//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass implements an _extremely_ simple interprocedural constant // propagation pass. It could certainly be improved in many different ways, // like using a worklist. This pass makes arguments dead, but does not remove // them. The existing dead argument elimination pass should be run after this // to clean up the mess. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Transforms/IPO.h" using namespace llvm; #define DEBUG_TYPE "ipconstprop" STATISTIC(NumArgumentsProped, "Number of args turned into constants"); STATISTIC(NumReturnValProped, "Number of return values turned into constants"); namespace { /// IPCP - The interprocedural constant propagation pass /// struct IPCP : public ModulePass { static char ID; // Pass identification, replacement for typeid IPCP() : ModulePass(ID) { initializeIPCPPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override; }; } /// PropagateConstantsIntoArguments - Look at all uses of the specified /// function. If all uses are direct call sites, and all pass a particular /// constant in for an argument, propagate that constant in as the argument. /// static bool PropagateConstantsIntoArguments(Function &F) { if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit. // For each argument, keep track of its constant value and whether it is a // constant or not. The bool is driven to true when found to be non-constant. SmallVector, 16> ArgumentConstants; ArgumentConstants.resize(F.arg_size()); unsigned NumNonconstant = 0; for (Use &U : F.uses()) { User *UR = U.getUser(); // Ignore blockaddress uses. if (isa(UR)) continue; // If no abstract call site was created we did not understand the use, bail. AbstractCallSite ACS(&U); if (!ACS) return false; // Mismatched argument count is undefined behavior. Simply bail out to avoid // handling of such situations below (avoiding asserts/crashes). unsigned NumActualArgs = ACS.getNumArgOperands(); if (F.isVarArg() ? ArgumentConstants.size() > NumActualArgs : ArgumentConstants.size() != NumActualArgs) return false; // Check out all of the potentially constant arguments. Note that we don't // inspect varargs here. Function::arg_iterator Arg = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++Arg) { // If this argument is known non-constant, ignore it. if (ArgumentConstants[i].second) continue; Value *V = ACS.getCallArgOperand(i); Constant *C = dyn_cast_or_null(V); // Mismatched argument type is undefined behavior. Simply bail out to avoid // handling of such situations below (avoiding asserts/crashes). if (C && Arg->getType() != C->getType()) return false; // We can only propagate thread independent values through callbacks. // This is different to direct/indirect call sites because for them we // know the thread executing the caller and callee is the same. For // callbacks this is not guaranteed, thus a thread dependent value could // be different for the caller and callee, making it invalid to propagate. if (C && ACS.isCallbackCall() && C->isThreadDependent()) { // Argument became non-constant. If all arguments are non-constant now, // give up on this function. if (++NumNonconstant == ArgumentConstants.size()) return false; ArgumentConstants[i].second = true; continue; } if (C && ArgumentConstants[i].first == nullptr) { ArgumentConstants[i].first = C; // First constant seen. } else if (C && ArgumentConstants[i].first == C) { // Still the constant value we think it is. } else if (V == &*Arg) { // Ignore recursive calls passing argument down. } else { // Argument became non-constant. If all arguments are non-constant now, // give up on this function. if (++NumNonconstant == ArgumentConstants.size()) return false; ArgumentConstants[i].second = true; } } } // If we got to this point, there is a constant argument! assert(NumNonconstant != ArgumentConstants.size()); bool MadeChange = false; Function::arg_iterator AI = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) { // Do we have a constant argument? if (ArgumentConstants[i].second || AI->use_empty() || AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory())) continue; Value *V = ArgumentConstants[i].first; if (!V) V = UndefValue::get(AI->getType()); AI->replaceAllUsesWith(V); ++NumArgumentsProped; MadeChange = true; } return MadeChange; } // Check to see if this function returns one or more constants. If so, replace // all callers that use those return values with the constant value. This will // leave in the actual return values and instructions, but deadargelim will // clean that up. // // Additionally if a function always returns one of its arguments directly, // callers will be updated to use the value they pass in directly instead of // using the return value. static bool PropagateConstantReturn(Function &F) { if (F.getReturnType()->isVoidTy()) return false; // No return value. // We can infer and propagate the return value only when we know that the // definition we'll get at link time is *exactly* the definition we see now. // For more details, see GlobalValue::mayBeDerefined. if (!F.isDefinitionExact()) return false; // Don't touch naked functions. The may contain asm returning // value we don't see, so we may end up interprocedurally propagating // the return value incorrectly. if (F.hasFnAttribute(Attribute::Naked)) return false; // Check to see if this function returns a constant. SmallVector RetVals; StructType *STy = dyn_cast(F.getReturnType()); if (STy) for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i) RetVals.push_back(UndefValue::get(STy->getElementType(i))); else RetVals.push_back(UndefValue::get(F.getReturnType())); unsigned NumNonConstant = 0; for (BasicBlock &BB : F) if (ReturnInst *RI = dyn_cast(BB.getTerminator())) { for (unsigned i = 0, e = RetVals.size(); i != e; ++i) { // Already found conflicting return values? Value *RV = RetVals[i]; if (!RV) continue; // Find the returned value Value *V; if (!STy) V = RI->getOperand(0); else V = FindInsertedValue(RI->getOperand(0), i); if (V) { // Ignore undefs, we can change them into anything if (isa(V)) continue; // Try to see if all the rets return the same constant or argument. if (isa(V) || isa(V)) { if (isa(RV)) { // No value found yet? Try the current one. RetVals[i] = V; continue; } // Returning the same value? Good. if (RV == V) continue; } } // Different or no known return value? Don't propagate this return // value. RetVals[i] = nullptr; // All values non-constant? Stop looking. if (++NumNonConstant == RetVals.size()) return false; } } // If we got here, the function returns at least one constant value. Loop // over all users, replacing any uses of the return value with the returned // constant. bool MadeChange = false; for (Use &U : F.uses()) { CallSite CS(U.getUser()); Instruction* Call = CS.getInstruction(); // Not a call instruction or a call instruction that's not calling F // directly? if (!Call || !CS.isCallee(&U)) continue; // Call result not used? if (Call->use_empty()) continue; MadeChange = true; if (!STy) { Value* New = RetVals[0]; if (Argument *A = dyn_cast(New)) // Was an argument returned? Then find the corresponding argument in // the call instruction and use that. New = CS.getArgument(A->getArgNo()); Call->replaceAllUsesWith(New); continue; } for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) { Instruction *Ins = cast(*I); // Increment now, so we can remove the use ++I; // Find the index of the retval to replace with int index = -1; if (ExtractValueInst *EV = dyn_cast(Ins)) if (EV->hasIndices()) index = *EV->idx_begin(); // If this use uses a specific return value, and we have a replacement, // replace it. if (index != -1) { Value *New = RetVals[index]; if (New) { if (Argument *A = dyn_cast(New)) // Was an argument returned? Then find the corresponding argument in // the call instruction and use that. New = CS.getArgument(A->getArgNo()); Ins->replaceAllUsesWith(New); Ins->eraseFromParent(); } } } } if (MadeChange) ++NumReturnValProped; return MadeChange; } char IPCP::ID = 0; INITIALIZE_PASS(IPCP, "ipconstprop", "Interprocedural constant propagation", false, false) ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); } bool IPCP::runOnModule(Module &M) { if (skipModule(M)) return false; bool Changed = false; bool LocalChange = true; // FIXME: instead of using smart algorithms, we just iterate until we stop // making changes. while (LocalChange) { LocalChange = false; for (Function &F : M) if (!F.isDeclaration()) { // Delete any klingons. F.removeDeadConstantUsers(); if (F.hasLocalLinkage()) LocalChange |= PropagateConstantsIntoArguments(F); Changed |= PropagateConstantReturn(F); } Changed |= LocalChange; } return Changed; }