//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips16 instructions. // //===----------------------------------------------------------------------===// // // // Address operand def mem16 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops CPU16Regs, simm16); let EncoderMethod = "getMemEncoding"; } // // Assembler formats in alphabetical order. // Natural and pseudos are mixed together. // // // EXT-RI instruction format // class FEXT_RI16_ins_base _op, string asmstr, string asmstr2, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), !strconcat(asmstr, asmstr2), [], itin>; class FEXT_RI16_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; class FEXT_RI16_PC_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; class FEXT_2RI16_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), !strconcat(asmstr, "\t$rx, $imm"), [], itin> { let Constraints = "$rx_ = $rx"; } // this has an explicit sp argument that we ignore to work around a problem // in the compiler class FEXT_RI16_SP_explicit_ins _op, string asmstr, InstrItinClass itin>: FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm), !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>; // // EXT-RRI instruction format // class FEXT_RRI16_mem_ins op, string asmstr, Operand MemOpnd, InstrItinClass itin>: FEXT_RRI16; class FEXT_RRI16_mem2_ins op, string asmstr, Operand MemOpnd, InstrItinClass itin>: FEXT_RRI16; // // EXT-SHIFT instruction format // class FEXT_SHIFT16_ins _f, string asmstr, InstrItinClass itin>: FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa), !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; // // I8_MOVR32 instruction format (used only by the MOVR32 instructio // class FI8_MOVR3216_ins: FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32), !strconcat(asmstr, "\t$rz, $r32"), [], itin>; // // I8_MOV32R instruction format (used only by MOV32R instruction) // class FI8_MOV32R16_ins: FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz), !strconcat(asmstr, "\t$r32, $rz"), [], itin>; // // This are pseudo formats for multiply // This first one can be changed to non pseudo now. // // MULT // class FMULT16_ins : MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rx, $ry"), []>; // // MULT-LO // class FMULT16_LO_ins : MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { let isCodeGenOnly=1; } // // RR-type instruction format // class FRR16_ins f, string asmstr, InstrItinClass itin> : FRR16 { } // // maybe refactor but need a $zero as a dummy first parameter // class FRR16_div_ins f, string asmstr, InstrItinClass itin> : FRR16 ; class FRR16_M_ins f, string asmstr, InstrItinClass itin> : FRR16; class FRxRxRy16_ins f, string asmstr, InstrItinClass itin> : FRR16 { let Constraints = "$rx = $rz"; } let rx=0 in class FRR16_JALRC_RA_only_ins nd_, bits<1> l_, string asmstr, InstrItinClass itin>: FRR16_JALRC ; // // RRR-type instruction format // class FRRR16_ins _f, string asmstr, InstrItinClass itin> : FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; // // Some general instruction class info // // class ArithLogic16Defs { bits<5> shamt = 0; bit isCommutable = isCom; bit isReMaterializable = 1; bit neverHasSideEffects = 1; } class MayLoad { bit mayLoad = 1; } class MayStore { bit mayStore = 1; } // // Format: ADDIU rx, immediate MIPS16e // Purpose: Add Immediate Unsigned Word (2-Operand, Extended) // To add a constant to a 32-bit integer. // def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>; def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>, ArithLogic16Defs<0>; // // Format: ADDIU rx, pc, immediate MIPS16e // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) // To add a constant to the program counter. // def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>; // // Format: ADDU rz, rx, ry MIPS16e // Purpose: Add Unsigned Word (3-Operand) // To add 32-bit integers. // def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>; // // Format: AND rx, ry MIPS16e // Purpose: AND // To do a bitwise logical AND. def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>; // // Format: DIV rx, ry MIPS16e // Purpose: Divide Word // To divide 32-bit signed integers. // def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> { let Defs = [HI, LO]; } // // Format: DIVU rx, ry MIPS16e // Purpose: Divide Unsigned Word // To divide 32-bit unsigned integers. // def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> { let Defs = [HI, LO]; } // // Format: JR ra MIPS16e // Purpose: Jump Register Through Register ra // To execute a branch to the instruction address in the return // address register. // def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu>; // // Format: LB ry, offset(rx) MIPS16e // Purpose: Load Byte (Extended) // To load a byte from memory as a signed value. // def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad; // // Format: LBU ry, offset(rx) MIPS16e // Purpose: Load Byte Unsigned (Extended) // To load a byte from memory as a unsigned value. // def LbuRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad; // // Format: LH ry, offset(rx) MIPS16e // Purpose: Load Halfword signed (Extended) // To load a halfword from memory as a signed value. // def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad; // // Format: LHU ry, offset(rx) MIPS16e // Purpose: Load Halfword unsigned (Extended) // To load a halfword from memory as an unsigned value. // def LhuRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad; // // Format: LI rx, immediate MIPS16e // Purpose: Load Immediate (Extended) // To load a constant into a GPR. // def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>; // // Format: LW ry, offset(rx) MIPS16e // Purpose: Load Word (Extended) // To load a word from memory as a signed value. // def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad; // Format: LW rx, offset(sp) MIPS16e // Purpose: Load Word (SP-Relative, Extended) // To load an SP-relative word from memory as a signed value. // def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad; // // Format: MOVE r32, rz MIPS16e // Purpose: Move // To move the contents of a GPR to a GPR. // def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>; // // Format: MOVE ry, r32 MIPS16e //Purpose: Move // To move the contents of a GPR to a GPR. // def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>; // // Format: MFHI rx MIPS16e // Purpose: Move From HI Register // To copy the special purpose HI register to a GPR. // def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> { let Uses = [HI]; let neverHasSideEffects = 1; } // // Format: MFLO rx MIPS16e // Purpose: Move From LO Register // To copy the special purpose LO register to a GPR. // def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> { let Uses = [LO]; let neverHasSideEffects = 1; } // // Pseudo Instruction for mult // def MultRxRy16: FMULT16_ins<"mult", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } def MultuRxRy16: FMULT16_ins<"multu", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: MULT rx, ry MIPS16e // Purpose: Multiply Word // To multiply 32-bit signed integers. // def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: MULTU rx, ry MIPS16e // Purpose: Multiply Unsigned Word // To multiply 32-bit unsigned integers. // def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> { let isCommutable = 1; let neverHasSideEffects = 1; let Defs = [HI, LO]; } // // Format: NEG rx, ry MIPS16e // Purpose: Negate // To negate an integer value. // def NegRxRy16: FRR16_ins<0b11101, "neg", IIAlu>; // // Format: NOT rx, ry MIPS16e // Purpose: Not // To complement an integer value // def NotRxRy16: FRR16_ins<0b01111, "not", IIAlu>; // // Format: OR rx, ry MIPS16e // Purpose: Or // To do a bitwise logical OR. // def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>; // // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} // (All args are optional) MIPS16e // Purpose: Restore Registers and Deallocate Stack Frame // To deallocate a stack frame before exit from a subroutine, // restoring return address and static registers, and adjusting // stack // // fixed form for restoring RA and the frame // for direct object emitter, encoding needs to be adjusted for the // frame size // let ra=1, s=0,s0=1,s1=1 in def RestoreRaF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "restore \t$$ra, $$s0, $$s1, $frame_size", [], IILoad >, MayLoad { let isCodeGenOnly = 1; } // // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) // MIPS16e // Purpose: Save Registers and Set Up Stack Frame // To set up a stack frame on entry to a subroutine, // saving return address and static registers, and adjusting stack // let ra=1, s=1,s0=1,s1=1 in def SaveRaF16: FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size), "save \t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore { let isCodeGenOnly = 1; } // // Format: SB ry, offset(rx) MIPS16e // Purpose: Store Byte (Extended) // To store a byte to memory. // def SbRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore; // // Format: SH ry, offset(rx) MIPS16e // Purpose: Store Halfword (Extended) // To store a halfword to memory. // def ShRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore; // // Format: SLL rx, ry, sa MIPS16e // Purpose: Shift Word Left Logical (Extended) // To execute a left-shift of a word by a fixed number of bits—0 to 31 bits. // def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>; // // Format: SLLV ry, rx MIPS16e // Purpose: Shift Word Left Logical Variable // To execute a left-shift of a word by a variable number of bits. // def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>; // // Format: SRAV ry, rx MIPS16e // Purpose: Shift Word Right Arithmetic Variable // To execute an arithmetic right-shift of a word by a variable // number of bits. // def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>; // // Format: SRA rx, ry, sa MIPS16e // Purpose: Shift Word Right Arithmetic (Extended) // To execute an arithmetic right-shift of a word by a fixed // number of bits—1 to 8 bits. // def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>; // // Format: SRLV ry, rx MIPS16e // Purpose: Shift Word Right Logical Variable // To execute a logical right-shift of a word by a variable // number of bits. // def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>; // // Format: SRL rx, ry, sa MIPS16e // Purpose: Shift Word Right Logical (Extended) // To execute a logical right-shift of a word by a fixed // number of bits—1 to 31 bits. // def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>; // // Format: SUBU rz, rx, ry MIPS16e // Purpose: Subtract Unsigned Word // To subtract 32-bit integers // def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>; // // Format: SW ry, offset(rx) MIPS16e // Purpose: Store Word (Extended) // To store a word to memory. // def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore; // // Format: SW rx, offset(sp) MIPS16e // Purpose: Store Word rx (SP-Relative) // To store an SP-relative word to memory. // def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore; // // // Format: XOR rx, ry MIPS16e // Purpose: Xor // To do a bitwise logical XOR. // def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>; class Mips16Pat : Pat { let Predicates = [InMips16Mode]; } // Unary Arith/Logic // class ArithLogicU_pat : Mips16Pat<(OpNode CPU16Regs:$r), (I CPU16Regs:$r)>; def: ArithLogicU_pat; def: ArithLogicU_pat; class ArithLogic16_pat : Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), (I CPU16Regs:$l, CPU16Regs:$r)>; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; def: ArithLogic16_pat; // Arithmetic and logical instructions with 2 register operands. class ArithLogicI16_pat : Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), (I CPU16Regs:$in, imm_type:$imm)>; def: ArithLogicI16_pat; def: ArithLogicI16_pat; def: ArithLogicI16_pat; def: ArithLogicI16_pat; class shift_rotate_reg16_pat : Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), (I CPU16Regs:$r, CPU16Regs:$ra)>; def: shift_rotate_reg16_pat; def: shift_rotate_reg16_pat; def: shift_rotate_reg16_pat; class LoadM16_pat : Mips16Pat<(OpNode addr:$addr), (I addr:$addr)>; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; def: LoadM16_pat; class StoreM16_pat : Mips16Pat<(OpNode CPU16Regs:$r, addr:$addr), (I CPU16Regs:$r, addr:$addr)>; def: StoreM16_pat; def: StoreM16_pat; def: StoreM16_pat; // Jump and Link (Call) let isCall=1, hasDelaySlot=1 in def JumpLinkReg16: FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), "jalr \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>; // Mips16 pseudos let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, hasExtraSrcRegAllocReq = 1 in def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; // Small immediates def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; // // MipsDivRem // def: Mips16Pat <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry), (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; // // MipsDivRemU // def: Mips16Pat <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry), (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;