//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This library implements `print` family of functions in classes like // Module, Function, Value, etc. In-memory representation of those classes is // converted to IR strings. // // Note that these routines must be extremely tolerant of various errors in the // LLVM code, because it can be used for debugging transformations. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Argument.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalIndirectSymbol.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/TypeFinder.h" #include "llvm/IR/Use.h" #include "llvm/IR/UseListOrder.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; // Make virtual table appear in this compilation unit. AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// namespace { struct OrderMap { DenseMap> IDs; unsigned size() const { return IDs.size(); } std::pair &operator[](const Value *V) { return IDs[V]; } std::pair lookup(const Value *V) const { return IDs.lookup(V); } void index(const Value *V) { // Explicitly sequence get-size and insert-value operations to avoid UB. unsigned ID = IDs.size() + 1; IDs[V].first = ID; } }; } // end anonymous namespace static void orderValue(const Value *V, OrderMap &OM) { if (OM.lookup(V).first) return; if (const Constant *C = dyn_cast(V)) if (C->getNumOperands() && !isa(C)) for (const Value *Op : C->operands()) if (!isa(Op) && !isa(Op)) orderValue(Op, OM); // Note: we cannot cache this lookup above, since inserting into the map // changes the map's size, and thus affects the other IDs. OM.index(V); } static OrderMap orderModule(const Module *M) { // This needs to match the order used by ValueEnumerator::ValueEnumerator() // and ValueEnumerator::incorporateFunction(). OrderMap OM; for (const GlobalVariable &G : M->globals()) { if (G.hasInitializer()) if (!isa(G.getInitializer())) orderValue(G.getInitializer(), OM); orderValue(&G, OM); } for (const GlobalAlias &A : M->aliases()) { if (!isa(A.getAliasee())) orderValue(A.getAliasee(), OM); orderValue(&A, OM); } for (const GlobalIFunc &I : M->ifuncs()) { if (!isa(I.getResolver())) orderValue(I.getResolver(), OM); orderValue(&I, OM); } for (const Function &F : *M) { for (const Use &U : F.operands()) if (!isa(U.get())) orderValue(U.get(), OM); orderValue(&F, OM); if (F.isDeclaration()) continue; for (const Argument &A : F.args()) orderValue(&A, OM); for (const BasicBlock &BB : F) { orderValue(&BB, OM); for (const Instruction &I : BB) { for (const Value *Op : I.operands()) if ((isa(*Op) && !isa(*Op)) || isa(*Op)) orderValue(Op, OM); orderValue(&I, OM); } } } return OM; } static void predictValueUseListOrderImpl(const Value *V, const Function *F, unsigned ID, const OrderMap &OM, UseListOrderStack &Stack) { // Predict use-list order for this one. using Entry = std::pair; SmallVector List; for (const Use &U : V->uses()) // Check if this user will be serialized. if (OM.lookup(U.getUser()).first) List.push_back(std::make_pair(&U, List.size())); if (List.size() < 2) // We may have lost some users. return; bool GetsReversed = !isa(V) && !isa(V) && !isa(V); if (auto *BA = dyn_cast(V)) ID = OM.lookup(BA->getBasicBlock()).first; llvm::sort(List, [&](const Entry &L, const Entry &R) { const Use *LU = L.first; const Use *RU = R.first; if (LU == RU) return false; auto LID = OM.lookup(LU->getUser()).first; auto RID = OM.lookup(RU->getUser()).first; // If ID is 4, then expect: 7 6 5 1 2 3. if (LID < RID) { if (GetsReversed) if (RID <= ID) return true; return false; } if (RID < LID) { if (GetsReversed) if (LID <= ID) return false; return true; } // LID and RID are equal, so we have different operands of the same user. // Assume operands are added in order for all instructions. if (GetsReversed) if (LID <= ID) return LU->getOperandNo() < RU->getOperandNo(); return LU->getOperandNo() > RU->getOperandNo(); }); if (std::is_sorted( List.begin(), List.end(), [](const Entry &L, const Entry &R) { return L.second < R.second; })) // Order is already correct. return; // Store the shuffle. Stack.emplace_back(V, F, List.size()); assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); for (size_t I = 0, E = List.size(); I != E; ++I) Stack.back().Shuffle[I] = List[I].second; } static void predictValueUseListOrder(const Value *V, const Function *F, OrderMap &OM, UseListOrderStack &Stack) { auto &IDPair = OM[V]; assert(IDPair.first && "Unmapped value"); if (IDPair.second) // Already predicted. return; // Do the actual prediction. IDPair.second = true; if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); // Recursive descent into constants. if (const Constant *C = dyn_cast(V)) if (C->getNumOperands()) // Visit GlobalValues. for (const Value *Op : C->operands()) if (isa(Op)) // Visit GlobalValues. predictValueUseListOrder(Op, F, OM, Stack); } static UseListOrderStack predictUseListOrder(const Module *M) { OrderMap OM = orderModule(M); // Use-list orders need to be serialized after all the users have been added // to a value, or else the shuffles will be incomplete. Store them per // function in a stack. // // Aside from function order, the order of values doesn't matter much here. UseListOrderStack Stack; // We want to visit the functions backward now so we can list function-local // constants in the last Function they're used in. Module-level constants // have already been visited above. for (const Function &F : make_range(M->rbegin(), M->rend())) { if (F.isDeclaration()) continue; for (const BasicBlock &BB : F) predictValueUseListOrder(&BB, &F, OM, Stack); for (const Argument &A : F.args()) predictValueUseListOrder(&A, &F, OM, Stack); for (const BasicBlock &BB : F) for (const Instruction &I : BB) for (const Value *Op : I.operands()) if (isa(*Op) || isa(*Op)) // Visit GlobalValues. predictValueUseListOrder(Op, &F, OM, Stack); for (const BasicBlock &BB : F) for (const Instruction &I : BB) predictValueUseListOrder(&I, &F, OM, Stack); } // Visit globals last. for (const GlobalVariable &G : M->globals()) predictValueUseListOrder(&G, nullptr, OM, Stack); for (const Function &F : *M) predictValueUseListOrder(&F, nullptr, OM, Stack); for (const GlobalAlias &A : M->aliases()) predictValueUseListOrder(&A, nullptr, OM, Stack); for (const GlobalIFunc &I : M->ifuncs()) predictValueUseListOrder(&I, nullptr, OM, Stack); for (const GlobalVariable &G : M->globals()) if (G.hasInitializer()) predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); for (const GlobalAlias &A : M->aliases()) predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); for (const GlobalIFunc &I : M->ifuncs()) predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); for (const Function &F : *M) for (const Use &U : F.operands()) predictValueUseListOrder(U.get(), nullptr, OM, Stack); return Stack; } static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : nullptr; if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : nullptr; if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; return M ? M->getParent() : nullptr; } if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); if (const auto *MAV = dyn_cast(V)) { for (const User *U : MAV->users()) if (isa(U)) if (const Module *M = getModuleFromVal(U)) return M; return nullptr; } return nullptr; } static void PrintCallingConv(unsigned cc, raw_ostream &Out) { switch (cc) { default: Out << "cc" << cc; break; case CallingConv::Fast: Out << "fastcc"; break; case CallingConv::Cold: Out << "coldcc"; break; case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; case CallingConv::AnyReg: Out << "anyregcc"; break; case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; case CallingConv::PreserveAll: Out << "preserve_allcc"; break; case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; case CallingConv::GHC: Out << "ghccc"; break; case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; case CallingConv::PTX_Device: Out << "ptx_device"; break; case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; case CallingConv::Win64: Out << "win64cc"; break; case CallingConv::SPIR_FUNC: Out << "spir_func"; break; case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; case CallingConv::Swift: Out << "swiftcc"; break; case CallingConv::X86_INTR: Out << "x86_intrcc"; break; case CallingConv::HHVM: Out << "hhvmcc"; break; case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; } } enum PrefixType { GlobalPrefix, ComdatPrefix, LabelPrefix, LocalPrefix, NoPrefix }; void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { assert(!Name.empty() && "Cannot get empty name!"); // Scan the name to see if it needs quotes first. bool NeedsQuotes = isdigit(static_cast(Name[0])); if (!NeedsQuotes) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { // By making this unsigned, the value passed in to isalnum will always be // in the range 0-255. This is important when building with MSVC because // its implementation will assert. This situation can arise when dealing // with UTF-8 multibyte characters. unsigned char C = Name[i]; if (!isalnum(static_cast(C)) && C != '-' && C != '.' && C != '_') { NeedsQuotes = true; break; } } } // If we didn't need any quotes, just write out the name in one blast. if (!NeedsQuotes) { OS << Name; return; } // Okay, we need quotes. Output the quotes and escape any scary characters as // needed. OS << '"'; printEscapedString(Name, OS); OS << '"'; } /// Turn the specified name into an 'LLVM name', which is either prefixed with % /// (if the string only contains simple characters) or is surrounded with ""'s /// (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { switch (Prefix) { case NoPrefix: break; case GlobalPrefix: OS << '@'; break; case ComdatPrefix: OS << '$'; break; case LabelPrefix: break; case LocalPrefix: OS << '%'; break; } printLLVMNameWithoutPrefix(OS, Name); } /// Turn the specified name into an 'LLVM name', which is either prefixed with % /// (if the string only contains simple characters) or is surrounded with ""'s /// (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, const Value *V) { PrintLLVMName(OS, V->getName(), isa(V) ? GlobalPrefix : LocalPrefix); } namespace { class TypePrinting { public: TypePrinting(const Module *M = nullptr) : DeferredM(M) {} TypePrinting(const TypePrinting &) = delete; TypePrinting &operator=(const TypePrinting &) = delete; /// The named types that are used by the current module. TypeFinder &getNamedTypes(); /// The numbered types, number to type mapping. std::vector &getNumberedTypes(); bool empty(); void print(Type *Ty, raw_ostream &OS); void printStructBody(StructType *Ty, raw_ostream &OS); private: void incorporateTypes(); /// A module to process lazily when needed. Set to nullptr as soon as used. const Module *DeferredM; TypeFinder NamedTypes; // The numbered types, along with their value. DenseMap Type2Number; std::vector NumberedTypes; }; } // end anonymous namespace TypeFinder &TypePrinting::getNamedTypes() { incorporateTypes(); return NamedTypes; } std::vector &TypePrinting::getNumberedTypes() { incorporateTypes(); // We know all the numbers that each type is used and we know that it is a // dense assignment. Convert the map to an index table, if it's not done // already (judging from the sizes): if (NumberedTypes.size() == Type2Number.size()) return NumberedTypes; NumberedTypes.resize(Type2Number.size()); for (const auto &P : Type2Number) { assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); NumberedTypes[P.second] = P.first; } return NumberedTypes; } bool TypePrinting::empty() { incorporateTypes(); return NamedTypes.empty() && Type2Number.empty(); } void TypePrinting::incorporateTypes() { if (!DeferredM) return; NamedTypes.run(*DeferredM, false); DeferredM = nullptr; // The list of struct types we got back includes all the struct types, split // the unnamed ones out to a numbering and remove the anonymous structs. unsigned NextNumber = 0; std::vector::iterator NextToUse = NamedTypes.begin(), I, E; for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { StructType *STy = *I; // Ignore anonymous types. if (STy->isLiteral()) continue; if (STy->getName().empty()) Type2Number[STy] = NextNumber++; else *NextToUse++ = STy; } NamedTypes.erase(NextToUse, NamedTypes.end()); } /// Write the specified type to the specified raw_ostream, making use of type /// names or up references to shorten the type name where possible. void TypePrinting::print(Type *Ty, raw_ostream &OS) { switch (Ty->getTypeID()) { case Type::VoidTyID: OS << "void"; return; case Type::HalfTyID: OS << "half"; return; case Type::FloatTyID: OS << "float"; return; case Type::DoubleTyID: OS << "double"; return; case Type::X86_FP80TyID: OS << "x86_fp80"; return; case Type::FP128TyID: OS << "fp128"; return; case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; case Type::LabelTyID: OS << "label"; return; case Type::MetadataTyID: OS << "metadata"; return; case Type::X86_MMXTyID: OS << "x86_mmx"; return; case Type::TokenTyID: OS << "token"; return; case Type::IntegerTyID: OS << 'i' << cast(Ty)->getBitWidth(); return; case Type::FunctionTyID: { FunctionType *FTy = cast(Ty); print(FTy->getReturnType(), OS); OS << " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) OS << ", "; print(*I, OS); } if (FTy->isVarArg()) { if (FTy->getNumParams()) OS << ", "; OS << "..."; } OS << ')'; return; } case Type::StructTyID: { StructType *STy = cast(Ty); if (STy->isLiteral()) return printStructBody(STy, OS); if (!STy->getName().empty()) return PrintLLVMName(OS, STy->getName(), LocalPrefix); incorporateTypes(); const auto I = Type2Number.find(STy); if (I != Type2Number.end()) OS << '%' << I->second; else // Not enumerated, print the hex address. OS << "%\"type " << STy << '\"'; return; } case Type::PointerTyID: { PointerType *PTy = cast(Ty); print(PTy->getElementType(), OS); if (unsigned AddressSpace = PTy->getAddressSpace()) OS << " addrspace(" << AddressSpace << ')'; OS << '*'; return; } case Type::ArrayTyID: { ArrayType *ATy = cast(Ty); OS << '[' << ATy->getNumElements() << " x "; print(ATy->getElementType(), OS); OS << ']'; return; } case Type::VectorTyID: { VectorType *PTy = cast(Ty); OS << "<"; if (PTy->isScalable()) OS << "vscale x "; OS << PTy->getNumElements() << " x "; print(PTy->getElementType(), OS); OS << '>'; return; } } llvm_unreachable("Invalid TypeID"); } void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { if (STy->isOpaque()) { OS << "opaque"; return; } if (STy->isPacked()) OS << '<'; if (STy->getNumElements() == 0) { OS << "{}"; } else { StructType::element_iterator I = STy->element_begin(); OS << "{ "; print(*I++, OS); for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { OS << ", "; print(*I, OS); } OS << " }"; } if (STy->isPacked()) OS << '>'; } namespace llvm { //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values //===----------------------------------------------------------------------===// /// This class provides computation of slot numbers for LLVM Assembly writing. /// class SlotTracker { public: /// ValueMap - A mapping of Values to slot numbers. using ValueMap = DenseMap; private: /// TheModule - The module for which we are holding slot numbers. const Module* TheModule; /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction = nullptr; bool FunctionProcessed = false; bool ShouldInitializeAllMetadata; /// The summary index for which we are holding slot numbers. const ModuleSummaryIndex *TheIndex = nullptr; /// mMap - The slot map for the module level data. ValueMap mMap; unsigned mNext = 0; /// fMap - The slot map for the function level data. ValueMap fMap; unsigned fNext = 0; /// mdnMap - Map for MDNodes. DenseMap mdnMap; unsigned mdnNext = 0; /// asMap - The slot map for attribute sets. DenseMap asMap; unsigned asNext = 0; /// ModulePathMap - The slot map for Module paths used in the summary index. StringMap ModulePathMap; unsigned ModulePathNext = 0; /// GUIDMap - The slot map for GUIDs used in the summary index. DenseMap GUIDMap; unsigned GUIDNext = 0; /// TypeIdMap - The slot map for type ids used in the summary index. StringMap TypeIdMap; unsigned TypeIdNext = 0; public: /// Construct from a module. /// /// If \c ShouldInitializeAllMetadata, initializes all metadata in all /// functions, giving correct numbering for metadata referenced only from /// within a function (even if no functions have been initialized). explicit SlotTracker(const Module *M, bool ShouldInitializeAllMetadata = false); /// Construct from a function, starting out in incorp state. /// /// If \c ShouldInitializeAllMetadata, initializes all metadata in all /// functions, giving correct numbering for metadata referenced only from /// within a function (even if no functions have been initialized). explicit SlotTracker(const Function *F, bool ShouldInitializeAllMetadata = false); /// Construct from a module summary index. explicit SlotTracker(const ModuleSummaryIndex *Index); SlotTracker(const SlotTracker &) = delete; SlotTracker &operator=(const SlotTracker &) = delete; /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. int getLocalSlot(const Value *V); int getGlobalSlot(const GlobalValue *V); int getMetadataSlot(const MDNode *N); int getAttributeGroupSlot(AttributeSet AS); int getModulePathSlot(StringRef Path); int getGUIDSlot(GlobalValue::GUID GUID); int getTypeIdSlot(StringRef Id); /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotTracker. void incorporateFunction(const Function *F) { TheFunction = F; FunctionProcessed = false; } const Function *getFunction() const { return TheFunction; } /// After calling incorporateFunction, use this method to remove the /// most recently incorporated function from the SlotTracker. This /// will reset the state of the machine back to just the module contents. void purgeFunction(); /// MDNode map iterators. using mdn_iterator = DenseMap::iterator; mdn_iterator mdn_begin() { return mdnMap.begin(); } mdn_iterator mdn_end() { return mdnMap.end(); } unsigned mdn_size() const { return mdnMap.size(); } bool mdn_empty() const { return mdnMap.empty(); } /// AttributeSet map iterators. using as_iterator = DenseMap::iterator; as_iterator as_begin() { return asMap.begin(); } as_iterator as_end() { return asMap.end(); } unsigned as_size() const { return asMap.size(); } bool as_empty() const { return asMap.empty(); } /// GUID map iterators. using guid_iterator = DenseMap::iterator; /// These functions do the actual initialization. inline void initializeIfNeeded(); void initializeIndexIfNeeded(); // Implementation Details private: /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void CreateModuleSlot(const GlobalValue *V); /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. void CreateMetadataSlot(const MDNode *N); /// CreateFunctionSlot - Insert the specified Value* into the slot table. void CreateFunctionSlot(const Value *V); /// Insert the specified AttributeSet into the slot table. void CreateAttributeSetSlot(AttributeSet AS); inline void CreateModulePathSlot(StringRef Path); void CreateGUIDSlot(GlobalValue::GUID GUID); void CreateTypeIdSlot(StringRef Id); /// Add all of the module level global variables (and their initializers) /// and function declarations, but not the contents of those functions. void processModule(); void processIndex(); /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); /// Add the metadata directly attached to a GlobalObject. void processGlobalObjectMetadata(const GlobalObject &GO); /// Add all of the metadata from a function. void processFunctionMetadata(const Function &F); /// Add all of the metadata from an instruction. void processInstructionMetadata(const Instruction &I); }; } // end namespace llvm ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F) : M(M), F(F), Machine(&Machine) {} ModuleSlotTracker::ModuleSlotTracker(const Module *M, bool ShouldInitializeAllMetadata) : ShouldCreateStorage(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} ModuleSlotTracker::~ModuleSlotTracker() = default; SlotTracker *ModuleSlotTracker::getMachine() { if (!ShouldCreateStorage) return Machine; ShouldCreateStorage = false; MachineStorage = llvm::make_unique(M, ShouldInitializeAllMetadata); Machine = MachineStorage.get(); return Machine; } void ModuleSlotTracker::incorporateFunction(const Function &F) { // Using getMachine() may lazily create the slot tracker. if (!getMachine()) return; // Nothing to do if this is the right function already. if (this->F == &F) return; if (this->F) Machine->purgeFunction(); Machine->incorporateFunction(&F); this->F = &F; } int ModuleSlotTracker::getLocalSlot(const Value *V) { assert(F && "No function incorporated"); return Machine->getLocalSlot(V); } static SlotTracker *createSlotTracker(const Value *V) { if (const Argument *FA = dyn_cast(V)) return new SlotTracker(FA->getParent()); if (const Instruction *I = dyn_cast(V)) if (I->getParent()) return new SlotTracker(I->getParent()->getParent()); if (const BasicBlock *BB = dyn_cast(V)) return new SlotTracker(BB->getParent()); if (const GlobalVariable *GV = dyn_cast(V)) return new SlotTracker(GV->getParent()); if (const GlobalAlias *GA = dyn_cast(V)) return new SlotTracker(GA->getParent()); if (const GlobalIFunc *GIF = dyn_cast(V)) return new SlotTracker(GIF->getParent()); if (const Function *Func = dyn_cast(V)) return new SlotTracker(Func); return nullptr; } #if 0 #define ST_DEBUG(X) dbgs() << X #else #define ST_DEBUG(X) #endif // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) : TheModule(F ? F->getParent() : nullptr), TheFunction(F), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} inline void SlotTracker::initializeIfNeeded() { if (TheModule) { processModule(); TheModule = nullptr; ///< Prevent re-processing next time we're called. } if (TheFunction && !FunctionProcessed) processFunction(); } void SlotTracker::initializeIndexIfNeeded() { if (!TheIndex) return; processIndex(); TheIndex = nullptr; ///< Prevent re-processing next time we're called. } // Iterate through all the global variables, functions, and global // variable initializers and create slots for them. void SlotTracker::processModule() { ST_DEBUG("begin processModule!\n"); // Add all of the unnamed global variables to the value table. for (const GlobalVariable &Var : TheModule->globals()) { if (!Var.hasName()) CreateModuleSlot(&Var); processGlobalObjectMetadata(Var); auto Attrs = Var.getAttributes(); if (Attrs.hasAttributes()) CreateAttributeSetSlot(Attrs); } for (const GlobalAlias &A : TheModule->aliases()) { if (!A.hasName()) CreateModuleSlot(&A); } for (const GlobalIFunc &I : TheModule->ifuncs()) { if (!I.hasName()) CreateModuleSlot(&I); } // Add metadata used by named metadata. for (const NamedMDNode &NMD : TheModule->named_metadata()) { for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) CreateMetadataSlot(NMD.getOperand(i)); } for (const Function &F : *TheModule) { if (!F.hasName()) // Add all the unnamed functions to the table. CreateModuleSlot(&F); if (ShouldInitializeAllMetadata) processFunctionMetadata(F); // Add all the function attributes to the table. // FIXME: Add attributes of other objects? AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); if (FnAttrs.hasAttributes()) CreateAttributeSetSlot(FnAttrs); } ST_DEBUG("end processModule!\n"); } // Process the arguments, basic blocks, and instructions of a function. void SlotTracker::processFunction() { ST_DEBUG("begin processFunction!\n"); fNext = 0; // Process function metadata if it wasn't hit at the module-level. if (!ShouldInitializeAllMetadata) processFunctionMetadata(*TheFunction); // Add all the function arguments with no names. for(Function::const_arg_iterator AI = TheFunction->arg_begin(), AE = TheFunction->arg_end(); AI != AE; ++AI) if (!AI->hasName()) CreateFunctionSlot(&*AI); ST_DEBUG("Inserting Instructions:\n"); // Add all of the basic blocks and instructions with no names. for (auto &BB : *TheFunction) { if (!BB.hasName()) CreateFunctionSlot(&BB); for (auto &I : BB) { if (!I.getType()->isVoidTy() && !I.hasName()) CreateFunctionSlot(&I); // We allow direct calls to any llvm.foo function here, because the // target may not be linked into the optimizer. if (const auto *Call = dyn_cast(&I)) { // Add all the call attributes to the table. AttributeSet Attrs = Call->getAttributes().getFnAttributes(); if (Attrs.hasAttributes()) CreateAttributeSetSlot(Attrs); } } } FunctionProcessed = true; ST_DEBUG("end processFunction!\n"); } // Iterate through all the GUID in the index and create slots for them. void SlotTracker::processIndex() { ST_DEBUG("begin processIndex!\n"); assert(TheIndex); // The first block of slots are just the module ids, which start at 0 and are // assigned consecutively. Since the StringMap iteration order isn't // guaranteed, use a std::map to order by module ID before assigning slots. std::map ModuleIdToPathMap; for (auto &ModPath : TheIndex->modulePaths()) ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); for (auto &ModPair : ModuleIdToPathMap) CreateModulePathSlot(ModPair.second); // Start numbering the GUIDs after the module ids. GUIDNext = ModulePathNext; for (auto &GlobalList : *TheIndex) CreateGUIDSlot(GlobalList.first); // Start numbering the TypeIds after the GUIDs. TypeIdNext = GUIDNext; for (auto TidIter = TheIndex->typeIds().begin(); TidIter != TheIndex->typeIds().end(); TidIter++) CreateTypeIdSlot(TidIter->second.first); for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) CreateGUIDSlot(GlobalValue::getGUID(TId.first)); ST_DEBUG("end processIndex!\n"); } void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { SmallVector, 4> MDs; GO.getAllMetadata(MDs); for (auto &MD : MDs) CreateMetadataSlot(MD.second); } void SlotTracker::processFunctionMetadata(const Function &F) { processGlobalObjectMetadata(F); for (auto &BB : F) { for (auto &I : BB) processInstructionMetadata(I); } } void SlotTracker::processInstructionMetadata(const Instruction &I) { // Process metadata used directly by intrinsics. if (const CallInst *CI = dyn_cast(&I)) if (Function *F = CI->getCalledFunction()) if (F->isIntrinsic()) for (auto &Op : I.operands()) if (auto *V = dyn_cast_or_null(Op)) if (MDNode *N = dyn_cast(V->getMetadata())) CreateMetadataSlot(N); // Process metadata attached to this instruction. SmallVector, 4> MDs; I.getAllMetadata(MDs); for (auto &MD : MDs) CreateMetadataSlot(MD.second); } /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. void SlotTracker::purgeFunction() { ST_DEBUG("begin purgeFunction!\n"); fMap.clear(); // Simply discard the function level map TheFunction = nullptr; FunctionProcessed = false; ST_DEBUG("end purgeFunction!\n"); } /// getGlobalSlot - Get the slot number of a global value. int SlotTracker::getGlobalSlot(const GlobalValue *V) { // Check for uninitialized state and do lazy initialization. initializeIfNeeded(); // Find the value in the module map ValueMap::iterator MI = mMap.find(V); return MI == mMap.end() ? -1 : (int)MI->second; } /// getMetadataSlot - Get the slot number of a MDNode. int SlotTracker::getMetadataSlot(const MDNode *N) { // Check for uninitialized state and do lazy initialization. initializeIfNeeded(); // Find the MDNode in the module map mdn_iterator MI = mdnMap.find(N); return MI == mdnMap.end() ? -1 : (int)MI->second; } /// getLocalSlot - Get the slot number for a value that is local to a function. int SlotTracker::getLocalSlot(const Value *V) { assert(!isa(V) && "Can't get a constant or global slot with this!"); // Check for uninitialized state and do lazy initialization. initializeIfNeeded(); ValueMap::iterator FI = fMap.find(V); return FI == fMap.end() ? -1 : (int)FI->second; } int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { // Check for uninitialized state and do lazy initialization. initializeIfNeeded(); // Find the AttributeSet in the module map. as_iterator AI = asMap.find(AS); return AI == asMap.end() ? -1 : (int)AI->second; } int SlotTracker::getModulePathSlot(StringRef Path) { // Check for uninitialized state and do lazy initialization. initializeIndexIfNeeded(); // Find the Module path in the map auto I = ModulePathMap.find(Path); return I == ModulePathMap.end() ? -1 : (int)I->second; } int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { // Check for uninitialized state and do lazy initialization. initializeIndexIfNeeded(); // Find the GUID in the map guid_iterator I = GUIDMap.find(GUID); return I == GUIDMap.end() ? -1 : (int)I->second; } int SlotTracker::getTypeIdSlot(StringRef Id) { // Check for uninitialized state and do lazy initialization. initializeIndexIfNeeded(); // Find the TypeId string in the map auto I = TypeIdMap.find(Id); return I == TypeIdMap.end() ? -1 : (int)I->second; } /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void SlotTracker::CreateModuleSlot(const GlobalValue *V) { assert(V && "Can't insert a null Value into SlotTracker!"); assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); assert(!V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = mNext++; mMap[V] = DestSlot; ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " ["); // G = Global, F = Function, A = Alias, I = IFunc, o = other ST_DEBUG((isa(V) ? 'G' : (isa(V) ? 'F' : (isa(V) ? 'A' : (isa(V) ? 'I' : 'o')))) << "]\n"); } /// CreateSlot - Create a new slot for the specified value if it has no name. void SlotTracker::CreateFunctionSlot(const Value *V) { assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = fNext++; fMap[V] = DestSlot; // G = Global, F = Function, o = other ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " [o]\n"); } /// CreateModuleSlot - Insert the specified MDNode* into the slot table. void SlotTracker::CreateMetadataSlot(const MDNode *N) { assert(N && "Can't insert a null Value into SlotTracker!"); // Don't make slots for DIExpressions. We just print them inline everywhere. if (isa(N)) return; unsigned DestSlot = mdnNext; if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) return; ++mdnNext; // Recursively add any MDNodes referenced by operands. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (const MDNode *Op = dyn_cast_or_null(N->getOperand(i))) CreateMetadataSlot(Op); } void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { assert(AS.hasAttributes() && "Doesn't need a slot!"); as_iterator I = asMap.find(AS); if (I != asMap.end()) return; unsigned DestSlot = asNext++; asMap[AS] = DestSlot; } /// Create a new slot for the specified Module void SlotTracker::CreateModulePathSlot(StringRef Path) { ModulePathMap[Path] = ModulePathNext++; } /// Create a new slot for the specified GUID void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { GUIDMap[GUID] = GUIDNext++; } /// Create a new slot for the specified Id void SlotTracker::CreateTypeIdSlot(StringRef Id) { TypeIdMap[Id] = TypeIdNext++; } //===----------------------------------------------------------------------===// // AsmWriter Implementation //===----------------------------------------------------------------------===// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context); static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context, bool FromValue = false); static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { if (const FPMathOperator *FPO = dyn_cast(U)) { // 'Fast' is an abbreviation for all fast-math-flags. if (FPO->isFast()) Out << " fast"; else { if (FPO->hasAllowReassoc()) Out << " reassoc"; if (FPO->hasNoNaNs()) Out << " nnan"; if (FPO->hasNoInfs()) Out << " ninf"; if (FPO->hasNoSignedZeros()) Out << " nsz"; if (FPO->hasAllowReciprocal()) Out << " arcp"; if (FPO->hasAllowContract()) Out << " contract"; if (FPO->hasApproxFunc()) Out << " afn"; } } if (const OverflowingBinaryOperator *OBO = dyn_cast(U)) { if (OBO->hasNoUnsignedWrap()) Out << " nuw"; if (OBO->hasNoSignedWrap()) Out << " nsw"; } else if (const PossiblyExactOperator *Div = dyn_cast(U)) { if (Div->isExact()) Out << " exact"; } else if (const GEPOperator *GEP = dyn_cast(U)) { if (GEP->isInBounds()) Out << " inbounds"; } } static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, TypePrinting &TypePrinter, SlotTracker *Machine, const Module *Context) { if (const ConstantInt *CI = dyn_cast(CV)) { if (CI->getType()->isIntegerTy(1)) { Out << (CI->getZExtValue() ? "true" : "false"); return; } Out << CI->getValue(); return; } if (const ConstantFP *CFP = dyn_cast(CV)) { const APFloat &APF = CFP->getValueAPF(); if (&APF.getSemantics() == &APFloat::IEEEsingle() || &APF.getSemantics() == &APFloat::IEEEdouble()) { // We would like to output the FP constant value in exponential notation, // but we cannot do this if doing so will lose precision. Check here to // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // bool ignored; bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); bool isInf = APF.isInfinity(); bool isNaN = APF.isNaN(); if (!isInf && !isNaN) { double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); SmallString<128> StrVal; APF.toString(StrVal, 6, 0, false); // Check to make sure that the stringized number is not some string like // "Inf" or NaN, that atof will accept, but the lexer will not. Check // that the string matches the "[-+]?[0-9]" regex. // assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) && "[-+]?[0-9] regex does not match!"); // Reparse stringized version! if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { Out << StrVal; return; } } // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! Note that loading and storing // floating point types changes the bits of NaNs on some hosts, notably // x86, so we must not use these types. static_assert(sizeof(double) == sizeof(uint64_t), "assuming that double is 64 bits!"); APFloat apf = APF; // Floats are represented in ASCII IR as double, convert. if (!isDouble) apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored); Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); return; } // Either half, or some form of long double. // These appear as a magic letter identifying the type, then a // fixed number of hex digits. Out << "0x"; APInt API = APF.bitcastToAPInt(); if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { Out << 'K'; Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, /*Upper=*/true); Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, /*Upper=*/true); return; } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { Out << 'L'; Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, /*Upper=*/true); Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, /*Upper=*/true); } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { Out << 'M'; Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, /*Upper=*/true); Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, /*Upper=*/true); } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { Out << 'H'; Out << format_hex_no_prefix(API.getZExtValue(), 4, /*Upper=*/true); } else llvm_unreachable("Unsupported floating point type"); return; } if (isa(CV)) { Out << "zeroinitializer"; return; } if (const BlockAddress *BA = dyn_cast(CV)) { Out << "blockaddress("; WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, Context); Out << ", "; WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, Context); Out << ")"; return; } if (const ConstantArray *CA = dyn_cast(CV)) { Type *ETy = CA->getType()->getElementType(); Out << '['; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, Context); } Out << ']'; return; } if (const ConstantDataArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of // i8 with ConstantInt values. if (CA->isString()) { Out << "c\""; printEscapedString(CA->getAsString(), Out); Out << '"'; return; } Type *ETy = CA->getType()->getElementType(); Out << '['; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getElementAsConstant(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, Machine, Context); } Out << ']'; return; } if (const ConstantStruct *CS = dyn_cast(CV)) { if (CS->getType()->isPacked()) Out << '<'; Out << '{'; unsigned N = CS->getNumOperands(); if (N) { Out << ' '; TypePrinter.print(CS->getOperand(0)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1; i < N; i++) { Out << ", "; TypePrinter.print(CS->getOperand(i)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, Context); } Out << ' '; } Out << '}'; if (CS->getType()->isPacked()) Out << '>'; return; } if (isa(CV) || isa(CV)) { Type *ETy = CV->getType()->getVectorElementType(); Out << '<'; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, Machine, Context); } Out << '>'; return; } if (isa(CV)) { Out << "null"; return; } if (isa(CV)) { Out << "none"; return; } if (isa(CV)) { Out << "undef"; return; } if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName(); WriteOptimizationInfo(Out, CE); if (CE->isCompare()) Out << ' ' << CmpInst::getPredicateName( static_cast(CE->getPredicate())); Out << " ("; Optional InRangeOp; if (const GEPOperator *GEP = dyn_cast(CE)) { TypePrinter.print(GEP->getSourceElementType(), Out); Out << ", "; InRangeOp = GEP->getInRangeIndex(); if (InRangeOp) ++*InRangeOp; } for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) Out << "inrange "; TypePrinter.print((*OI)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); if (OI+1 != CE->op_end()) Out << ", "; } if (CE->hasIndices()) { ArrayRef Indices = CE->getIndices(); for (unsigned i = 0, e = Indices.size(); i != e; ++i) Out << ", " << Indices[i]; } if (CE->isCast()) { Out << " to "; TypePrinter.print(CE->getType(), Out); } Out << ')'; return; } Out << ""; } static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!{"; for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { const Metadata *MD = Node->getOperand(mi); if (!MD) Out << "null"; else if (auto *MDV = dyn_cast(MD)) { Value *V = MDV->getValue(); TypePrinter->print(V->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); } else { WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); } if (mi + 1 != me) Out << ", "; } Out << "}"; } namespace { struct FieldSeparator { bool Skip = true; const char *Sep; FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} }; raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { if (FS.Skip) { FS.Skip = false; return OS; } return OS << FS.Sep; } struct MDFieldPrinter { raw_ostream &Out; FieldSeparator FS; TypePrinting *TypePrinter = nullptr; SlotTracker *Machine = nullptr; const Module *Context = nullptr; explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { } void printTag(const DINode *N); void printMacinfoType(const DIMacroNode *N); void printChecksum(const DIFile::ChecksumInfo &N); void printString(StringRef Name, StringRef Value, bool ShouldSkipEmpty = true); void printMetadata(StringRef Name, const Metadata *MD, bool ShouldSkipNull = true); template void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); void printBool(StringRef Name, bool Value, Optional Default = None); void printDIFlags(StringRef Name, DINode::DIFlags Flags); void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); template void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, bool ShouldSkipZero = true); void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); void printNameTableKind(StringRef Name, DICompileUnit::DebugNameTableKind NTK); }; } // end anonymous namespace void MDFieldPrinter::printTag(const DINode *N) { Out << FS << "tag: "; auto Tag = dwarf::TagString(N->getTag()); if (!Tag.empty()) Out << Tag; else Out << N->getTag(); } void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { Out << FS << "type: "; auto Type = dwarf::MacinfoString(N->getMacinfoType()); if (!Type.empty()) Out << Type; else Out << N->getMacinfoType(); } void MDFieldPrinter::printChecksum( const DIFile::ChecksumInfo &Checksum) { Out << FS << "checksumkind: " << Checksum.getKindAsString(); printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); } void MDFieldPrinter::printString(StringRef Name, StringRef Value, bool ShouldSkipEmpty) { if (ShouldSkipEmpty && Value.empty()) return; Out << FS << Name << ": \""; printEscapedString(Value, Out); Out << "\""; } static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { if (!MD) { Out << "null"; return; } WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); } void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, bool ShouldSkipNull) { if (ShouldSkipNull && !MD) return; Out << FS << Name << ": "; writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); } template void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { if (ShouldSkipZero && !Int) return; Out << FS << Name << ": " << Int; } void MDFieldPrinter::printBool(StringRef Name, bool Value, Optional Default) { if (Default && Value == *Default) return; Out << FS << Name << ": " << (Value ? "true" : "false"); } void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { if (!Flags) return; Out << FS << Name << ": "; SmallVector SplitFlags; auto Extra = DINode::splitFlags(Flags, SplitFlags); FieldSeparator FlagsFS(" | "); for (auto F : SplitFlags) { auto StringF = DINode::getFlagString(F); assert(!StringF.empty() && "Expected valid flag"); Out << FlagsFS << StringF; } if (Extra || SplitFlags.empty()) Out << FlagsFS << Extra; } void MDFieldPrinter::printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags) { // Always print this field, because no flags in the IR at all will be // interpreted as old-style isDefinition: true. Out << FS << Name << ": "; if (!Flags) { Out << 0; return; } SmallVector SplitFlags; auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); FieldSeparator FlagsFS(" | "); for (auto F : SplitFlags) { auto StringF = DISubprogram::getFlagString(F); assert(!StringF.empty() && "Expected valid flag"); Out << FlagsFS << StringF; } if (Extra || SplitFlags.empty()) Out << FlagsFS << Extra; } void MDFieldPrinter::printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK) { Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); } void MDFieldPrinter::printNameTableKind(StringRef Name, DICompileUnit::DebugNameTableKind NTK) { if (NTK == DICompileUnit::DebugNameTableKind::Default) return; Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); } template void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, bool ShouldSkipZero) { if (!Value) return; Out << FS << Name << ": "; auto S = toString(Value); if (!S.empty()) Out << S; else Out << Value; } static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!GenericDINode("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printTag(N); Printer.printString("header", N->getHeader()); if (N->getNumDwarfOperands()) { Out << Printer.FS << "operands: {"; FieldSeparator IFS; for (auto &I : N->dwarf_operands()) { Out << IFS; writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); } Out << "}"; } Out << ")"; } static void writeDILocation(raw_ostream &Out, const DILocation *DL, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DILocation("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); // Always output the line, since 0 is a relevant and important value for it. Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); Printer.printInt("column", DL->getColumn()); Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); Printer.printBool("isImplicitCode", DL->isImplicitCode(), /* Default */ false); Out << ")"; } static void writeDISubrange(raw_ostream &Out, const DISubrange *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DISubrange("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); if (auto *CE = N->getCount().dyn_cast()) Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); else Printer.printMetadata("count", N->getCount().dyn_cast(), /*ShouldSkipNull */ false); Printer.printInt("lowerBound", N->getLowerBound()); Out << ")"; } static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!DIEnumerator("; MDFieldPrinter Printer(Out); Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); if (N->isUnsigned()) { auto Value = static_cast(N->getValue()); Printer.printInt("value", Value, /* ShouldSkipZero */ false); Printer.printBool("isUnsigned", true); } else { Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); } Out << ")"; } static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!DIBasicType("; MDFieldPrinter Printer(Out); if (N->getTag() != dwarf::DW_TAG_base_type) Printer.printTag(N); Printer.printString("name", N->getName()); Printer.printInt("size", N->getSizeInBits()); Printer.printInt("align", N->getAlignInBits()); Printer.printDwarfEnum("encoding", N->getEncoding(), dwarf::AttributeEncodingString); Printer.printDIFlags("flags", N->getFlags()); Out << ")"; } static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIDerivedType("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printTag(N); Printer.printString("name", N->getName()); Printer.printMetadata("scope", N->getRawScope()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printMetadata("baseType", N->getRawBaseType(), /* ShouldSkipNull */ false); Printer.printInt("size", N->getSizeInBits()); Printer.printInt("align", N->getAlignInBits()); Printer.printInt("offset", N->getOffsetInBits()); Printer.printDIFlags("flags", N->getFlags()); Printer.printMetadata("extraData", N->getRawExtraData()); if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, /* ShouldSkipZero */ false); Out << ")"; } static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DICompositeType("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printTag(N); Printer.printString("name", N->getName()); Printer.printMetadata("scope", N->getRawScope()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printMetadata("baseType", N->getRawBaseType()); Printer.printInt("size", N->getSizeInBits()); Printer.printInt("align", N->getAlignInBits()); Printer.printInt("offset", N->getOffsetInBits()); Printer.printDIFlags("flags", N->getFlags()); Printer.printMetadata("elements", N->getRawElements()); Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), dwarf::LanguageString); Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); Printer.printMetadata("templateParams", N->getRawTemplateParams()); Printer.printString("identifier", N->getIdentifier()); Printer.printMetadata("discriminator", N->getRawDiscriminator()); Out << ")"; } static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DISubroutineType("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printDIFlags("flags", N->getFlags()); Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); Printer.printMetadata("types", N->getRawTypeArray(), /* ShouldSkipNull */ false); Out << ")"; } static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, SlotTracker *, const Module *) { Out << "!DIFile("; MDFieldPrinter Printer(Out); Printer.printString("filename", N->getFilename(), /* ShouldSkipEmpty */ false); Printer.printString("directory", N->getDirectory(), /* ShouldSkipEmpty */ false); // Print all values for checksum together, or not at all. if (N->getChecksum()) Printer.printChecksum(*N->getChecksum()); Printer.printString("source", N->getSource().getValueOr(StringRef()), /* ShouldSkipEmpty */ true); Out << ")"; } static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DICompileUnit("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printDwarfEnum("language", N->getSourceLanguage(), dwarf::LanguageString, /* ShouldSkipZero */ false); Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); Printer.printString("producer", N->getProducer()); Printer.printBool("isOptimized", N->isOptimized()); Printer.printString("flags", N->getFlags()); Printer.printInt("runtimeVersion", N->getRuntimeVersion(), /* ShouldSkipZero */ false); Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); Printer.printEmissionKind("emissionKind", N->getEmissionKind()); Printer.printMetadata("enums", N->getRawEnumTypes()); Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); Printer.printMetadata("globals", N->getRawGlobalVariables()); Printer.printMetadata("imports", N->getRawImportedEntities()); Printer.printMetadata("macros", N->getRawMacros()); Printer.printInt("dwoId", N->getDWOId()); Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), false); Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); Out << ")"; } static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DISubprogram("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printString("linkageName", N->getLinkageName()); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printMetadata("type", N->getRawType()); Printer.printInt("scopeLine", N->getScopeLine()); Printer.printMetadata("containingType", N->getRawContainingType()); if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || N->getVirtualIndex() != 0) Printer.printInt("virtualIndex", N->getVirtualIndex(), false); Printer.printInt("thisAdjustment", N->getThisAdjustment()); Printer.printDIFlags("flags", N->getFlags()); Printer.printDISPFlags("spFlags", N->getSPFlags()); Printer.printMetadata("unit", N->getRawUnit()); Printer.printMetadata("templateParams", N->getRawTemplateParams()); Printer.printMetadata("declaration", N->getRawDeclaration()); Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); Out << ")"; } static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DILexicalBlock("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printInt("column", N->getColumn()); Out << ")"; } static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DILexicalBlockFile("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("discriminator", N->getDiscriminator(), /* ShouldSkipZero */ false); Out << ")"; } static void writeDINamespace(raw_ostream &Out, const DINamespace *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DINamespace("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printBool("exportSymbols", N->getExportSymbols(), false); Out << ")"; } static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DICommonBlock("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("scope", N->getRawScope(), false); Printer.printMetadata("declaration", N->getRawDecl(), false); Printer.printString("name", N->getName()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLineNo()); Out << ")"; } static void writeDIMacro(raw_ostream &Out, const DIMacro *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIMacro("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMacinfoType(N); Printer.printInt("line", N->getLine()); Printer.printString("name", N->getName()); Printer.printString("value", N->getValue()); Out << ")"; } static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIMacroFile("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printInt("line", N->getLine()); Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); Printer.printMetadata("nodes", N->getRawElements()); Out << ")"; } static void writeDIModule(raw_ostream &Out, const DIModule *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIModule("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printString("name", N->getName()); Printer.printString("configMacros", N->getConfigurationMacros()); Printer.printString("includePath", N->getIncludePath()); Printer.printString("isysroot", N->getISysRoot()); Out << ")"; } static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DITemplateTypeParameter("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); Out << ")"; } static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DITemplateValueParameter("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); if (N->getTag() != dwarf::DW_TAG_template_value_parameter) Printer.printTag(N); Printer.printString("name", N->getName()); Printer.printMetadata("type", N->getRawType()); Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); Out << ")"; } static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIGlobalVariable("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printString("linkageName", N->getLinkageName()); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printMetadata("type", N->getRawType()); Printer.printBool("isLocal", N->isLocalToUnit()); Printer.printBool("isDefinition", N->isDefinition()); Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); Printer.printMetadata("templateParams", N->getRawTemplateParams()); Printer.printInt("align", N->getAlignInBits()); Out << ")"; } static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DILocalVariable("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printInt("arg", N->getArg()); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printMetadata("type", N->getRawType()); Printer.printDIFlags("flags", N->getFlags()); Printer.printInt("align", N->getAlignInBits()); Out << ")"; } static void writeDILabel(raw_ostream &Out, const DILabel *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DILabel("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printString("name", N->getName()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Out << ")"; } static void writeDIExpression(raw_ostream &Out, const DIExpression *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIExpression("; FieldSeparator FS; if (N->isValid()) { for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { auto OpStr = dwarf::OperationEncodingString(I->getOp()); assert(!OpStr.empty() && "Expected valid opcode"); Out << FS << OpStr; if (I->getOp() == dwarf::DW_OP_LLVM_convert) { Out << FS << I->getArg(0); Out << FS << dwarf::AttributeEncodingString(I->getArg(1)); } else { for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) Out << FS << I->getArg(A); } } } else { for (const auto &I : N->getElements()) Out << FS << I; } Out << ")"; } static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIGlobalVariableExpression("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printMetadata("var", N->getVariable()); Printer.printMetadata("expr", N->getExpression()); Out << ")"; } static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIObjCProperty("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printString("name", N->getName()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Printer.printString("setter", N->getSetterName()); Printer.printString("getter", N->getGetterName()); Printer.printInt("attributes", N->getAttributes()); Printer.printMetadata("type", N->getRawType()); Out << ")"; } static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!DIImportedEntity("; MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); Printer.printTag(N); Printer.printString("name", N->getName()); Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); Printer.printMetadata("entity", N->getRawEntity()); Printer.printMetadata("file", N->getRawFile()); Printer.printInt("line", N->getLine()); Out << ")"; } static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { if (Node->isDistinct()) Out << "distinct "; else if (Node->isTemporary()) Out << " "; // Handle broken code. switch (Node->getMetadataID()) { default: llvm_unreachable("Expected uniquable MDNode"); #define HANDLE_MDNODE_LEAF(CLASS) \ case Metadata::CLASS##Kind: \ write##CLASS(Out, cast(Node), TypePrinter, Machine, Context); \ break; #include "llvm/IR/Metadata.def" } } // Full implementation of printing a Value as an operand with support for // TypePrinting, etc. static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { if (V->hasName()) { PrintLLVMName(Out, V); return; } const Constant *CV = dyn_cast(V); if (CV && !isa(CV)) { assert(TypePrinter && "Constants require TypePrinting!"); WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); return; } if (const InlineAsm *IA = dyn_cast(V)) { Out << "asm "; if (IA->hasSideEffects()) Out << "sideeffect "; if (IA->isAlignStack()) Out << "alignstack "; // We don't emit the AD_ATT dialect as it's the assumed default. if (IA->getDialect() == InlineAsm::AD_Intel) Out << "inteldialect "; Out << '"'; printEscapedString(IA->getAsmString(), Out); Out << "\", \""; printEscapedString(IA->getConstraintString(), Out); Out << '"'; return; } if (auto *MD = dyn_cast(V)) { WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, Context, /* FromValue */ true); return; } char Prefix = '%'; int Slot; // If we have a SlotTracker, use it. if (Machine) { if (const GlobalValue *GV = dyn_cast(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); // If the local value didn't succeed, then we may be referring to a value // from a different function. Translate it, as this can happen when using // address of blocks. if (Slot == -1) if ((Machine = createSlotTracker(V))) { Slot = Machine->getLocalSlot(V); delete Machine; } } } else if ((Machine = createSlotTracker(V))) { // Otherwise, create one to get the # and then destroy it. if (const GlobalValue *GV = dyn_cast(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); } delete Machine; Machine = nullptr; } else { Slot = -1; } if (Slot != -1) Out << Prefix << Slot; else Out << ""; } static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context, bool FromValue) { // Write DIExpressions inline when used as a value. Improves readability of // debug info intrinsics. if (const DIExpression *Expr = dyn_cast(MD)) { writeDIExpression(Out, Expr, TypePrinter, Machine, Context); return; } if (const MDNode *N = dyn_cast(MD)) { std::unique_ptr MachineStorage; if (!Machine) { MachineStorage = make_unique(Context); Machine = MachineStorage.get(); } int Slot = Machine->getMetadataSlot(N); if (Slot == -1) { if (const DILocation *Loc = dyn_cast(N)) { writeDILocation(Out, Loc, TypePrinter, Machine, Context); return; } // Give the pointer value instead of "badref", since this comes up all // the time when debugging. Out << "<" << N << ">"; } else Out << '!' << Slot; return; } if (const MDString *MDS = dyn_cast(MD)) { Out << "!\""; printEscapedString(MDS->getString(), Out); Out << '"'; return; } auto *V = cast(MD); assert(TypePrinter && "TypePrinter required for metadata values"); assert((FromValue || !isa(V)) && "Unexpected function-local metadata outside of value argument"); TypePrinter->print(V->getValue()->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); } namespace { class AssemblyWriter { formatted_raw_ostream &Out; const Module *TheModule = nullptr; const ModuleSummaryIndex *TheIndex = nullptr; std::unique_ptr SlotTrackerStorage; SlotTracker &Machine; TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter = nullptr; SetVector Comdats; bool IsForDebug; bool ShouldPreserveUseListOrder; UseListOrderStack UseListOrders; SmallVector MDNames; /// Synchronization scope names registered with LLVMContext. SmallVector SSNs; DenseMap SummaryToGUIDMap; public: /// Construct an AssemblyWriter with an external SlotTracker AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW, bool IsForDebug, bool ShouldPreserveUseListOrder = false); AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const ModuleSummaryIndex *Index, bool IsForDebug); void printMDNodeBody(const MDNode *MD); void printNamedMDNode(const NamedMDNode *NMD); void printModule(const Module *M); void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, AttributeSet Attrs); void writeOperandBundles(const CallBase *Call); void writeSyncScope(const LLVMContext &Context, SyncScope::ID SSID); void writeAtomic(const LLVMContext &Context, AtomicOrdering Ordering, SyncScope::ID SSID); void writeAtomicCmpXchg(const LLVMContext &Context, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID); void writeAllMDNodes(); void writeMDNode(unsigned Slot, const MDNode *Node); void writeAllAttributeGroups(); void printTypeIdentities(); void printGlobal(const GlobalVariable *GV); void printIndirectSymbol(const GlobalIndirectSymbol *GIS); void printComdat(const Comdat *C); void printFunction(const Function *F); void printArgument(const Argument *FA, AttributeSet Attrs); void printBasicBlock(const BasicBlock *BB); void printInstructionLine(const Instruction &I); void printInstruction(const Instruction &I); void printUseListOrder(const UseListOrder &Order); void printUseLists(const Function *F); void printModuleSummaryIndex(); void printSummaryInfo(unsigned Slot, const ValueInfo &VI); void printSummary(const GlobalValueSummary &Summary); void printAliasSummary(const AliasSummary *AS); void printGlobalVarSummary(const GlobalVarSummary *GS); void printFunctionSummary(const FunctionSummary *FS); void printTypeIdSummary(const TypeIdSummary &TIS); void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); void printTypeTestResolution(const TypeTestResolution &TTRes); void printArgs(const std::vector &Args); void printWPDRes(const WholeProgramDevirtResolution &WPDRes); void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); void printVFuncId(const FunctionSummary::VFuncId VFId); void printNonConstVCalls(const std::vector VCallList, const char *Tag); void printConstVCalls(const std::vector VCallList, const char *Tag); private: /// Print out metadata attachments. void printMetadataAttachments( const SmallVectorImpl> &MDs, StringRef Separator); // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); // printGCRelocateComment - print comment after call to the gc.relocate // intrinsic indicating base and derived pointer names. void printGCRelocateComment(const GCRelocateInst &Relocate); }; } // end anonymous namespace AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW, bool IsForDebug, bool ShouldPreserveUseListOrder) : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), IsForDebug(IsForDebug), ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { if (!TheModule) return; for (const GlobalObject &GO : TheModule->global_objects()) if (const Comdat *C = GO.getComdat()) Comdats.insert(C); } AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const ModuleSummaryIndex *Index, bool IsForDebug) : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { if (!Operand) { Out << ""; return; } if (PrintType) { TypePrinter.print(Operand->getType(), Out); Out << ' '; } WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::writeSyncScope(const LLVMContext &Context, SyncScope::ID SSID) { switch (SSID) { case SyncScope::System: { break; } default: { if (SSNs.empty()) Context.getSyncScopeNames(SSNs); Out << " syncscope(\""; printEscapedString(SSNs[SSID], Out); Out << "\")"; break; } } } void AssemblyWriter::writeAtomic(const LLVMContext &Context, AtomicOrdering Ordering, SyncScope::ID SSID) { if (Ordering == AtomicOrdering::NotAtomic) return; writeSyncScope(Context, SSID); Out << " " << toIRString(Ordering); } void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID) { assert(SuccessOrdering != AtomicOrdering::NotAtomic && FailureOrdering != AtomicOrdering::NotAtomic); writeSyncScope(Context, SSID); Out << " " << toIRString(SuccessOrdering); Out << " " << toIRString(FailureOrdering); } void AssemblyWriter::writeParamOperand(const Value *Operand, AttributeSet Attrs) { if (!Operand) { Out << ""; return; } // Print the type TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list if (Attrs.hasAttributes()) Out << ' ' << Attrs.getAsString(); Out << ' '; // Print the operand WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::writeOperandBundles(const CallBase *Call) { if (!Call->hasOperandBundles()) return; Out << " [ "; bool FirstBundle = true; for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { OperandBundleUse BU = Call->getOperandBundleAt(i); if (!FirstBundle) Out << ", "; FirstBundle = false; Out << '"'; printEscapedString(BU.getTagName(), Out); Out << '"'; Out << '('; bool FirstInput = true; for (const auto &Input : BU.Inputs) { if (!FirstInput) Out << ", "; FirstInput = false; TypePrinter.print(Input->getType(), Out); Out << " "; WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); } Out << ')'; } Out << " ]"; } void AssemblyWriter::printModule(const Module *M) { Machine.initializeIfNeeded(); if (ShouldPreserveUseListOrder) UseListOrders = predictUseListOrder(M); if (!M->getModuleIdentifier().empty() && // Don't print the ID if it will start a new line (which would // require a comment char before it). M->getModuleIdentifier().find('\n') == std::string::npos) Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; if (!M->getSourceFileName().empty()) { Out << "source_filename = \""; printEscapedString(M->getSourceFileName(), Out); Out << "\"\n"; } const std::string &DL = M->getDataLayoutStr(); if (!DL.empty()) Out << "target datalayout = \"" << DL << "\"\n"; if (!M->getTargetTriple().empty()) Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; if (!M->getModuleInlineAsm().empty()) { Out << '\n'; // Split the string into lines, to make it easier to read the .ll file. StringRef Asm = M->getModuleInlineAsm(); do { StringRef Front; std::tie(Front, Asm) = Asm.split('\n'); // We found a newline, print the portion of the asm string from the // last newline up to this newline. Out << "module asm \""; printEscapedString(Front, Out); Out << "\"\n"; } while (!Asm.empty()); } printTypeIdentities(); // Output all comdats. if (!Comdats.empty()) Out << '\n'; for (const Comdat *C : Comdats) { printComdat(C); if (C != Comdats.back()) Out << '\n'; } // Output all globals. if (!M->global_empty()) Out << '\n'; for (const GlobalVariable &GV : M->globals()) { printGlobal(&GV); Out << '\n'; } // Output all aliases. if (!M->alias_empty()) Out << "\n"; for (const GlobalAlias &GA : M->aliases()) printIndirectSymbol(&GA); // Output all ifuncs. if (!M->ifunc_empty()) Out << "\n"; for (const GlobalIFunc &GI : M->ifuncs()) printIndirectSymbol(&GI); // Output global use-lists. printUseLists(nullptr); // Output all of the functions. for (const Function &F : *M) printFunction(&F); assert(UseListOrders.empty() && "All use-lists should have been consumed"); // Output all attribute groups. if (!Machine.as_empty()) { Out << '\n'; writeAllAttributeGroups(); } // Output named metadata. if (!M->named_metadata_empty()) Out << '\n'; for (const NamedMDNode &Node : M->named_metadata()) printNamedMDNode(&Node); // Output metadata. if (!Machine.mdn_empty()) { Out << '\n'; writeAllMDNodes(); } } void AssemblyWriter::printModuleSummaryIndex() { assert(TheIndex); Machine.initializeIndexIfNeeded(); Out << "\n"; // Print module path entries. To print in order, add paths to a vector // indexed by module slot. std::vector> moduleVec; std::string RegularLTOModuleName = "[Regular LTO]"; moduleVec.resize(TheIndex->modulePaths().size()); for (auto &ModPath : TheIndex->modulePaths()) moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( // A module id of -1 is a special entry for a regular LTO module created // during the thin link. ModPath.second.first == -1u ? RegularLTOModuleName : (std::string)ModPath.first(), ModPath.second.second); unsigned i = 0; for (auto &ModPair : moduleVec) { Out << "^" << i++ << " = module: ("; Out << "path: \""; printEscapedString(ModPair.first, Out); Out << "\", hash: ("; FieldSeparator FS; for (auto Hash : ModPair.second) Out << FS << Hash; Out << "))\n"; } // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). for (auto &GlobalList : *TheIndex) { auto GUID = GlobalList.first; for (auto &Summary : GlobalList.second.SummaryList) SummaryToGUIDMap[Summary.get()] = GUID; } // Print the global value summary entries. for (auto &GlobalList : *TheIndex) { auto GUID = GlobalList.first; auto VI = TheIndex->getValueInfo(GlobalList); printSummaryInfo(Machine.getGUIDSlot(GUID), VI); } // Print the TypeIdMap entries. for (auto TidIter = TheIndex->typeIds().begin(); TidIter != TheIndex->typeIds().end(); TidIter++) { Out << "^" << Machine.getTypeIdSlot(TidIter->second.first) << " = typeid: (name: \"" << TidIter->second.first << "\""; printTypeIdSummary(TidIter->second.second); Out << ") ; guid = " << TidIter->first << "\n"; } // Print the TypeIdCompatibleVtableMap entries. for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { auto GUID = GlobalValue::getGUID(TId.first); Out << "^" << Machine.getGUIDSlot(GUID) << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; printTypeIdCompatibleVtableSummary(TId.second); Out << ") ; guid = " << GUID << "\n"; } } static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { switch (K) { case WholeProgramDevirtResolution::Indir: return "indir"; case WholeProgramDevirtResolution::SingleImpl: return "singleImpl"; case WholeProgramDevirtResolution::BranchFunnel: return "branchFunnel"; } llvm_unreachable("invalid WholeProgramDevirtResolution kind"); } static const char *getWholeProgDevirtResByArgKindName( WholeProgramDevirtResolution::ByArg::Kind K) { switch (K) { case WholeProgramDevirtResolution::ByArg::Indir: return "indir"; case WholeProgramDevirtResolution::ByArg::UniformRetVal: return "uniformRetVal"; case WholeProgramDevirtResolution::ByArg::UniqueRetVal: return "uniqueRetVal"; case WholeProgramDevirtResolution::ByArg::VirtualConstProp: return "virtualConstProp"; } llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); } static const char *getTTResKindName(TypeTestResolution::Kind K) { switch (K) { case TypeTestResolution::Unsat: return "unsat"; case TypeTestResolution::ByteArray: return "byteArray"; case TypeTestResolution::Inline: return "inline"; case TypeTestResolution::Single: return "single"; case TypeTestResolution::AllOnes: return "allOnes"; } llvm_unreachable("invalid TypeTestResolution kind"); } void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; // The following fields are only used if the target does not support the use // of absolute symbols to store constants. Print only if non-zero. if (TTRes.AlignLog2) Out << ", alignLog2: " << TTRes.AlignLog2; if (TTRes.SizeM1) Out << ", sizeM1: " << TTRes.SizeM1; if (TTRes.BitMask) // BitMask is uint8_t which causes it to print the corresponding char. Out << ", bitMask: " << (unsigned)TTRes.BitMask; if (TTRes.InlineBits) Out << ", inlineBits: " << TTRes.InlineBits; Out << ")"; } void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { Out << ", summary: ("; printTypeTestResolution(TIS.TTRes); if (!TIS.WPDRes.empty()) { Out << ", wpdResolutions: ("; FieldSeparator FS; for (auto &WPDRes : TIS.WPDRes) { Out << FS; Out << "(offset: " << WPDRes.first << ", "; printWPDRes(WPDRes.second); Out << ")"; } Out << ")"; } Out << ")"; } void AssemblyWriter::printTypeIdCompatibleVtableSummary( const TypeIdCompatibleVtableInfo &TI) { Out << ", summary: ("; FieldSeparator FS; for (auto &P : TI) { Out << FS; Out << "(offset: " << P.AddressPointOffset << ", "; Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); Out << ")"; } Out << ")"; } void AssemblyWriter::printArgs(const std::vector &Args) { Out << "args: ("; FieldSeparator FS; for (auto arg : Args) { Out << FS; Out << arg; } Out << ")"; } void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { Out << "wpdRes: (kind: "; Out << getWholeProgDevirtResKindName(WPDRes.TheKind); if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; if (!WPDRes.ResByArg.empty()) { Out << ", resByArg: ("; FieldSeparator FS; for (auto &ResByArg : WPDRes.ResByArg) { Out << FS; printArgs(ResByArg.first); Out << ", byArg: (kind: "; Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); if (ResByArg.second.TheKind == WholeProgramDevirtResolution::ByArg::UniformRetVal || ResByArg.second.TheKind == WholeProgramDevirtResolution::ByArg::UniqueRetVal) Out << ", info: " << ResByArg.second.Info; // The following fields are only used if the target does not support the // use of absolute symbols to store constants. Print only if non-zero. if (ResByArg.second.Byte || ResByArg.second.Bit) Out << ", byte: " << ResByArg.second.Byte << ", bit: " << ResByArg.second.Bit; Out << ")"; } Out << ")"; } Out << ")"; } static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { switch (SK) { case GlobalValueSummary::AliasKind: return "alias"; case GlobalValueSummary::FunctionKind: return "function"; case GlobalValueSummary::GlobalVarKind: return "variable"; } llvm_unreachable("invalid summary kind"); } void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { Out << ", aliasee: "; // The indexes emitted for distributed backends may not include the // aliasee summary (only if it is being imported directly). Handle // that case by just emitting "null" as the aliasee. if (AS->hasAliasee()) Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); else Out << "null"; } void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")"; auto VTableFuncs = GS->vTableFuncs(); if (!VTableFuncs.empty()) { Out << ", vTableFuncs: ("; FieldSeparator FS; for (auto &P : VTableFuncs) { Out << FS; Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) << ", offset: " << P.VTableOffset; Out << ")"; } Out << ")"; } } static std::string getLinkageName(GlobalValue::LinkageTypes LT) { switch (LT) { case GlobalValue::ExternalLinkage: return "external"; case GlobalValue::PrivateLinkage: return "private"; case GlobalValue::InternalLinkage: return "internal"; case GlobalValue::LinkOnceAnyLinkage: return "linkonce"; case GlobalValue::LinkOnceODRLinkage: return "linkonce_odr"; case GlobalValue::WeakAnyLinkage: return "weak"; case GlobalValue::WeakODRLinkage: return "weak_odr"; case GlobalValue::CommonLinkage: return "common"; case GlobalValue::AppendingLinkage: return "appending"; case GlobalValue::ExternalWeakLinkage: return "extern_weak"; case GlobalValue::AvailableExternallyLinkage: return "available_externally"; } llvm_unreachable("invalid linkage"); } // When printing the linkage types in IR where the ExternalLinkage is // not printed, and other linkage types are expected to be printed with // a space after the name. static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { if (LT == GlobalValue::ExternalLinkage) return ""; return getLinkageName(LT) + " "; } void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { Out << ", insts: " << FS->instCount(); FunctionSummary::FFlags FFlags = FS->fflags(); if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | FFlags.ReturnDoesNotAlias) { Out << ", funcFlags: ("; Out << "readNone: " << FFlags.ReadNone; Out << ", readOnly: " << FFlags.ReadOnly; Out << ", noRecurse: " << FFlags.NoRecurse; Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; Out << ", noInline: " << FFlags.NoInline; Out << ")"; } if (!FS->calls().empty()) { Out << ", calls: ("; FieldSeparator IFS; for (auto &Call : FS->calls()) { Out << IFS; Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) Out << ", hotness: " << getHotnessName(Call.second.getHotness()); else if (Call.second.RelBlockFreq) Out << ", relbf: " << Call.second.RelBlockFreq; Out << ")"; } Out << ")"; } if (const auto *TIdInfo = FS->getTypeIdInfo()) printTypeIdInfo(*TIdInfo); } void AssemblyWriter::printTypeIdInfo( const FunctionSummary::TypeIdInfo &TIDInfo) { Out << ", typeIdInfo: ("; FieldSeparator TIDFS; if (!TIDInfo.TypeTests.empty()) { Out << TIDFS; Out << "typeTests: ("; FieldSeparator FS; for (auto &GUID : TIDInfo.TypeTests) { auto TidIter = TheIndex->typeIds().equal_range(GUID); if (TidIter.first == TidIter.second) { Out << FS; Out << GUID; continue; } // Print all type id that correspond to this GUID. for (auto It = TidIter.first; It != TidIter.second; ++It) { Out << FS; auto Slot = Machine.getTypeIdSlot(It->second.first); assert(Slot != -1); Out << "^" << Slot; } } Out << ")"; } if (!TIDInfo.TypeTestAssumeVCalls.empty()) { Out << TIDFS; printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); } if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { Out << TIDFS; printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); } if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { Out << TIDFS; printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, "typeTestAssumeConstVCalls"); } if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { Out << TIDFS; printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, "typeCheckedLoadConstVCalls"); } Out << ")"; } void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); if (TidIter.first == TidIter.second) { Out << "vFuncId: ("; Out << "guid: " << VFId.GUID; Out << ", offset: " << VFId.Offset; Out << ")"; return; } // Print all type id that correspond to this GUID. FieldSeparator FS; for (auto It = TidIter.first; It != TidIter.second; ++It) { Out << FS; Out << "vFuncId: ("; auto Slot = Machine.getTypeIdSlot(It->second.first); assert(Slot != -1); Out << "^" << Slot; Out << ", offset: " << VFId.Offset; Out << ")"; } } void AssemblyWriter::printNonConstVCalls( const std::vector VCallList, const char *Tag) { Out << Tag << ": ("; FieldSeparator FS; for (auto &VFuncId : VCallList) { Out << FS; printVFuncId(VFuncId); } Out << ")"; } void AssemblyWriter::printConstVCalls( const std::vector VCallList, const char *Tag) { Out << Tag << ": ("; FieldSeparator FS; for (auto &ConstVCall : VCallList) { Out << FS; Out << "("; printVFuncId(ConstVCall.VFunc); if (!ConstVCall.Args.empty()) { Out << ", "; printArgs(ConstVCall.Args); } Out << ")"; } Out << ")"; } void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { GlobalValueSummary::GVFlags GVFlags = Summary.flags(); GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) << ", flags: ("; Out << "linkage: " << getLinkageName(LT); Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; Out << ", live: " << GVFlags.Live; Out << ", dsoLocal: " << GVFlags.DSOLocal; Out << ", canAutoHide: " << GVFlags.CanAutoHide; Out << ")"; if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) printAliasSummary(cast(&Summary)); else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) printFunctionSummary(cast(&Summary)); else printGlobalVarSummary(cast(&Summary)); auto RefList = Summary.refs(); if (!RefList.empty()) { Out << ", refs: ("; FieldSeparator FS; for (auto &Ref : RefList) { Out << FS; if (Ref.isReadOnly()) Out << "readonly "; else if (Ref.isWriteOnly()) Out << "writeonly "; Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); } Out << ")"; } Out << ")"; } void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { Out << "^" << Slot << " = gv: ("; if (!VI.name().empty()) Out << "name: \"" << VI.name() << "\""; else Out << "guid: " << VI.getGUID(); if (!VI.getSummaryList().empty()) { Out << ", summaries: ("; FieldSeparator FS; for (auto &Summary : VI.getSummaryList()) { Out << FS; printSummary(*Summary); } Out << ")"; } Out << ")"; if (!VI.name().empty()) Out << " ; guid = " << VI.getGUID(); Out << "\n"; } static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out) { if (Name.empty()) { Out << " "; } else { if (isalpha(static_cast(Name[0])) || Name[0] == '-' || Name[0] == '$' || Name[0] == '.' || Name[0] == '_') Out << Name[0]; else Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); for (unsigned i = 1, e = Name.size(); i != e; ++i) { unsigned char C = Name[i]; if (isalnum(static_cast(C)) || C == '-' || C == '$' || C == '.' || C == '_') Out << C; else Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } } void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { Out << '!'; printMetadataIdentifier(NMD->getName(), Out); Out << " = !{"; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { if (i) Out << ", "; // Write DIExpressions inline. // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. MDNode *Op = NMD->getOperand(i); if (auto *Expr = dyn_cast(Op)) { writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); continue; } int Slot = Machine.getMetadataSlot(Op); if (Slot == -1) Out << ""; else Out << '!' << Slot; } Out << "}\n"; } static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out) { switch (Vis) { case GlobalValue::DefaultVisibility: break; case GlobalValue::HiddenVisibility: Out << "hidden "; break; case GlobalValue::ProtectedVisibility: Out << "protected "; break; } } static void PrintDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out) { // GVs with local linkage or non default visibility are implicitly dso_local, // so we don't print it. bool Implicit = GV.hasLocalLinkage() || (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility()); if (GV.isDSOLocal() && !Implicit) Out << "dso_local "; } static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out) { switch (SCT) { case GlobalValue::DefaultStorageClass: break; case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; } } static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out) { switch (TLM) { case GlobalVariable::NotThreadLocal: break; case GlobalVariable::GeneralDynamicTLSModel: Out << "thread_local "; break; case GlobalVariable::LocalDynamicTLSModel: Out << "thread_local(localdynamic) "; break; case GlobalVariable::InitialExecTLSModel: Out << "thread_local(initialexec) "; break; case GlobalVariable::LocalExecTLSModel: Out << "thread_local(localexec) "; break; } } static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { switch (UA) { case GlobalVariable::UnnamedAddr::None: return ""; case GlobalVariable::UnnamedAddr::Local: return "local_unnamed_addr"; case GlobalVariable::UnnamedAddr::Global: return "unnamed_addr"; } llvm_unreachable("Unknown UnnamedAddr"); } static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO) { const Comdat *C = GO.getComdat(); if (!C) return; if (isa(GO)) Out << ','; Out << " comdat"; if (GO.getName() == C->getName()) return; Out << '('; PrintLLVMName(Out, C->getName(), ComdatPrefix); Out << ')'; } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { if (GV->isMaterializable()) Out << "; Materializable\n"; WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); Out << " = "; if (!GV->hasInitializer() && GV->hasExternalLinkage()) Out << "external "; Out << getLinkageNameWithSpace(GV->getLinkage()); PrintDSOLocation(*GV, Out); PrintVisibility(GV->getVisibility(), Out); PrintDLLStorageClass(GV->getDLLStorageClass(), Out); PrintThreadLocalModel(GV->getThreadLocalMode(), Out); StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); if (!UA.empty()) Out << UA << ' '; if (unsigned AddressSpace = GV->getType()->getAddressSpace()) Out << "addrspace(" << AddressSpace << ") "; if (GV->isExternallyInitialized()) Out << "externally_initialized "; Out << (GV->isConstant() ? "constant " : "global "); TypePrinter.print(GV->getValueType(), Out); if (GV->hasInitializer()) { Out << ' '; writeOperand(GV->getInitializer(), false); } if (GV->hasSection()) { Out << ", section \""; printEscapedString(GV->getSection(), Out); Out << '"'; } if (GV->hasPartition()) { Out << ", partition \""; printEscapedString(GV->getPartition(), Out); Out << '"'; } maybePrintComdat(Out, *GV); if (GV->getAlignment()) Out << ", align " << GV->getAlignment(); SmallVector, 4> MDs; GV->getAllMetadata(MDs); printMetadataAttachments(MDs, ", "); auto Attrs = GV->getAttributes(); if (Attrs.hasAttributes()) Out << " #" << Machine.getAttributeGroupSlot(Attrs); printInfoComment(*GV); } void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { if (GIS->isMaterializable()) Out << "; Materializable\n"; WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); Out << " = "; Out << getLinkageNameWithSpace(GIS->getLinkage()); PrintDSOLocation(*GIS, Out); PrintVisibility(GIS->getVisibility(), Out); PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); if (!UA.empty()) Out << UA << ' '; if (isa(GIS)) Out << "alias "; else if (isa(GIS)) Out << "ifunc "; else llvm_unreachable("Not an alias or ifunc!"); TypePrinter.print(GIS->getValueType(), Out); Out << ", "; const Constant *IS = GIS->getIndirectSymbol(); if (!IS) { TypePrinter.print(GIS->getType(), Out); Out << " <>"; } else { writeOperand(IS, !isa(IS)); } if (GIS->hasPartition()) { Out << ", partition \""; printEscapedString(GIS->getPartition(), Out); Out << '"'; } printInfoComment(*GIS); Out << '\n'; } void AssemblyWriter::printComdat(const Comdat *C) { C->print(Out); } void AssemblyWriter::printTypeIdentities() { if (TypePrinter.empty()) return; Out << '\n'; // Emit all numbered types. auto &NumberedTypes = TypePrinter.getNumberedTypes(); for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { Out << '%' << I << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %2 = type %2 TypePrinter.printStructBody(NumberedTypes[I], Out); Out << '\n'; } auto &NamedTypes = TypePrinter.getNamedTypes(); for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE TypePrinter.printStructBody(NamedTypes[I], Out); Out << '\n'; } } /// printFunction - Print all aspects of a function. void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name. Out << '\n'; if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); if (F->isMaterializable()) Out << "; Materializable\n"; const AttributeList &Attrs = F->getAttributes(); if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { AttributeSet AS = Attrs.getFnAttributes(); std::string AttrStr; for (const Attribute &Attr : AS) { if (!Attr.isStringAttribute()) { if (!AttrStr.empty()) AttrStr += ' '; AttrStr += Attr.getAsString(); } } if (!AttrStr.empty()) Out << "; Function Attrs: " << AttrStr << '\n'; } Machine.incorporateFunction(F); if (F->isDeclaration()) { Out << "declare"; SmallVector, 4> MDs; F->getAllMetadata(MDs); printMetadataAttachments(MDs, " "); Out << ' '; } else Out << "define "; Out << getLinkageNameWithSpace(F->getLinkage()); PrintDSOLocation(*F, Out); PrintVisibility(F->getVisibility(), Out); PrintDLLStorageClass(F->getDLLStorageClass(), Out); // Print the calling convention. if (F->getCallingConv() != CallingConv::C) { PrintCallingConv(F->getCallingConv(), Out); Out << " "; } FunctionType *FT = F->getFunctionType(); if (Attrs.hasAttributes(AttributeList::ReturnIndex)) Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; TypePrinter.print(F->getReturnType(), Out); Out << ' '; WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); Out << '('; // Loop over the arguments, printing them... if (F->isDeclaration() && !IsForDebug) { // We're only interested in the type here - don't print argument names. for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { // Insert commas as we go... the first arg doesn't get a comma if (I) Out << ", "; // Output type... TypePrinter.print(FT->getParamType(I), Out); AttributeSet ArgAttrs = Attrs.getParamAttributes(I); if (ArgAttrs.hasAttributes()) Out << ' ' << ArgAttrs.getAsString(); } } else { // The arguments are meaningful here, print them in detail. for (const Argument &Arg : F->args()) { // Insert commas as we go... the first arg doesn't get a comma if (Arg.getArgNo() != 0) Out << ", "; printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); } } // Finish printing arguments... if (FT->isVarArg()) { if (FT->getNumParams()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ')'; StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); if (!UA.empty()) Out << ' ' << UA; // We print the function address space if it is non-zero or if we are writing // a module with a non-zero program address space or if there is no valid // Module* so that the file can be parsed without the datalayout string. const Module *Mod = F->getParent(); if (F->getAddressSpace() != 0 || !Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) Out << " addrspace(" << F->getAddressSpace() << ")"; if (Attrs.hasAttributes(AttributeList::FunctionIndex)) Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); if (F->hasSection()) { Out << " section \""; printEscapedString(F->getSection(), Out); Out << '"'; } if (F->hasPartition()) { Out << " partition \""; printEscapedString(F->getPartition(), Out); Out << '"'; } maybePrintComdat(Out, *F); if (F->getAlignment()) Out << " align " << F->getAlignment(); if (F->hasGC()) Out << " gc \"" << F->getGC() << '"'; if (F->hasPrefixData()) { Out << " prefix "; writeOperand(F->getPrefixData(), true); } if (F->hasPrologueData()) { Out << " prologue "; writeOperand(F->getPrologueData(), true); } if (F->hasPersonalityFn()) { Out << " personality "; writeOperand(F->getPersonalityFn(), /*PrintType=*/true); } if (F->isDeclaration()) { Out << '\n'; } else { SmallVector, 4> MDs; F->getAllMetadata(MDs); printMetadataAttachments(MDs, " "); Out << " {"; // Output all of the function's basic blocks. for (const BasicBlock &BB : *F) printBasicBlock(&BB); // Output the function's use-lists. printUseLists(F); Out << "}\n"; } Machine.purgeFunction(); } /// printArgument - This member is called for every argument that is passed into /// the function. Simply print it out void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { // Output type... TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list if (Attrs.hasAttributes()) Out << ' ' << Attrs.getAsString(); // Output name, if available... if (Arg->hasName()) { Out << ' '; PrintLLVMName(Out, Arg); } else { int Slot = Machine.getLocalSlot(Arg); assert(Slot != -1 && "expect argument in function here"); Out << " %" << Slot; } } /// printBasicBlock - This member is called for each basic block in a method. void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock(); if (BB->hasName()) { // Print out the label if it exists... Out << "\n"; PrintLLVMName(Out, BB->getName(), LabelPrefix); Out << ':'; } else if (!IsEntryBlock) { Out << "\n"; int Slot = Machine.getLocalSlot(BB); if (Slot != -1) Out << Slot << ":"; else Out << ":"; } if (!BB->getParent()) { Out.PadToColumn(50); Out << "; Error: Block without parent!"; } else if (!IsEntryBlock) { // Output predecessors for the block. Out.PadToColumn(50); Out << ";"; const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); if (PI == PE) { Out << " No predecessors!"; } else { Out << " preds = "; writeOperand(*PI, false); for (++PI; PI != PE; ++PI) { Out << ", "; writeOperand(*PI, false); } } } Out << "\n"; if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); // Output all of the instructions in the basic block... for (const Instruction &I : *BB) { printInstructionLine(I); } if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); } /// printInstructionLine - Print an instruction and a newline character. void AssemblyWriter::printInstructionLine(const Instruction &I) { printInstruction(I); Out << '\n'; } /// printGCRelocateComment - print comment after call to the gc.relocate /// intrinsic indicating base and derived pointer names. void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { Out << " ; ("; writeOperand(Relocate.getBasePtr(), false); Out << ", "; writeOperand(Relocate.getDerivedPtr(), false); Out << ")"; } /// printInfoComment - Print a little comment after the instruction indicating /// which slot it occupies. void AssemblyWriter::printInfoComment(const Value &V) { if (const auto *Relocate = dyn_cast(&V)) printGCRelocateComment(*Relocate); if (AnnotationWriter) AnnotationWriter->printInfoComment(V, Out); } static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out) { // We print the address space of the call if it is non-zero. unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); bool PrintAddrSpace = CallAddrSpace != 0; if (!PrintAddrSpace) { const Module *Mod = getModuleFromVal(I); // We also print it if it is zero but not equal to the program address space // or if we can't find a valid Module* to make it possible to parse // the resulting file even without a datalayout string. if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) PrintAddrSpace = true; } if (PrintAddrSpace) Out << " addrspace(" << CallAddrSpace << ")"; } // This member is called for each Instruction in a function.. void AssemblyWriter::printInstruction(const Instruction &I) { if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); // Print out indentation for an instruction. Out << " "; // Print out name if it exists... if (I.hasName()) { PrintLLVMName(Out, &I); Out << " = "; } else if (!I.getType()->isVoidTy()) { // Print out the def slot taken. int SlotNum = Machine.getLocalSlot(&I); if (SlotNum == -1) Out << " = "; else Out << '%' << SlotNum << " = "; } if (const CallInst *CI = dyn_cast(&I)) { if (CI->isMustTailCall()) Out << "musttail "; else if (CI->isTailCall()) Out << "tail "; else if (CI->isNoTailCall()) Out << "notail "; } // Print out the opcode... Out << I.getOpcodeName(); // If this is an atomic load or store, print out the atomic marker. if ((isa(I) && cast(I).isAtomic()) || (isa(I) && cast(I).isAtomic())) Out << " atomic"; if (isa(I) && cast(I).isWeak()) Out << " weak"; // If this is a volatile operation, print out the volatile marker. if ((isa(I) && cast(I).isVolatile()) || (isa(I) && cast(I).isVolatile()) || (isa(I) && cast(I).isVolatile()) || (isa(I) && cast(I).isVolatile())) Out << " volatile"; // Print out optimization information. WriteOptimizationInfo(Out, &I); // Print out the compare instruction predicates if (const CmpInst *CI = dyn_cast(&I)) Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); // Print out the atomicrmw operation if (const AtomicRMWInst *RMWI = dyn_cast(&I)) Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); // Print out the type of the operands... const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; // Special case conditional branches to swizzle the condition out to the front if (isa(I) && cast(I).isConditional()) { const BranchInst &BI(cast(I)); Out << ' '; writeOperand(BI.getCondition(), true); Out << ", "; writeOperand(BI.getSuccessor(0), true); Out << ", "; writeOperand(BI.getSuccessor(1), true); } else if (isa(I)) { const SwitchInst& SI(cast(I)); // Special case switch instruction to get formatting nice and correct. Out << ' '; writeOperand(SI.getCondition(), true); Out << ", "; writeOperand(SI.getDefaultDest(), true); Out << " ["; for (auto Case : SI.cases()) { Out << "\n "; writeOperand(Case.getCaseValue(), true); Out << ", "; writeOperand(Case.getCaseSuccessor(), true); } Out << "\n ]"; } else if (isa(I)) { // Special case indirectbr instruction to get formatting nice and correct. Out << ' '; writeOperand(Operand, true); Out << ", ["; for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { if (i != 1) Out << ", "; writeOperand(I.getOperand(i), true); } Out << ']'; } else if (const PHINode *PN = dyn_cast(&I)) { Out << ' '; TypePrinter.print(I.getType(), Out); Out << ' '; for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { if (op) Out << ", "; Out << "[ "; writeOperand(PN->getIncomingValue(op), false); Out << ", "; writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; } } else if (const ExtractValueInst *EVI = dyn_cast(&I)) { Out << ' '; writeOperand(I.getOperand(0), true); for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) Out << ", " << *i; } else if (const InsertValueInst *IVI = dyn_cast(&I)) { Out << ' '; writeOperand(I.getOperand(0), true); Out << ", "; writeOperand(I.getOperand(1), true); for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) Out << ", " << *i; } else if (const LandingPadInst *LPI = dyn_cast(&I)) { Out << ' '; TypePrinter.print(I.getType(), Out); if (LPI->isCleanup() || LPI->getNumClauses() != 0) Out << '\n'; if (LPI->isCleanup()) Out << " cleanup"; for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { if (i != 0 || LPI->isCleanup()) Out << "\n"; if (LPI->isCatch(i)) Out << " catch "; else Out << " filter "; writeOperand(LPI->getClause(i), true); } } else if (const auto *CatchSwitch = dyn_cast(&I)) { Out << " within "; writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); Out << " ["; unsigned Op = 0; for (const BasicBlock *PadBB : CatchSwitch->handlers()) { if (Op > 0) Out << ", "; writeOperand(PadBB, /*PrintType=*/true); ++Op; } Out << "] unwind "; if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) writeOperand(UnwindDest, /*PrintType=*/true); else Out << "to caller"; } else if (const auto *FPI = dyn_cast(&I)) { Out << " within "; writeOperand(FPI->getParentPad(), /*PrintType=*/false); Out << " ["; for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; ++Op) { if (Op > 0) Out << ", "; writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); } Out << ']'; } else if (isa(I) && !Operand) { Out << " void"; } else if (const auto *CRI = dyn_cast(&I)) { Out << " from "; writeOperand(CRI->getOperand(0), /*PrintType=*/false); Out << " to "; writeOperand(CRI->getOperand(1), /*PrintType=*/true); } else if (const auto *CRI = dyn_cast(&I)) { Out << " from "; writeOperand(CRI->getOperand(0), /*PrintType=*/false); Out << " unwind "; if (CRI->hasUnwindDest()) writeOperand(CRI->getOperand(1), /*PrintType=*/true); else Out << "to caller"; } else if (const CallInst *CI = dyn_cast(&I)) { // Print the calling convention being used. if (CI->getCallingConv() != CallingConv::C) { Out << " "; PrintCallingConv(CI->getCallingConv(), Out); } Operand = CI->getCalledValue(); FunctionType *FTy = CI->getFunctionType(); Type *RetTy = FTy->getReturnType(); const AttributeList &PAL = CI->getAttributes(); if (PAL.hasAttributes(AttributeList::ReturnIndex)) Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); // Only print addrspace(N) if necessary: maybePrintCallAddrSpace(Operand, &I, Out); // If possible, print out the short form of the call instruction. We can // only do this if the first argument is a pointer to a nonvararg function, // and if the return type is not a pointer to a function. // Out << ' '; TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); Out << ' '; writeOperand(Operand, false); Out << '('; for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { if (op > 0) Out << ", "; writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); } // Emit an ellipsis if this is a musttail call in a vararg function. This // is only to aid readability, musttail calls forward varargs by default. if (CI->isMustTailCall() && CI->getParent() && CI->getParent()->getParent() && CI->getParent()->getParent()->isVarArg()) Out << ", ..."; Out << ')'; if (PAL.hasAttributes(AttributeList::FunctionIndex)) Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); writeOperandBundles(CI); } else if (const InvokeInst *II = dyn_cast(&I)) { Operand = II->getCalledValue(); FunctionType *FTy = II->getFunctionType(); Type *RetTy = FTy->getReturnType(); const AttributeList &PAL = II->getAttributes(); // Print the calling convention being used. if (II->getCallingConv() != CallingConv::C) { Out << " "; PrintCallingConv(II->getCallingConv(), Out); } if (PAL.hasAttributes(AttributeList::ReturnIndex)) Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); // Only print addrspace(N) if necessary: maybePrintCallAddrSpace(Operand, &I, Out); // If possible, print out the short form of the invoke instruction. We can // only do this if the first argument is a pointer to a nonvararg function, // and if the return type is not a pointer to a function. // Out << ' '; TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); Out << ' '; writeOperand(Operand, false); Out << '('; for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { if (op) Out << ", "; writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); } Out << ')'; if (PAL.hasAttributes(AttributeList::FunctionIndex)) Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); writeOperandBundles(II); Out << "\n to "; writeOperand(II->getNormalDest(), true); Out << " unwind "; writeOperand(II->getUnwindDest(), true); } else if (const CallBrInst *CBI = dyn_cast(&I)) { Operand = CBI->getCalledValue(); FunctionType *FTy = CBI->getFunctionType(); Type *RetTy = FTy->getReturnType(); const AttributeList &PAL = CBI->getAttributes(); // Print the calling convention being used. if (CBI->getCallingConv() != CallingConv::C) { Out << " "; PrintCallingConv(CBI->getCallingConv(), Out); } if (PAL.hasAttributes(AttributeList::ReturnIndex)) Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); // If possible, print out the short form of the callbr instruction. We can // only do this if the first argument is a pointer to a nonvararg function, // and if the return type is not a pointer to a function. // Out << ' '; TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); Out << ' '; writeOperand(Operand, false); Out << '('; for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) { if (op) Out << ", "; writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op)); } Out << ')'; if (PAL.hasAttributes(AttributeList::FunctionIndex)) Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); writeOperandBundles(CBI); Out << "\n to "; writeOperand(CBI->getDefaultDest(), true); Out << " ["; for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { if (i != 0) Out << ", "; writeOperand(CBI->getIndirectDest(i), true); } Out << ']'; } else if (const AllocaInst *AI = dyn_cast(&I)) { Out << ' '; if (AI->isUsedWithInAlloca()) Out << "inalloca "; if (AI->isSwiftError()) Out << "swifterror "; TypePrinter.print(AI->getAllocatedType(), Out); // Explicitly write the array size if the code is broken, if it's an array // allocation, or if the type is not canonical for scalar allocations. The // latter case prevents the type from mutating when round-tripping through // assembly. if (!AI->getArraySize() || AI->isArrayAllocation() || !AI->getArraySize()->getType()->isIntegerTy(32)) { Out << ", "; writeOperand(AI->getArraySize(), true); } if (AI->getAlignment()) { Out << ", align " << AI->getAlignment(); } unsigned AddrSpace = AI->getType()->getAddressSpace(); if (AddrSpace != 0) { Out << ", addrspace(" << AddrSpace << ')'; } } else if (isa(I)) { if (Operand) { Out << ' '; writeOperand(Operand, true); // Work with broken code } Out << " to "; TypePrinter.print(I.getType(), Out); } else if (isa(I)) { if (Operand) { Out << ' '; writeOperand(Operand, true); // Work with broken code } Out << ", "; TypePrinter.print(I.getType(), Out); } else if (Operand) { // Print the normal way. if (const auto *GEP = dyn_cast(&I)) { Out << ' '; TypePrinter.print(GEP->getSourceElementType(), Out); Out << ','; } else if (const auto *LI = dyn_cast(&I)) { Out << ' '; TypePrinter.print(LI->getType(), Out); Out << ','; } // PrintAllTypes - Instructions who have operands of all the same type // omit the type from all but the first operand. If the instruction has // different type operands (for example br), then they are all printed. bool PrintAllTypes = false; Type *TheType = Operand->getType(); // Select, Store and ShuffleVector always print all types. if (isa(I) || isa(I) || isa(I) || isa(I)) { PrintAllTypes = true; } else { for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { Operand = I.getOperand(i); // note that Operand shouldn't be null, but the test helps make dump() // more tolerant of malformed IR if (Operand && Operand->getType() != TheType) { PrintAllTypes = true; // We have differing types! Print them all! break; } } } if (!PrintAllTypes) { Out << ' '; TypePrinter.print(TheType, Out); } Out << ' '; for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { if (i) Out << ", "; writeOperand(I.getOperand(i), PrintAllTypes); } } // Print atomic ordering/alignment for memory operations if (const LoadInst *LI = dyn_cast(&I)) { if (LI->isAtomic()) writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); if (LI->getAlignment()) Out << ", align " << LI->getAlignment(); } else if (const StoreInst *SI = dyn_cast(&I)) { if (SI->isAtomic()) writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); if (SI->getAlignment()) Out << ", align " << SI->getAlignment(); } else if (const AtomicCmpXchgInst *CXI = dyn_cast(&I)) { writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), CXI->getFailureOrdering(), CXI->getSyncScopeID()); } else if (const AtomicRMWInst *RMWI = dyn_cast(&I)) { writeAtomic(RMWI->getContext(), RMWI->getOrdering(), RMWI->getSyncScopeID()); } else if (const FenceInst *FI = dyn_cast(&I)) { writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); } // Print Metadata info. SmallVector, 4> InstMD; I.getAllMetadata(InstMD); printMetadataAttachments(InstMD, ", "); // Print a nice comment. printInfoComment(I); } void AssemblyWriter::printMetadataAttachments( const SmallVectorImpl> &MDs, StringRef Separator) { if (MDs.empty()) return; if (MDNames.empty()) MDs[0].second->getContext().getMDKindNames(MDNames); for (const auto &I : MDs) { unsigned Kind = I.first; Out << Separator; if (Kind < MDNames.size()) { Out << "!"; printMetadataIdentifier(MDNames[Kind], Out); } else Out << "!"; Out << ' '; WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); } } void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { Out << '!' << Slot << " = "; printMDNodeBody(Node); Out << "\n"; } void AssemblyWriter::writeAllMDNodes() { SmallVector Nodes; Nodes.resize(Machine.mdn_size()); for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); I != E; ++I) Nodes[I->second] = cast(I->first); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { writeMDNode(i, Nodes[i]); } } void AssemblyWriter::printMDNodeBody(const MDNode *Node) { WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::writeAllAttributeGroups() { std::vector> asVec; asVec.resize(Machine.as_size()); for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); I != E; ++I) asVec[I->second] = *I; for (const auto &I : asVec) Out << "attributes #" << I.second << " = { " << I.first.getAsString(true) << " }\n"; } void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { bool IsInFunction = Machine.getFunction(); if (IsInFunction) Out << " "; Out << "uselistorder"; if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast(Order.V)) { Out << "_bb "; writeOperand(BB->getParent(), false); Out << ", "; writeOperand(BB, false); } else { Out << " "; writeOperand(Order.V, true); } Out << ", { "; assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); Out << Order.Shuffle[0]; for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) Out << ", " << Order.Shuffle[I]; Out << " }\n"; } void AssemblyWriter::printUseLists(const Function *F) { auto hasMore = [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; if (!hasMore()) // Nothing to do. return; Out << "\n; uselistorder directives\n"; while (hasMore()) { printUseListOrder(UseListOrders.back()); UseListOrders.pop_back(); } } //===----------------------------------------------------------------------===// // External Interface declarations //===----------------------------------------------------------------------===// void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder, bool IsForDebug) const { SlotTracker SlotTable(this->getParent()); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, IsForDebug, ShouldPreserveUseListOrder); W.printFunction(this); } void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder, bool IsForDebug) const { SlotTracker SlotTable(this); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, ShouldPreserveUseListOrder); W.printModule(this); } void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { SlotTracker SlotTable(getParent()); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); W.printNamedMDNode(this); } void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, bool IsForDebug) const { Optional LocalST; SlotTracker *SlotTable; if (auto *ST = MST.getMachine()) SlotTable = ST; else { LocalST.emplace(getParent()); SlotTable = &*LocalST; } formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); W.printNamedMDNode(this); } void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { PrintLLVMName(ROS, getName(), ComdatPrefix); ROS << " = comdat "; switch (getSelectionKind()) { case Comdat::Any: ROS << "any"; break; case Comdat::ExactMatch: ROS << "exactmatch"; break; case Comdat::Largest: ROS << "largest"; break; case Comdat::NoDuplicates: ROS << "noduplicates"; break; case Comdat::SameSize: ROS << "samesize"; break; } ROS << '\n'; } void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { TypePrinting TP; TP.print(const_cast(this), OS); if (NoDetails) return; // If the type is a named struct type, print the body as well. if (StructType *STy = dyn_cast(const_cast(this))) if (!STy->isLiteral()) { OS << " = type "; TP.printStructBody(STy, OS); } } static bool isReferencingMDNode(const Instruction &I) { if (const auto *CI = dyn_cast(&I)) if (Function *F = CI->getCalledFunction()) if (F->isIntrinsic()) for (auto &Op : I.operands()) if (auto *V = dyn_cast_or_null(Op)) if (isa(V->getMetadata())) return true; return false; } void Value::print(raw_ostream &ROS, bool IsForDebug) const { bool ShouldInitializeAllMetadata = false; if (auto *I = dyn_cast(this)) ShouldInitializeAllMetadata = isReferencingMDNode(*I); else if (isa(this) || isa(this)) ShouldInitializeAllMetadata = true; ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); print(ROS, MST, IsForDebug); } void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, bool IsForDebug) const { formatted_raw_ostream OS(ROS); SlotTracker EmptySlotTable(static_cast(nullptr)); SlotTracker &SlotTable = MST.getMachine() ? *MST.getMachine() : EmptySlotTable; auto incorporateFunction = [&](const Function *F) { if (F) MST.incorporateFunction(*F); }; if (const Instruction *I = dyn_cast(this)) { incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); W.printInstruction(*I); } else if (const BasicBlock *BB = dyn_cast(this)) { incorporateFunction(BB->getParent()); AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); W.printBasicBlock(BB); } else if (const GlobalValue *GV = dyn_cast(this)) { AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); if (const GlobalVariable *V = dyn_cast(GV)) W.printGlobal(V); else if (const Function *F = dyn_cast(GV)) W.printFunction(F); else W.printIndirectSymbol(cast(GV)); } else if (const MetadataAsValue *V = dyn_cast(this)) { V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); } else if (const Constant *C = dyn_cast(this)) { TypePrinting TypePrinter; TypePrinter.print(C->getType(), OS); OS << ' '; WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); } else if (isa(this) || isa(this)) { this->printAsOperand(OS, /* PrintType */ true, MST); } else { llvm_unreachable("Unknown value to print out!"); } } /// Print without a type, skipping the TypePrinting object. /// /// \return \c true iff printing was successful. static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M) { if (V.hasName() || isa(V) || (!isa(V) && !isa(V))) { WriteAsOperandInternal(O, &V, nullptr, Machine, M); return true; } return false; } static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST) { TypePrinting TypePrinter(MST.getModule()); if (PrintType) { TypePrinter.print(V.getType(), O); O << ' '; } WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), MST.getModule()); } void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const { if (!M) M = getModuleFromVal(this); if (!PrintType) if (printWithoutType(*this, O, nullptr, M)) return; SlotTracker Machine( M, /* ShouldInitializeAllMetadata */ isa(this)); ModuleSlotTracker MST(Machine, M); printAsOperandImpl(*this, O, PrintType, MST); } void Value::printAsOperand(raw_ostream &O, bool PrintType, ModuleSlotTracker &MST) const { if (!PrintType) if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) return; printAsOperandImpl(*this, O, PrintType, MST); } static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand) { formatted_raw_ostream OS(ROS); TypePrinting TypePrinter(M); WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, /* FromValue */ true); auto *N = dyn_cast(&MD); if (OnlyAsOperand || !N || isa(MD)) return; OS << " = "; WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); } void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { ModuleSlotTracker MST(M, isa(this)); printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); } void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M) const { printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); } void Metadata::print(raw_ostream &OS, const Module *M, bool /*IsForDebug*/) const { ModuleSlotTracker MST(M, isa(this)); printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); } void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M, bool /*IsForDebug*/) const { printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); } void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { SlotTracker SlotTable(this); formatted_raw_ostream OS(ROS); AssemblyWriter W(OS, SlotTable, this, IsForDebug); W.printModuleSummaryIndex(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) // Value::dump - allow easy printing of Values from the debugger. LLVM_DUMP_METHOD void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } // Type::dump - allow easy printing of Types from the debugger. LLVM_DUMP_METHOD void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } // Module::dump() - Allow printing of Modules from the debugger. LLVM_DUMP_METHOD void Module::dump() const { print(dbgs(), nullptr, /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); } // Allow printing of Comdats from the debugger. LLVM_DUMP_METHOD void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. LLVM_DUMP_METHOD void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } LLVM_DUMP_METHOD void Metadata::dump() const { dump(nullptr); } LLVM_DUMP_METHOD void Metadata::dump(const Module *M) const { print(dbgs(), M, /*IsForDebug=*/true); dbgs() << '\n'; } // Allow printing of ModuleSummaryIndex from the debugger. LLVM_DUMP_METHOD void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } #endif