//=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing profiling data for clang's // instrumentation based PGO and coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProfWriter.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/OnDiskHashTable.h" #include using namespace llvm; // A struct to define how the data stream should be patched. For Indexed // profiling, only uint64_t data type is needed. struct PatchItem { uint64_t Pos; // Where to patch. uint64_t *D; // Pointer to an array of source data. int N; // Number of elements in \c D array. }; namespace llvm { // A wrapper class to abstract writer stream with support of bytes // back patching. class ProfOStream { public: ProfOStream(llvm::raw_fd_ostream &FD) : IsFDOStream(true), OS(FD), LE(FD) {} ProfOStream(llvm::raw_string_ostream &STR) : IsFDOStream(false), OS(STR), LE(STR) {} uint64_t tell() { return OS.tell(); } void write(uint64_t V) { LE.write(V); } // \c patch can only be called when all data is written and flushed. // For raw_string_ostream, the patch is done on the target string // directly and it won't be reflected in the stream's internal buffer. void patch(PatchItem *P, int NItems) { using namespace support; if (IsFDOStream) { llvm::raw_fd_ostream &FDOStream = static_cast(OS); for (int K = 0; K < NItems; K++) { FDOStream.seek(P[K].Pos); for (int I = 0; I < P[K].N; I++) write(P[K].D[I]); } } else { llvm::raw_string_ostream &SOStream = static_cast(OS); std::string &Data = SOStream.str(); // with flush for (int K = 0; K < NItems; K++) { for (int I = 0; I < P[K].N; I++) { uint64_t Bytes = endian::byte_swap(P[K].D[I]); Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t), (const char *)&Bytes, sizeof(uint64_t)); } } } } // If \c OS is an instance of \c raw_fd_ostream, this field will be // true. Otherwise, \c OS will be an raw_string_ostream. bool IsFDOStream; raw_ostream &OS; support::endian::Writer LE; }; class InstrProfRecordWriterTrait { public: typedef StringRef key_type; typedef StringRef key_type_ref; typedef const InstrProfWriter::ProfilingData *const data_type; typedef const InstrProfWriter::ProfilingData *const data_type_ref; typedef uint64_t hash_value_type; typedef uint64_t offset_type; support::endianness ValueProfDataEndianness; ProfileSummary *TheProfileSummary; InstrProfRecordWriterTrait() : ValueProfDataEndianness(support::little) {} static hash_value_type ComputeHash(key_type_ref K) { return IndexedInstrProf::ComputeHash(K); } static std::pair EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { using namespace llvm::support; endian::Writer LE(Out); offset_type N = K.size(); LE.write(N); offset_type M = 0; for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; M += sizeof(uint64_t); // The function hash M += sizeof(uint64_t); // The size of the Counts vector M += ProfRecord.Counts.size() * sizeof(uint64_t); // Value data M += ValueProfData::getSize(ProfileData.second); } LE.write(M); return std::make_pair(N, M); } void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) { Out.write(K.data(), N); } void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { using namespace llvm::support; endian::Writer LE(Out); for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; TheProfileSummary->addRecord(ProfRecord); LE.write(ProfileData.first); // Function hash LE.write(ProfRecord.Counts.size()); for (uint64_t I : ProfRecord.Counts) LE.write(I); // Write value data std::unique_ptr VDataPtr = ValueProfData::serializeFrom(ProfileData.second); uint32_t S = VDataPtr->getSize(); VDataPtr->swapBytesFromHost(ValueProfDataEndianness); Out.write((const char *)VDataPtr.get(), S); } } }; } InstrProfWriter::InstrProfWriter(bool Sparse) : Sparse(Sparse), FunctionData(), InfoObj(new InstrProfRecordWriterTrait()) {} InstrProfWriter::~InstrProfWriter() { delete InfoObj; } // Internal interface for testing purpose only. void InstrProfWriter::setValueProfDataEndianness( support::endianness Endianness) { InfoObj->ValueProfDataEndianness = Endianness; } void InstrProfWriter::setOutputSparse(bool Sparse) { this->Sparse = Sparse; } std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I, uint64_t Weight) { auto &ProfileDataMap = FunctionData[I.Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(I.Hash, InstrProfRecord())); InstrProfRecord &Dest = Where->second; instrprof_error Result = instrprof_error::success; if (NewFunc) { // We've never seen a function with this name and hash, add it. Dest = std::move(I); // Fix up the name to avoid dangling reference. Dest.Name = FunctionData.find(Dest.Name)->getKey(); if (Weight > 1) Result = Dest.scale(Weight); } else { // We're updating a function we've seen before. Result = Dest.merge(I, Weight); } Dest.sortValueData(); return Result; } bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) { if (!Sparse) return true; for (const auto &Func : PD) { const InstrProfRecord &IPR = Func.second; if (std::any_of(IPR.Counts.begin(), IPR.Counts.end(), [](uint64_t Count) { return Count > 0; })) return true; } return false; } static void setSummary(IndexedInstrProf::Summary *TheSummary, ProfileSummary &PS) { using namespace IndexedInstrProf; std::vector &Res = PS.getDetailedSummary(); TheSummary->NumSummaryFields = Summary::NumKinds; TheSummary->NumCutoffEntries = Res.size(); TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount()); TheSummary->set(Summary::MaxBlockCount, PS.getMaxBlockCount()); TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalBlockCount()); TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount()); TheSummary->set(Summary::TotalNumBlocks, PS.getNumBlocks()); TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions()); for (unsigned I = 0; I < Res.size(); I++) TheSummary->setEntry(I, Res[I]); } void InstrProfWriter::writeImpl(ProfOStream &OS) { OnDiskChainedHashTableGenerator Generator; using namespace IndexedInstrProf; std::vector Cutoffs(&SummaryCutoffs[0], &SummaryCutoffs[NumSummaryCutoffs]); ProfileSummary PS(Cutoffs); InfoObj->TheProfileSummary = &PS; // Populate the hash table generator. for (const auto &I : FunctionData) if (shouldEncodeData(I.getValue())) Generator.insert(I.getKey(), &I.getValue()); // Write the header. IndexedInstrProf::Header Header; Header.Magic = IndexedInstrProf::Magic; Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion; Header.Unused = 0; Header.HashType = static_cast(IndexedInstrProf::HashType); Header.HashOffset = 0; int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); // Only write out all the fields except 'HashOffset'. We need // to remember the offset of that field to allow back patching // later. for (int I = 0; I < N - 1; I++) OS.write(reinterpret_cast(&Header)[I]); // Save the location of Header.HashOffset field in \c OS. uint64_t HashTableStartFieldOffset = OS.tell(); // Reserve the space for HashOffset field. OS.write(0); // Reserve space to write profile summary data. uint32_t NumEntries = Cutoffs.size(); uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries); // Remember the summary offset. uint64_t SummaryOffset = OS.tell(); for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) OS.write(0); // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj); // Allocate space for data to be serialized out. std::unique_ptr TheSummary = IndexedInstrProf::allocSummary(SummarySize); // Compute the Summary and copy the data to the data // structure to be serialized out (to disk or buffer). setSummary(TheSummary.get(), PS); InfoObj->TheProfileSummary = 0; // Now do the final patch: PatchItem PatchItems[] = { // Patch the Header.HashOffset field. {HashTableStartFieldOffset, &HashTableStart, 1}, // Patch the summary data. {SummaryOffset, reinterpret_cast(TheSummary.get()), (int)(SummarySize / sizeof(uint64_t))}}; OS.patch(PatchItems, sizeof(PatchItems) / sizeof(*PatchItems)); } void InstrProfWriter::write(raw_fd_ostream &OS) { // Write the hash table. ProfOStream POS(OS); writeImpl(POS); } std::unique_ptr InstrProfWriter::writeBuffer() { std::string Data; llvm::raw_string_ostream OS(Data); ProfOStream POS(OS); // Write the hash table. writeImpl(POS); // Return this in an aligned memory buffer. return MemoryBuffer::getMemBufferCopy(Data); } static const char *ValueProfKindStr[] = { #define VALUE_PROF_KIND(Enumerator, Value) #Enumerator, #include "llvm/ProfileData/InstrProfData.inc" }; void InstrProfWriter::writeRecordInText(const InstrProfRecord &Func, InstrProfSymtab &Symtab, raw_fd_ostream &OS) { OS << Func.Name << "\n"; OS << "# Func Hash:\n" << Func.Hash << "\n"; OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; OS << "# Counter Values:\n"; for (uint64_t Count : Func.Counts) OS << Count << "\n"; uint32_t NumValueKinds = Func.getNumValueKinds(); if (!NumValueKinds) { OS << "\n"; return; } OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { uint32_t NS = Func.getNumValueSites(VK); if (!NS) continue; OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; OS << "# NumValueSites:\n" << NS << "\n"; for (uint32_t S = 0; S < NS; S++) { uint32_t ND = Func.getNumValueDataForSite(VK, S); OS << ND << "\n"; std::unique_ptr VD = Func.getValueForSite(VK, S); for (uint32_t I = 0; I < ND; I++) { if (VK == IPVK_IndirectCallTarget) OS << Symtab.getFuncName(VD[I].Value) << ":" << VD[I].Count << "\n"; else OS << VD[I].Value << ":" << VD[I].Count << "\n"; } } } OS << "\n"; } void InstrProfWriter::writeText(raw_fd_ostream &OS) { InstrProfSymtab Symtab; for (const auto &I : FunctionData) if (shouldEncodeData(I.getValue())) Symtab.addFuncName(I.getKey()); Symtab.finalizeSymtab(); for (const auto &I : FunctionData) if (shouldEncodeData(I.getValue())) for (const auto &Func : I.getValue()) writeRecordInText(Func.second, Symtab, OS); }