; RUN: opt -mtriple=x86_64-unknown-linux-gnu < %s -instcombine -S | FileCheck %s ; Make sure libcalls are replaced with intrinsic calls. declare float @llvm.fabs.f32(float) declare double @llvm.fabs.f64(double) declare fp128 @llvm.fabs.f128(fp128) declare float @fabsf(float) declare double @fabs(double) declare fp128 @fabsl(fp128) declare float @llvm.fma.f32(float, float, float) declare float @llvm.fmuladd.f32(float, float, float) define float @replace_fabs_call_f32(float %x) { %fabsf = tail call float @fabsf(float %x) ret float %fabsf ; CHECK-LABEL: @replace_fabs_call_f32( ; CHECK-NEXT: %fabsf = call float @llvm.fabs.f32(float %x) ; CHECK-NEXT: ret float %fabsf } define double @replace_fabs_call_f64(double %x) { %fabs = tail call double @fabs(double %x) ret double %fabs ; CHECK-LABEL: @replace_fabs_call_f64( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: ret double %fabs } define fp128 @replace_fabs_call_f128(fp128 %x) { %fabsl = tail call fp128 @fabsl(fp128 %x) ret fp128 %fabsl ; CHECK-LABEL: replace_fabs_call_f128( ; CHECK-NEXT: %fabsl = call fp128 @llvm.fabs.f128(fp128 %x) ; CHECK-NEXT: ret fp128 %fabsl } ; Make sure fast math flags are preserved when replacing the libcall. define float @fmf_replace_fabs_call_f32(float %x) { %fabsf = tail call nnan float @fabsf(float %x) ret float %fabsf ; CHECK-LABEL: @fmf_replace_fabs_call_f32( ; CHECK-NEXT: %fabsf = call nnan float @llvm.fabs.f32(float %x) ; CHECK-NEXT: ret float %fabsf } ; Make sure all intrinsic calls are eliminated when the input is known ; positive. ; The fabs cannot be eliminated because %x may be a NaN define float @square_fabs_intrinsic_f32(float %x) { %mul = fmul float %x, %x %fabsf = tail call float @llvm.fabs.f32(float %mul) ret float %fabsf ; CHECK-LABEL: square_fabs_intrinsic_f32( ; CHECK-NEXT: %mul = fmul float %x, %x ; CHECK-NEXT: %fabsf = tail call float @llvm.fabs.f32(float %mul) ; CHECK-NEXT: ret float %fabsf } define double @square_fabs_intrinsic_f64(double %x) { %mul = fmul double %x, %x %fabs = tail call double @llvm.fabs.f64(double %mul) ret double %fabs ; CHECK-LABEL: square_fabs_intrinsic_f64( ; CHECK-NEXT: %mul = fmul double %x, %x ; CHECK-NEXT: %fabs = tail call double @llvm.fabs.f64(double %mul) ; CHECK-NEXT: ret double %fabs } define fp128 @square_fabs_intrinsic_f128(fp128 %x) { %mul = fmul fp128 %x, %x %fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul) ret fp128 %fabsl ; CHECK-LABEL: square_fabs_intrinsic_f128( ; CHECK-NEXT: %mul = fmul fp128 %x, %x ; CHECK-NEXT: %fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul) ; CHECK-NEXT: ret fp128 %fabsl } define float @square_nnan_fabs_intrinsic_f32(float %x) { %mul = fmul nnan float %x, %x %fabsf = call float @llvm.fabs.f32(float %mul) ret float %fabsf ; CHECK-LABEL: square_nnan_fabs_intrinsic_f32( ; CHECK-NEXT: %mul = fmul nnan float %x, %x ; CHECK-NEXT: ret float %mul } ; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization. define float @square_fabs_shrink_call1(float %x) { %ext = fpext float %x to double %sq = fmul double %ext, %ext %fabs = call double @fabs(double %sq) %trunc = fptrunc double %fabs to float ret float %trunc ; CHECK-LABEL: square_fabs_shrink_call1( ; CHECK-NEXT: fmul float %x, %x ; CHECK-NEXT: %trunc = call float @llvm.fabs.f32(float ; CHECK-NEXT: ret float %trunc } define float @square_fabs_shrink_call2(float %x) { %sq = fmul float %x, %x %ext = fpext float %sq to double %fabs = call double @fabs(double %ext) %trunc = fptrunc double %fabs to float ret float %trunc ; CHECK-LABEL: square_fabs_shrink_call2( ; CHECK-NEXT: %sq = fmul float %x, %x ; CHECK-NEXT: %trunc = call float @llvm.fabs.f32(float %sq) ; CHECK-NEXT: ret float %trunc } ; CHECK-LABEL: @fabs_select_constant_negative_positive( ; CHECK: %fabs = select i1 %cmp, float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float %fabs define float @fabs_select_constant_negative_positive(i32 %c) { %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -1.0, float 2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; CHECK-LABEL: @fabs_select_constant_positive_negative( ; CHECK: %fabs = select i1 %cmp, float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float %fabs define float @fabs_select_constant_positive_negative(i32 %c) { %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float -2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; CHECK-LABEL: @fabs_select_constant_negative_negative( ; CHECK: %fabs = select i1 %cmp, float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float %fabs define float @fabs_select_constant_negative_negative(i32 %c) { %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -1.0, float -2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; CHECK-LABEL: @fabs_select_constant_neg0( ; CHECK-NEXT: ret float 0.0 define float @fabs_select_constant_neg0(i32 %c) { %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; CHECK-LABEL: @fabs_select_var_constant_negative( ; CHECK: %select = select i1 %cmp, float %x, float -1.000000e+00 ; CHECK: %fabs = call float @llvm.fabs.f32(float %select) define float @fabs_select_var_constant_negative(i32 %c, float %x) { %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float %x, float -1.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } ; The fabs cannot be eliminated because %x may be a NaN define float @square_fma_fabs_intrinsic_f32(float %x) { %fma = call float @llvm.fma.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fma) ret float %fabsf ; CHECK-LABEL: @square_fma_fabs_intrinsic_f32( ; CHECK-NEXT: %fma = call float @llvm.fma.f32(float %x, float %x, float 1.000000e+00) ; CHECK-NEXT: %fabsf = call float @llvm.fabs.f32(float %fma) ; CHECK-NEXT: ret float %fabsf } ; The fabs cannot be eliminated because %x may be a NaN define float @square_nnan_fma_fabs_intrinsic_f32(float %x) { %fma = call nnan float @llvm.fma.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fma) ret float %fabsf ; CHECK-LABEL: @square_nnan_fma_fabs_intrinsic_f32( ; CHECK-NEXT: %fma = call nnan float @llvm.fma.f32(float %x, float %x, float 1.000000e+00) ; CHECK-NEXT: ret float %fma } define float @square_fmuladd_fabs_intrinsic_f32(float %x) { %fmuladd = call float @llvm.fmuladd.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fmuladd) ret float %fabsf ; CHECK-LABEL: @square_fmuladd_fabs_intrinsic_f32( ; CHECK-NEXT: %fmuladd = call float @llvm.fmuladd.f32(float %x, float %x, float 1.000000e+00) ; CHECK-NEXT: %fabsf = call float @llvm.fabs.f32(float %fmuladd) ; CHECK-NEXT: ret float %fabsf } define float @square_nnan_fmuladd_fabs_intrinsic_f32(float %x) { %fmuladd = call nnan float @llvm.fmuladd.f32(float %x, float %x, float 1.0) %fabsf = call float @llvm.fabs.f32(float %fmuladd) ret float %fabsf ; CHECK-LABEL: @square_nnan_fmuladd_fabs_intrinsic_f32( ; CHECK-NEXT: %fmuladd = call nnan float @llvm.fmuladd.f32(float %x, float %x, float 1.000000e+00) ; CHECK-NEXT: ret float %fmuladd } ; Don't introduce a second fpext ; CHECK-LABEL: @multi_use_fabs_fpext( ; CHECK: %fpext = fpext float %x to double ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %fpext) ; CHECK-NEXT: store volatile double %fpext, double* undef, align 8 ; CHECK-NEXT: ret double %fabs define double @multi_use_fabs_fpext(float %x) { %fpext = fpext float %x to double %fabs = call double @llvm.fabs.f64(double %fpext) store volatile double %fpext, double* undef ret double %fabs }