMemory() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VAArgInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===// /// ExtractElementInst - This instruction extracts a single (scalar) /// element from a PackedType value /// class ExtractElementInst : public Instruction { Use Ops[2]; ExtractElementInst(const ExtractElementInst &EE) : Instruction(EE.getType(), ExtractElement, Ops, 2) { Ops[0].init(EE.Ops[0], this); Ops[1].init(EE.Ops[1], this); } public: ExtractElementInst(Value *Vec, Value *Idx, const std::string &Name = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, unsigned Idx, const std::string &Name = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, Value *Idx, const std::string &Name, BasicBlock *InsertAtEnd); ExtractElementInst(Value *Vec, unsigned Idx, const std::string &Name, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx); virtual ExtractElementInst *clone() const; virtual bool mayWriteToMemory() const { return false; } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < 2 && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < 2 && "setOperand() out of range!"); Ops[i] = Val; } unsigned getNumOperands() const { return 2; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ExtractElementInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===// /// InsertElementInst - This instruction inserts a single (scalar) /// element into a PackedType value /// class InsertElementInst : public Instruction { Use Ops[3]; InsertElementInst(const InsertElementInst &IE); public: InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const std::string &Name = "",Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx, const std::string &Name = "",Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const std::string &Name, BasicBlock *InsertAtEnd); InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx, const std::string &Name, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx); virtual InsertElementInst *clone() const; virtual bool mayWriteToMemory() const { return false; } /// getType - Overload to return most specific packed type. /// inline const PackedType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < 3 && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < 3 && "setOperand() out of range!"); Ops[i] = Val; } unsigned getNumOperands() const { return 3; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InsertElementInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===// /// ShuffleVectorInst - This instruction constructs a fixed permutation of two /// input vectors. /// class ShuffleVectorInst : public Instruction { Use Ops[3]; ShuffleVectorInst(const ShuffleVectorInst &IE); public: ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &Name = "", Instruction *InsertBefor = 0); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &Name, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); virtual ShuffleVectorInst *clone() const; virtual bool mayWriteToMemory() const { return false; } /// getType - Overload to return most specific packed type. /// inline const PackedType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < 3 && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < 3 && "setOperand() out of range!"); Ops[i] = Val; } unsigned getNumOperands() const { return 3; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ShuffleVectorInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { /// ReservedSpace - The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; PHINode(const PHINode &PN); public: explicit PHINode(const Type *Ty, const std::string &Name = "", Instruction *InsertBefore = 0) : Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertBefore), ReservedSpace(0) { } PHINode(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, 0, 0, Name, InsertAtEnd), ReservedSpace(0) { } ~PHINode(); /// reserveOperandSpace - This method can be used to avoid repeated /// reallocation of PHI operand lists by reserving space for the correct /// number of operands before adding them. Unlike normal vector reserves, /// this method can also be used to trim the operand space. void reserveOperandSpace(unsigned NumValues) { resizeOperands(NumValues*2); } virtual PHINode *clone() const; /// getNumIncomingValues - Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands()/2; } /// getIncomingValue - Return incoming value number x /// Value *getIncomingValue(unsigned i) const { assert(i*2 < getNumOperands() && "Invalid value number!"); return getOperand(i*2); } void setIncomingValue(unsigned i, Value *V) { assert(i*2 < getNumOperands() && "Invalid value number!"); setOperand(i*2, V); } unsigned getOperandNumForIncomingValue(unsigned i) { return i*2; } /// getIncomingBlock - Return incoming basic block number x /// BasicBlock *getIncomingBlock(unsigned i) const { return reinterpret_cast(getOperand(i*2+1)); } void setIncomingBlock(unsigned i, BasicBlock *BB) { setOperand(i*2+1, reinterpret_cast(BB)); } unsigned getOperandNumForIncomingBlock(unsigned i) { return i*2+1; } /// addIncoming - Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); unsigned OpNo = NumOperands; if (OpNo+2 > ReservedSpace) resizeOperands(0); // Get more space! // Initialize some new operands. NumOperands = OpNo+2; OperandList[OpNo].init(V, this); OperandList[OpNo+1].init(reinterpret_cast(BB), this); } /// removeIncomingValue - Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty =true){ int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); } /// getBasicBlockIndex - Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { Use *OL = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; i += 2) if (OL[i+1] == reinterpret_cast(BB)) return i/2; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { return getIncomingValue(getBasicBlockIndex(BB)); } /// hasConstantValue - If the specified PHI node always merges together the /// same value, return the value, otherwise return null. /// Value *hasConstantValue(bool AllowNonDominatingInstruction = false) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PHINode *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void resizeOperands(unsigned NumOperands); }; //===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// ReturnInst - Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public TerminatorInst { Use RetVal; // Possibly null retval. ReturnInst(const ReturnInst &RI) : TerminatorInst(Instruction::Ret, &RetVal, RI.getNumOperands()) { if (RI.getNumOperands()) RetVal.init(RI.RetVal, this); } void init(Value *RetVal); public: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst( null, Inst *) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of BB // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of BB // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertBefore) { init(retVal); } ReturnInst(Value *retVal, BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) { init(retVal); } explicit ReturnInst(BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Ret, &RetVal, 0, InsertAtEnd) { } virtual ReturnInst *clone() const; // Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return RetVal; } void setOperand(unsigned i, Value *Val) { assert(i < getNumOperands() && "setOperand() out of range!"); RetVal = Val; } Value *getReturnValue() const { return RetVal; } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ReturnInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// BranchInst - Conditional or Unconditional Branch instruction. /// class BranchInst : public TerminatorInst { /// Ops list - Branches are strange. The operands are ordered: /// TrueDest, FalseDest, Cond. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. Use Ops[3]; BranchInst(const BranchInst &BI); void AssertOK(); public: // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Br, Ops, 1, InsertBefore) { assert(IfTrue != 0 && "Branch destination may not be null!"); Ops[0].init(reinterpret_cast(IfTrue), this); } BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Br, Ops, 3, InsertBefore) { Ops[0].init(reinterpret_cast(IfTrue), this); Ops[1].init(reinterpret_cast(IfFalse), this); Ops[2].init(Cond, this); #ifndef NDEBUG AssertOK(); #endif } BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Br, Ops, 1, InsertAtEnd) { assert(IfTrue != 0 && "Branch destination may not be null!"); Ops[0].init(reinterpret_cast(IfTrue), this); } BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Br, Ops, 3, InsertAtEnd) { Ops[0].init(reinterpret_cast(IfTrue), this); Ops[1].init(reinterpret_cast(IfFalse), this); Ops[2].init(Cond, this); #ifndef NDEBUG AssertOK(); #endif } /// Transparently provide more efficient getOperand methods. Value *getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return Ops[i]; } void setOperand(unsigned i, Value *Val) { assert(i < getNumOperands() && "setOperand() out of range!"); Ops[i] = Val; } virtual BranchInst *clone() const; inline bool isUnconditional() const { return getNumOperands() == 1; } inline bool isConditional() const { return getNumOperands() == 3; } inline Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return getOperand(2); } void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); setOperand(2, V); } // setUnconditionalDest - Change the current branch to an unconditional branch // targeting the specified block. // FIXME: Eliminate this ugly method. void setUnconditionalDest(BasicBlock *Dest) { if (isConditional()) { // Convert this to an uncond branch. NumOperands = 1; Ops[1].set(0); Ops[2].set(0); } setOperand(0, reinterpret_cast(Dest)); } unsigned getNumSuccessors() const { return 1+isConditional(); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return (i == 0) ? cast(getOperand(0)) : cast(getOperand(1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); setOperand(idx, reinterpret_cast(NewSucc)); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BranchInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// SwitchInst - Multiway switch /// class SwitchInst : public TerminatorInst { unsigned ReservedSpace; // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match SwitchInst(const SwitchInst &RI); void init(Value *Value, BasicBlock *Default, unsigned NumCases); void resizeOperands(unsigned No); public: /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor can also autoinsert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Switch, 0, 0, InsertBefore) { init(Value, Default, NumCases); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor also autoinserts at the end of the specified BasicBlock. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Switch, 0, 0, InsertAtEnd) { init(Value, Default, NumCases); } ~SwitchInst(); // Accessor Methods for Switch stmt inline Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); } inline BasicBlock *getDefaultDest() const { return cast(getOperand(1)); } /// getNumCases - return the number of 'cases' in this switch instruction. /// Note that case #0 is always the default case. unsigned getNumCases() const { return getNumOperands()/2; } /// getCaseValue - Return the specified case value. Note that case #0, the /// default destination, does not have a case value. ConstantInt *getCaseValue(unsigned i) { assert(i && i < getNumCases() && "Illegal case value to get!"); return getSuccessorValue(i); } /// getCaseValue - Return the specified case value. Note that case #0, the /// default destination, does not have a case value. const ConstantInt *getCaseValue(unsigned i) const { assert(i && i < getNumCases() && "Illegal case value to get!"); return getSuccessorValue(i); } /// findCaseValue - Search all of the case values for the specified constant. /// If it is explicitly handled, return the case number of it, otherwise /// return 0 to indicate that it is handled by the default handler. unsigned findCaseValue(const ConstantInt *C) const { for (unsigned i = 1, e = getNumCases(); i != e; ++i) if (getCaseValue(i) == C) return i; return 0; } /// findCaseDest - Finds the unique case value for a given successor. Returns /// null if the successor is not found, not unique, or is the default case. ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return NULL; ConstantInt *CI = NULL; for (unsigned i = 1, e = getNumCases(); i != e; ++i) { if (getSuccessor(i) == BB) { if (CI) return NULL; // Multiple cases lead to BB. else CI = getCaseValue(i); } } return CI; } /// addCase - Add an entry to the switch instruction... /// void addCase(ConstantInt *OnVal, BasicBlock *Dest); /// removeCase - This method removes the specified successor from the switch /// instruction. Note that this cannot be used to remove the default /// destination (successor #0). /// void removeCase(unsigned idx); virtual SwitchInst *clone() const; unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx*2+1, reinterpret_cast(NewSucc)); } // getSuccessorValue - Return the value associated with the specified // successor. inline ConstantInt *getSuccessorValue(unsigned idx) const { assert(idx < getNumSuccessors() && "Successor # out of range!"); return reinterpret_cast(getOperand(idx*2)); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SwitchInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // InvokeInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the /// calling convention of the call. /// class InvokeInst : public TerminatorInst { InvokeInst(const InvokeInst &BI); void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params); public: InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name = "", Instruction *InsertBefore = 0); InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name, BasicBlock *InsertAtEnd); ~InvokeInst(); virtual InvokeInst *clone() const; bool mayWriteToMemory() const { return true; } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. unsigned getCallingConv() const { return SubclassData; } void setCallingConv(unsigned CC) { SubclassData = CC; } /// getCalledFunction - Return the function called, or null if this is an /// indirect function invocation. /// Function *getCalledFunction() const { return dyn_cast(getOperand(0)); } // getCalledValue - Get a pointer to a function that is invoked by this inst. inline Value *getCalledValue() const { return getOperand(0); } // get*Dest - Return the destination basic blocks... BasicBlock *getNormalDest() const { return cast(getOperand(1)); } BasicBlock *getUnwindDest() const { return cast(getOperand(2)); } void setNormalDest(BasicBlock *B) { setOperand(1, reinterpret_cast(B)); } void setUnwindDest(BasicBlock *B) { setOperand(2, reinterpret_cast(B)); } inline BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < 2 && "Successor # out of range for invoke!"); setOperand(idx+1, reinterpret_cast(NewSucc)); } unsigned getNumSuccessors() const { return 2; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InvokeInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // UnwindInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// UnwindInst - Immediately exit the current function, unwinding the stack /// until an invoke instruction is found. /// class UnwindInst : public TerminatorInst { public: explicit UnwindInst(Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Unwind, 0, 0, InsertBefore) { } explicit UnwindInst(BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Unwind, 0, 0, InsertAtEnd) { } virtual UnwindInst *clone() const; unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UnwindInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unwind; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // UnreachableInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// UnreachableInst - This function has undefined behavior. In particular, the /// presence of this instruction indicates some higher level knowledge that the /// end of the block cannot be reached. /// class UnreachableInst : public TerminatorInst { public: explicit UnreachableInst(Instruction *InsertBefore = 0) : TerminatorInst(Instruction::Unreachable, 0, 0, InsertBefore) { } explicit UnreachableInst(BasicBlock *InsertAtEnd) : TerminatorInst(Instruction::Unreachable, 0, 0, InsertAtEnd) { } virtual UnreachableInst *clone() const; unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UnreachableInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // TruncInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a truncation of integer types. class TruncInst : public CastInst { /// Private copy constructor TruncInst(const TruncInst &CI) : CastInst(CI.getType(), Trunc, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics TruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The (smaller) type to truncate to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics TruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The (smaller) type to truncate to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical TruncInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const TruncInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ZExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents zero extension of integer types. class ZExtInst : public CastInst { /// @brief Private copy constructor ZExtInst(const ZExtInst &CI) : CastInst(CI.getType(), ZExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics ZExtInst( Value *S, ///< The value to be zero extended const Type *Ty, ///< The type to zero extend to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end semantics. ZExtInst( Value *S, ///< The value to be zero extended const Type *Ty, ///< The type to zero extend to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical ZExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ZExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a sign extension of integer types. class SExtInst : public CastInst { /// @brief Private copy constructor SExtInst(const SExtInst &CI) : CastInst(CI.getType(), SExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics SExtInst( Value *S, ///< The value to be sign extended const Type *Ty, ///< The type to sign extend to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics SExtInst( Value *S, ///< The value to be sign extended const Type *Ty, ///< The type to sign extend to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical SExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPTruncInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a truncation of floating point types. class FPTruncInst : public CastInst { FPTruncInst(const FPTruncInst &CI) : CastInst(CI.getType(), FPTrunc, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The type to truncate to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The type to truncate to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPTruncInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPTruncInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents an extension of floating point types. class FPExtInst : public CastInst { FPExtInst(const FPExtInst &CI) : CastInst(CI.getType(), FPExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPExtInst( Value *S, ///< The value to be extended const Type *Ty, ///< The type to extend to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPExtInst( Value *S, ///< The value to be extended const Type *Ty, ///< The type to extend to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // UIToFPInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast unsigned integer to floating point. class UIToFPInst : public CastInst { UIToFPInst(const UIToFPInst &CI) : CastInst(CI.getType(), UIToFP, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics UIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics UIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical UIToFPInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UIToFPInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SIToFPInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from signed integer to floating point. class SIToFPInst : public CastInst { SIToFPInst(const SIToFPInst &CI) : CastInst(CI.getType(), SIToFP, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics SIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics SIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical SIToFPInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SIToFPInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToUIInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from floating point to unsigned integer class FPToUIInst : public CastInst { FPToUIInst(const FPToUIInst &CI) : CastInst(CI.getType(), FPToUI, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPToUIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPToUIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< Where to insert the new instruction ); /// @brief Clone an identical FPToUIInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPToUIInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToSIInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from floating point to signed integer. class FPToSIInst : public CastInst { FPToSIInst(const FPToSIInst &CI) : CastInst(CI.getType(), FPToSI, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPToSIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPToSIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPToSIInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPToSIInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // IntToPtrInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from an integer to a pointer. class IntToPtrInst : public CastInst { IntToPtrInst(const IntToPtrInst &CI) : CastInst(CI.getType(), IntToPtr, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics IntToPtrInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics IntToPtrInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical IntToPtrInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const IntToPtrInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // PtrToIntInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from a pointer to an integer class PtrToIntInst : public CastInst { PtrToIntInst(const PtrToIntInst &CI) : CastInst(CI.getType(), PtrToInt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics PtrToIntInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics PtrToIntInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical PtrToIntInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PtrToIntInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // BitCastInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a no-op cast from one type to another. class BitCastInst : public CastInst { BitCastInst(const BitCastInst &CI) : CastInst(CI.getType(), BitCast, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics BitCastInst( Value *S, ///< The value to be casted const Type *Ty, ///< The type to casted to const std::string &Name = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics BitCastInst( Value *S, ///< The value to be casted const Type *Ty, ///< The type to casted to const std::string &Name, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical BitCastInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BitCastInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; } // End llvm namespace #endif