//===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/IR/PatternMatch.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "gtest/gtest.h" using namespace llvm; using namespace llvm::PatternMatch; namespace { struct PatternMatchTest : ::testing::Test { LLVMContext Ctx; std::unique_ptr M; Function *F; BasicBlock *BB; IRBuilder IRB; PatternMatchTest() : M(new Module("PatternMatchTestModule", Ctx)), F(Function::Create( FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), Function::ExternalLinkage, "f", M.get())), BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} }; TEST_F(PatternMatchTest, OneUse) { // Build up a little tree of values: // // One = (1 + 2) + 42 // Two = One + 42 // Leaf = (Two + 8) + (Two + 13) Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)), IRB.getInt32(42)); Value *Two = IRB.CreateAdd(One, IRB.getInt32(42)); Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)), IRB.CreateAdd(Two, IRB.getInt32(13))); Value *V; EXPECT_TRUE(m_OneUse(m_Value(V)).match(One)); EXPECT_EQ(One, V); EXPECT_FALSE(m_OneUse(m_Value()).match(Two)); EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf)); } TEST_F(PatternMatchTest, SpecificIntEQ) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntNE) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntUGT) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SignbitZeroChecks) { Type *IntTy = IRB.getInt32Ty(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE(m_Negative().match(NegOne)); EXPECT_FALSE(m_NonNegative().match(NegOne)); EXPECT_FALSE(m_StrictlyPositive().match(NegOne)); EXPECT_TRUE(m_NonPositive().match(NegOne)); EXPECT_FALSE(m_Negative().match(Zero)); EXPECT_TRUE(m_NonNegative().match(Zero)); EXPECT_FALSE(m_StrictlyPositive().match(Zero)); EXPECT_TRUE(m_NonPositive().match(Zero)); EXPECT_FALSE(m_Negative().match(One)); EXPECT_TRUE(m_NonNegative().match(One)); EXPECT_TRUE(m_StrictlyPositive().match(One)); EXPECT_FALSE(m_NonPositive().match(One)); } TEST_F(PatternMatchTest, SpecificIntUGE) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntULT) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntULE) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntSGT) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntSGE) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntSLT) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) .match(One)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, SpecificIntSLE) { Type *IntTy = IRB.getInt32Ty(); unsigned BitWidth = IntTy->getScalarSizeInBits(); Value *Zero = ConstantInt::get(IntTy, 0); Value *One = ConstantInt::get(IntTy, 1); Value *NegOne = ConstantInt::get(IntTy, -1); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) .match(NegOne)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) .match(Zero)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) .match(NegOne)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) .match(Zero)); EXPECT_FALSE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) .match(One)); EXPECT_TRUE( m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) .match(NegOne)); } TEST_F(PatternMatchTest, Unless) { Value *X = IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(0)); EXPECT_TRUE(m_Add(m_One(), m_Zero()).match(X)); EXPECT_FALSE(m_Add(m_Zero(), m_One()).match(X)); EXPECT_FALSE(m_Unless(m_Add(m_One(), m_Zero())).match(X)); EXPECT_TRUE(m_Unless(m_Add(m_Zero(), m_One())).match(X)); EXPECT_TRUE(m_c_Add(m_One(), m_Zero()).match(X)); EXPECT_TRUE(m_c_Add(m_Zero(), m_One()).match(X)); EXPECT_FALSE(m_Unless(m_c_Add(m_One(), m_Zero())).match(X)); EXPECT_FALSE(m_Unless(m_c_Add(m_Zero(), m_One())).match(X)); } TEST_F(PatternMatchTest, ZExtSExtSelf) { LLVMContext &Ctx = IRB.getContext(); Value *One32 = IRB.getInt32(1); Value *One64Z = IRB.CreateZExt(One32, IntegerType::getInt64Ty(Ctx)); Value *One64S = IRB.CreateSExt(One32, IntegerType::getInt64Ty(Ctx)); EXPECT_TRUE(m_One().match(One32)); EXPECT_FALSE(m_One().match(One64Z)); EXPECT_FALSE(m_One().match(One64S)); EXPECT_FALSE(m_ZExt(m_One()).match(One32)); EXPECT_TRUE(m_ZExt(m_One()).match(One64Z)); EXPECT_FALSE(m_ZExt(m_One()).match(One64S)); EXPECT_FALSE(m_SExt(m_One()).match(One32)); EXPECT_FALSE(m_SExt(m_One()).match(One64Z)); EXPECT_TRUE(m_SExt(m_One()).match(One64S)); EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One32)); EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One64Z)); EXPECT_FALSE(m_ZExtOrSelf(m_One()).match(One64S)); EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One32)); EXPECT_FALSE(m_SExtOrSelf(m_One()).match(One64Z)); EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One64S)); EXPECT_FALSE(m_ZExtOrSExt(m_One()).match(One32)); EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64Z)); EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64S)); EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One32)); EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64Z)); EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64S)); } TEST_F(PatternMatchTest, Power2) { Value *C128 = IRB.getInt32(128); Value *CNeg128 = ConstantExpr::getNeg(cast(C128)); EXPECT_TRUE(m_Power2().match(C128)); EXPECT_FALSE(m_Power2().match(CNeg128)); EXPECT_FALSE(m_NegatedPower2().match(C128)); EXPECT_TRUE(m_NegatedPower2().match(CNeg128)); Value *CIntMin = IRB.getInt64(APSInt::getSignedMinValue(64).getSExtValue()); Value *CNegIntMin = ConstantExpr::getNeg(cast(CIntMin)); EXPECT_TRUE(m_Power2().match(CIntMin)); EXPECT_TRUE(m_Power2().match(CNegIntMin)); EXPECT_TRUE(m_NegatedPower2().match(CIntMin)); EXPECT_TRUE(m_NegatedPower2().match(CNegIntMin)); } TEST_F(PatternMatchTest, CommutativeDeferredValue) { Value *X = IRB.getInt32(1); Value *Y = IRB.getInt32(2); { Value *tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { const Value *tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { Value *const tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { const Value *const tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { Value *tX = nullptr; EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX)))); EXPECT_EQ(tX, X); } { Value *tX = nullptr; EXPECT_FALSE( match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX)))); } auto checkMatch = [X, Y](Value *Pattern) { Value *tX = nullptr, *tY = nullptr; EXPECT_TRUE(match( Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY))))); EXPECT_EQ(tX, X); EXPECT_EQ(tY, Y); }; checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y))); checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X))); checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X)); checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X)); } TEST_F(PatternMatchTest, FloatingPointOrderedMin) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test OLT. EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test OLE. EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on OGE. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); // Test no match on OGT. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp oge L, R // %min = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == false ==> %min = L // which is true for UnordFMin, not OrdFMin, so test that: // [OU]GE with inverted select. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [OU]GT with inverted select. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointOrderedMax) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test OGT. EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test OGE. EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on OLE. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); // Test no match on OLT. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp ole L, R // %max = select %cmp, R, L // Given L == NaN, // the above is expanded to %cmp == false ==> %max == L // which is true for UnordFMax, not OrdFMax, so test that: // [OU]LE with inverted select. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [OUT]LT with inverted select. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointUnorderedMin) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test ULT. EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test ULE. EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on UGE. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); // Test no match on UGT. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp uge L, R // %min = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == true ==> %min = R // which is true for OrdFMin, not UnordFMin, so test that: // [UO]GE with inverted select. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [UO]GT with inverted select. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointUnorderedMax) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test UGT. EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test UGE. EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on ULE. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); // Test no match on ULT. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp ule L, R // %max = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == true ==> %max = R // which is true for OrdFMax, not UnordFMax, so test that: // [UO]LE with inverted select. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [UO]LT with inverted select. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, OverflowingBinOps) { Value *L = IRB.getInt32(1); Value *R = IRB.getInt32(2); Value *MatchL, *MatchR; EXPECT_TRUE( m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match( IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_TRUE( m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match( IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match( IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match( IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); } TEST_F(PatternMatchTest, LoadStoreOps) { // Create this load/store sequence: // // %p = alloca i32* // %0 = load i32*, i32** %p // store i32 42, i32* %0 Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty()); Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca); Value *FourtyTwo = IRB.getInt32(42); Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca); Value *MatchLoad, *MatchStoreVal, *MatchStorePointer; EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst)); EXPECT_EQ(Alloca, MatchLoad); EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst)); EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca)); EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) .match(StoreInst)); EXPECT_EQ(FourtyTwo, MatchStoreVal); EXPECT_EQ(Alloca, MatchStorePointer); EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) .match(Alloca)); EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca)) .match(StoreInst)); EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo)) .match(StoreInst)); EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca)) .match(StoreInst)); } TEST_F(PatternMatchTest, VectorOps) { // Build up small tree of vector operations // // Val = 0 + 1 // Val2 = Val + 3 // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef> // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4> // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4> // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2> // // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer // // SP1 = VectorSplat(2, i8 2) // SP2 = VectorSplat(2, i8 %Val) Type *VecTy = FixedVectorType::get(IRB.getInt8Ty(), 2); Type *i32 = IRB.getInt32Ty(); Type *i32VecTy = FixedVectorType::get(i32, 2); Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1)); Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3)); SmallVector VecElemIdxs; VecElemIdxs.push_back(ConstantInt::get(i32, 0)); VecElemIdxs.push_back(ConstantInt::get(i32, 2)); auto *IdxVec = ConstantVector::get(VecElemIdxs); Value *UndefVec = UndefValue::get(VecTy); Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0); Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val); Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1); Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val); Value *EX1 = IRB.CreateExtractElement(VI4, Val); Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0); Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1); Value *Zero = ConstantAggregateZero::get(i32VecTy); Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero); Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec); Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero); Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero); Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2)); Value *SP2 = IRB.CreateVectorSplat(2, Val); Value *A = nullptr, *B = nullptr, *C = nullptr; // Test matching insertelement EXPECT_TRUE(match(VI1, m_InsertElt(m_Value(), m_Value(), m_Value()))); EXPECT_TRUE( match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_ConstantInt()))); EXPECT_TRUE( match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_Zero()))); EXPECT_TRUE( match(VI1, m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero()))); EXPECT_TRUE(match(VI2, m_InsertElt(m_Value(), m_Value(), m_Value()))); EXPECT_FALSE( match(VI2, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))); EXPECT_FALSE( match(VI2, m_InsertElt(m_Value(), m_ConstantInt(), m_Value()))); EXPECT_FALSE(match(VI2, m_InsertElt(m_Constant(), m_Value(), m_Value()))); EXPECT_TRUE(match(VI3, m_InsertElt(m_Value(A), m_Value(B), m_Value(C)))); EXPECT_TRUE(A == VI1); EXPECT_TRUE(B == Val2); EXPECT_TRUE(isa(C)); A = B = C = nullptr; // reset // Test matching extractelement EXPECT_TRUE(match(EX1, m_ExtractElt(m_Value(A), m_Value(B)))); EXPECT_TRUE(A == VI4); EXPECT_TRUE(B == Val); A = B = C = nullptr; // reset EXPECT_FALSE(match(EX1, m_ExtractElt(m_Value(), m_ConstantInt()))); EXPECT_TRUE(match(EX2, m_ExtractElt(m_Value(), m_ConstantInt()))); EXPECT_TRUE(match(EX3, m_ExtractElt(m_Constant(), m_ConstantInt()))); // Test matching shufflevector ArrayRef Mask; EXPECT_TRUE(match(SI1, m_Shuffle(m_Value(), m_Undef(), m_ZeroMask()))); EXPECT_TRUE(match(SI2, m_Shuffle(m_Value(A), m_Value(B), m_Mask(Mask)))); EXPECT_TRUE(A == VI3); EXPECT_TRUE(B == VI4); A = B = C = nullptr; // reset // Test matching the vector splat pattern EXPECT_TRUE(match( SI1, m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero()), m_Undef(), m_ZeroMask()))); EXPECT_FALSE(match( SI3, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()), m_Undef(), m_ZeroMask()))); EXPECT_FALSE(match( SI4, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()), m_Undef(), m_ZeroMask()))); EXPECT_TRUE(match( SP1, m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(2), m_Zero()), m_Undef(), m_ZeroMask()))); EXPECT_TRUE(match( SP2, m_Shuffle(m_InsertElt(m_Undef(), m_Value(A), m_Zero()), m_Undef(), m_ZeroMask()))); EXPECT_TRUE(A == Val); } TEST_F(PatternMatchTest, VectorUndefInt) { Type *ScalarTy = IRB.getInt8Ty(); Type *VectorTy = FixedVectorType::get(ScalarTy, 4); Constant *ScalarUndef = UndefValue::get(ScalarTy); Constant *VectorUndef = UndefValue::get(VectorTy); Constant *ScalarZero = Constant::getNullValue(ScalarTy); Constant *VectorZero = Constant::getNullValue(VectorTy); SmallVector Elems; Elems.push_back(ScalarUndef); Elems.push_back(ScalarZero); Elems.push_back(ScalarUndef); Elems.push_back(ScalarZero); Constant *VectorZeroUndef = ConstantVector::get(Elems); EXPECT_TRUE(match(ScalarUndef, m_Undef())); EXPECT_TRUE(match(VectorUndef, m_Undef())); EXPECT_FALSE(match(ScalarZero, m_Undef())); EXPECT_FALSE(match(VectorZero, m_Undef())); EXPECT_FALSE(match(VectorZeroUndef, m_Undef())); EXPECT_FALSE(match(ScalarUndef, m_Zero())); EXPECT_FALSE(match(VectorUndef, m_Zero())); EXPECT_TRUE(match(ScalarZero, m_Zero())); EXPECT_TRUE(match(VectorZero, m_Zero())); EXPECT_TRUE(match(VectorZeroUndef, m_Zero())); const APInt *C; // Regardless of whether undefs are allowed, // a fully undef constant does not match. EXPECT_FALSE(match(ScalarUndef, m_APInt(C))); EXPECT_FALSE(match(ScalarUndef, m_APIntForbidUndef(C))); EXPECT_FALSE(match(ScalarUndef, m_APIntAllowUndef(C))); EXPECT_FALSE(match(VectorUndef, m_APInt(C))); EXPECT_FALSE(match(VectorUndef, m_APIntForbidUndef(C))); EXPECT_FALSE(match(VectorUndef, m_APIntAllowUndef(C))); // We can always match simple constants and simple splats. C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APInt(C))); EXPECT_TRUE(C->isNullValue()); C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APIntForbidUndef(C))); EXPECT_TRUE(C->isNullValue()); C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APIntAllowUndef(C))); EXPECT_TRUE(C->isNullValue()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APInt(C))); EXPECT_TRUE(C->isNullValue()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APIntForbidUndef(C))); EXPECT_TRUE(C->isNullValue()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APIntAllowUndef(C))); EXPECT_TRUE(C->isNullValue()); // Whether splats with undef can be matched depends on the matcher. EXPECT_FALSE(match(VectorZeroUndef, m_APInt(C))); EXPECT_FALSE(match(VectorZeroUndef, m_APIntForbidUndef(C))); C = nullptr; EXPECT_TRUE(match(VectorZeroUndef, m_APIntAllowUndef(C))); EXPECT_TRUE(C->isNullValue()); } TEST_F(PatternMatchTest, VectorUndefFloat) { Type *ScalarTy = IRB.getFloatTy(); Type *VectorTy = FixedVectorType::get(ScalarTy, 4); Constant *ScalarUndef = UndefValue::get(ScalarTy); Constant *VectorUndef = UndefValue::get(VectorTy); Constant *ScalarZero = Constant::getNullValue(ScalarTy); Constant *VectorZero = Constant::getNullValue(VectorTy); Constant *ScalarPosInf = ConstantFP::getInfinity(ScalarTy, false); Constant *ScalarNegInf = ConstantFP::getInfinity(ScalarTy, true); SmallVector Elems; Elems.push_back(ScalarUndef); Elems.push_back(ScalarZero); Elems.push_back(ScalarUndef); Elems.push_back(ScalarZero); Constant *VectorZeroUndef = ConstantVector::get(Elems); SmallVector InfElems; InfElems.push_back(ScalarPosInf); InfElems.push_back(ScalarNegInf); InfElems.push_back(ScalarUndef); InfElems.push_back(ScalarPosInf); Constant *VectorInfUndef = ConstantVector::get(InfElems); EXPECT_TRUE(match(ScalarUndef, m_Undef())); EXPECT_TRUE(match(VectorUndef, m_Undef())); EXPECT_FALSE(match(ScalarZero, m_Undef())); EXPECT_FALSE(match(VectorZero, m_Undef())); EXPECT_FALSE(match(VectorZeroUndef, m_Undef())); EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP())); EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP())); EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP())); EXPECT_TRUE(match(VectorZero, m_AnyZeroFP())); EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP())); EXPECT_FALSE(match(ScalarUndef, m_Inf())); EXPECT_FALSE(match(VectorUndef, m_Inf())); EXPECT_FALSE(match(VectorZeroUndef, m_Inf())); EXPECT_TRUE(match(ScalarPosInf, m_Inf())); EXPECT_TRUE(match(ScalarNegInf, m_Inf())); EXPECT_TRUE(match(VectorInfUndef, m_Inf())); const APFloat *C; // Regardless of whether undefs are allowed, // a fully undef constant does not match. EXPECT_FALSE(match(ScalarUndef, m_APFloat(C))); EXPECT_FALSE(match(ScalarUndef, m_APFloatForbidUndef(C))); EXPECT_FALSE(match(ScalarUndef, m_APFloatAllowUndef(C))); EXPECT_FALSE(match(VectorUndef, m_APFloat(C))); EXPECT_FALSE(match(VectorUndef, m_APFloatForbidUndef(C))); EXPECT_FALSE(match(VectorUndef, m_APFloatAllowUndef(C))); // We can always match simple constants and simple splats. C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APFloat(C))); EXPECT_TRUE(C->isZero()); C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APFloatForbidUndef(C))); EXPECT_TRUE(C->isZero()); C = nullptr; EXPECT_TRUE(match(ScalarZero, m_APFloatAllowUndef(C))); EXPECT_TRUE(C->isZero()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APFloat(C))); EXPECT_TRUE(C->isZero()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APFloatForbidUndef(C))); EXPECT_TRUE(C->isZero()); C = nullptr; EXPECT_TRUE(match(VectorZero, m_APFloatAllowUndef(C))); EXPECT_TRUE(C->isZero()); // Whether splats with undef can be matched depends on the matcher. EXPECT_FALSE(match(VectorZeroUndef, m_APFloat(C))); EXPECT_FALSE(match(VectorZeroUndef, m_APFloatForbidUndef(C))); C = nullptr; EXPECT_TRUE(match(VectorZeroUndef, m_APFloatAllowUndef(C))); EXPECT_TRUE(C->isZero()); } TEST_F(PatternMatchTest, FloatingPointFNeg) { Type *FltTy = IRB.getFloatTy(); Value *One = ConstantFP::get(FltTy, 1.0); Value *Z = ConstantFP::get(FltTy, 0.0); Value *NZ = ConstantFP::get(FltTy, -0.0); Value *V = IRB.CreateFNeg(One); Value *V1 = IRB.CreateFSub(NZ, One); Value *V2 = IRB.CreateFSub(Z, One); Value *V3 = IRB.CreateFAdd(NZ, One); Value *Match; // Test FNeg(1.0) EXPECT_TRUE(match(V, m_FNeg(m_Value(Match)))); EXPECT_EQ(One, Match); // Test FSub(-0.0, 1.0) EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match)))); EXPECT_EQ(One, Match); // Test FSub(0.0, 1.0) EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match)))); cast(V2)->setHasNoSignedZeros(true); EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match)))); EXPECT_EQ(One, Match); // Test FAdd(-0.0, 1.0) EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match)))); } TEST_F(PatternMatchTest, CondBranchTest) { BasicBlock *TrueBB = BasicBlock::Create(Ctx, "TrueBB", F); BasicBlock *FalseBB = BasicBlock::Create(Ctx, "FalseBB", F); Value *Br1 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, FalseBB); EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(), m_BasicBlock()))); BasicBlock *A, *B; EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_BasicBlock(B)))); EXPECT_EQ(TrueBB, A); EXPECT_EQ(FalseBB, B); EXPECT_FALSE( match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock()))); EXPECT_FALSE( match(Br1, m_Br(m_Value(), m_BasicBlock(), m_SpecificBB(TrueBB)))); EXPECT_FALSE( match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock(TrueBB)))); EXPECT_TRUE( match(Br1, m_Br(m_Value(), m_SpecificBB(TrueBB), m_BasicBlock(FalseBB)))); // Check we can use m_Deferred with branches. EXPECT_FALSE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A)))); Value *Br2 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, TrueBB); A = nullptr; EXPECT_TRUE(match(Br2, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A)))); } TEST_F(PatternMatchTest, WithOverflowInst) { Value *Add = IRB.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, IRB.getInt32(0), IRB.getInt32(0)); Value *Add0 = IRB.CreateExtractValue(Add, 0); Value *Add1 = IRB.CreateExtractValue(Add, 1); EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_Value()))); EXPECT_FALSE(match(Add0, m_ExtractValue<1>(m_Value()))); EXPECT_FALSE(match(Add1, m_ExtractValue<0>(m_Value()))); EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_Value()))); EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value()))); EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value()))); WithOverflowInst *WOI; EXPECT_FALSE(match(Add0, m_WithOverflowInst(WOI))); EXPECT_FALSE(match(Add1, m_WithOverflowInst(WOI))); EXPECT_TRUE(match(Add, m_WithOverflowInst(WOI))); EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_WithOverflowInst(WOI)))); EXPECT_EQ(Add, WOI); EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_WithOverflowInst(WOI)))); EXPECT_EQ(Add, WOI); } TEST_F(PatternMatchTest, MinMaxIntrinsics) { Type *Ty = IRB.getInt32Ty(); Value *L = ConstantInt::get(Ty, 1); Value *R = ConstantInt::get(Ty, 2); Value *MatchL, *MatchR; // Check for intrinsic ID match and capture of operands. EXPECT_TRUE(m_SMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_TRUE(m_SMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_TRUE(m_UMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_TRUE(m_UMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Check for intrinsic ID mismatch. EXPECT_FALSE(m_SMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R))); EXPECT_FALSE(m_SMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R))); EXPECT_FALSE(m_UMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R))); EXPECT_FALSE(m_UMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R))); } TEST_F(PatternMatchTest, IntrinsicMatcher) { Value *Name = IRB.CreateAlloca(IRB.getInt8Ty()); Value *Hash = IRB.getInt64(0); Value *Num = IRB.getInt32(1); Value *Index = IRB.getInt32(2); Value *Step = IRB.getInt64(3); Value *Ops[] = {Name, Hash, Num, Index, Step}; Module *M = BB->getParent()->getParent(); Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step); Value *Intrinsic5 = CallInst::Create(TheFn, Ops, "", BB); // Match without capturing. EXPECT_TRUE(match( Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(), m_Value()))); EXPECT_FALSE(match( Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(), m_Value()))); // Match with capturing. Value *Arg1 = nullptr; Value *Arg2 = nullptr; Value *Arg3 = nullptr; Value *Arg4 = nullptr; Value *Arg5 = nullptr; EXPECT_TRUE( match(Intrinsic5, m_Intrinsic( m_Value(Arg1), m_Value(Arg2), m_Value(Arg3), m_Value(Arg4), m_Value(Arg5)))); EXPECT_EQ(Arg1, Name); EXPECT_EQ(Arg2, Hash); EXPECT_EQ(Arg3, Num); EXPECT_EQ(Arg4, Index); EXPECT_EQ(Arg5, Step); // Match specific second argument. EXPECT_TRUE( match(Intrinsic5, m_Intrinsic( m_Value(), m_SpecificInt(0), m_Value(), m_Value(), m_Value()))); EXPECT_FALSE( match(Intrinsic5, m_Intrinsic( m_Value(), m_SpecificInt(10), m_Value(), m_Value(), m_Value()))); // Match specific third argument. EXPECT_TRUE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_SpecificInt(1), m_Value(), m_Value()))); EXPECT_FALSE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_SpecificInt(10), m_Value(), m_Value()))); // Match specific fourth argument. EXPECT_TRUE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_SpecificInt(2), m_Value()))); EXPECT_FALSE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_SpecificInt(10), m_Value()))); // Match specific fifth argument. EXPECT_TRUE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(), m_SpecificInt(3)))); EXPECT_FALSE( match(Intrinsic5, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(), m_SpecificInt(10)))); } namespace { struct is_unsigned_zero_pred { bool isValue(const APInt &C) { return C.isNullValue(); } }; struct is_float_zero_pred { bool isValue(const APFloat &C) { return C.isZero(); } }; template struct always_true_pred { bool isValue(const T &) { return true; } }; template struct always_false_pred { bool isValue(const T &) { return false; } }; struct is_unsigned_max_pred { bool isValue(const APInt &C) { return C.isMaxValue(); } }; struct is_float_nan_pred { bool isValue(const APFloat &C) { return C.isNaN(); } }; } // namespace TEST_F(PatternMatchTest, ConstantPredicateType) { // Scalar integer APInt U32Max = APInt::getAllOnesValue(32); APInt U32Zero = APInt::getNullValue(32); APInt U32DeadBeef(32, 0xDEADBEEF); Type *U32Ty = Type::getInt32Ty(Ctx); Constant *CU32Max = Constant::getIntegerValue(U32Ty, U32Max); Constant *CU32Zero = Constant::getIntegerValue(U32Ty, U32Zero); Constant *CU32DeadBeef = Constant::getIntegerValue(U32Ty, U32DeadBeef); EXPECT_TRUE(match(CU32Max, cst_pred_ty())); EXPECT_FALSE(match(CU32Max, cst_pred_ty())); EXPECT_TRUE(match(CU32Max, cst_pred_ty>())); EXPECT_FALSE(match(CU32Max, cst_pred_ty>())); EXPECT_FALSE(match(CU32Zero, cst_pred_ty())); EXPECT_TRUE(match(CU32Zero, cst_pred_ty())); EXPECT_TRUE(match(CU32Zero, cst_pred_ty>())); EXPECT_FALSE(match(CU32Zero, cst_pred_ty>())); EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty())); EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty())); EXPECT_TRUE(match(CU32DeadBeef, cst_pred_ty>())); EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty>())); // Scalar float APFloat F32NaN = APFloat::getNaN(APFloat::IEEEsingle()); APFloat F32Zero = APFloat::getZero(APFloat::IEEEsingle()); APFloat F32Pi(3.14f); Type *F32Ty = Type::getFloatTy(Ctx); Constant *CF32NaN = ConstantFP::get(F32Ty, F32NaN); Constant *CF32Zero = ConstantFP::get(F32Ty, F32Zero); Constant *CF32Pi = ConstantFP::get(F32Ty, F32Pi); EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty())); EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty())); EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty>())); EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty>())); EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty())); EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty())); EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty>())); EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty>())); EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty())); EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty())); EXPECT_TRUE(match(CF32Pi, cstfp_pred_ty>())); EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty>())); auto FixedEC = ElementCount::getFixed(4); auto ScalableEC = ElementCount::getScalable(4); // Vector splat for (auto EC : {FixedEC, ScalableEC}) { // integer Constant *CSplatU32Max = ConstantVector::getSplat(EC, CU32Max); Constant *CSplatU32Zero = ConstantVector::getSplat(EC, CU32Zero); Constant *CSplatU32DeadBeef = ConstantVector::getSplat(EC, CU32DeadBeef); EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty())); EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty())); EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty>())); EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty>())); EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty())); EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty())); EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty>())); EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty>())); EXPECT_FALSE(match(CSplatU32DeadBeef, cst_pred_ty())); EXPECT_FALSE( match(CSplatU32DeadBeef, cst_pred_ty())); EXPECT_TRUE( match(CSplatU32DeadBeef, cst_pred_ty>())); EXPECT_FALSE( match(CSplatU32DeadBeef, cst_pred_ty>())); // float Constant *CSplatF32NaN = ConstantVector::getSplat(EC, CF32NaN); Constant *CSplatF32Zero = ConstantVector::getSplat(EC, CF32Zero); Constant *CSplatF32Pi = ConstantVector::getSplat(EC, CF32Pi); EXPECT_TRUE(match(CSplatF32NaN, cstfp_pred_ty())); EXPECT_FALSE(match(CSplatF32NaN, cstfp_pred_ty())); EXPECT_TRUE( match(CSplatF32NaN, cstfp_pred_ty>())); EXPECT_FALSE( match(CSplatF32NaN, cstfp_pred_ty>())); EXPECT_FALSE(match(CSplatF32Zero, cstfp_pred_ty())); EXPECT_TRUE(match(CSplatF32Zero, cstfp_pred_ty())); EXPECT_TRUE( match(CSplatF32Zero, cstfp_pred_ty>())); EXPECT_FALSE( match(CSplatF32Zero, cstfp_pred_ty>())); EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty())); EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty())); EXPECT_TRUE(match(CSplatF32Pi, cstfp_pred_ty>())); EXPECT_FALSE( match(CSplatF32Pi, cstfp_pred_ty>())); } // Int arbitrary vector Constant *CMixedU32 = ConstantVector::get({CU32Max, CU32Zero, CU32DeadBeef}); Constant *CU32Undef = UndefValue::get(U32Ty); Constant *CU32MaxWithUndef = ConstantVector::get({CU32Undef, CU32Max, CU32Undef}); EXPECT_FALSE(match(CMixedU32, cst_pred_ty())); EXPECT_FALSE(match(CMixedU32, cst_pred_ty())); EXPECT_TRUE(match(CMixedU32, cst_pred_ty>())); EXPECT_FALSE(match(CMixedU32, cst_pred_ty>())); EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty())); EXPECT_FALSE(match(CU32MaxWithUndef, cst_pred_ty())); EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty>())); EXPECT_FALSE( match(CU32MaxWithUndef, cst_pred_ty>())); // Float arbitrary vector Constant *CMixedF32 = ConstantVector::get({CF32NaN, CF32Zero, CF32Pi}); Constant *CF32Undef = UndefValue::get(F32Ty); Constant *CF32NaNWithUndef = ConstantVector::get({CF32Undef, CF32NaN, CF32Undef}); EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty())); EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty())); EXPECT_TRUE(match(CMixedF32, cstfp_pred_ty>())); EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty>())); EXPECT_TRUE(match(CF32NaNWithUndef, cstfp_pred_ty())); EXPECT_FALSE(match(CF32NaNWithUndef, cstfp_pred_ty())); EXPECT_TRUE( match(CF32NaNWithUndef, cstfp_pred_ty>())); EXPECT_FALSE( match(CF32NaNWithUndef, cstfp_pred_ty>())); } template struct MutableConstTest : PatternMatchTest { }; typedef ::testing::Types, std::tuple> MutableConstTestTypes; TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes); TYPED_TEST(MutableConstTest, ICmp) { auto &IRB = PatternMatchTest::IRB; typedef std::tuple_element_t<0, TypeParam> ValueType; typedef std::tuple_element_t<1, TypeParam> InstructionType; Value *L = IRB.getInt32(1); Value *R = IRB.getInt32(2); ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT; ValueType MatchL; ValueType MatchR; ICmpInst::Predicate MatchPred; EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR)) .match((InstructionType)IRB.CreateICmp(Pred, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } } // anonymous namespace.