//===--- DebugInfo.cpp - Debug Information Helper Classes -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the helper classes used to build and interpret debug // information in LLVM IR form. // //===----------------------------------------------------------------------===// #include "llvm/IR/DebugInfo.h" #include "LLVMContextImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::dwarf; //===----------------------------------------------------------------------===// // DIDescriptor //===----------------------------------------------------------------------===// unsigned DIDescriptor::getFlag(StringRef Flag) { return StringSwitch(Flag) #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) #include "llvm/IR/DebugInfoFlags.def" .Default(0); } const char *DIDescriptor::getFlagString(unsigned Flag) { switch (Flag) { default: return ""; #define HANDLE_DI_FLAG(ID, NAME) \ case Flag##NAME: \ return "DIFlag" #NAME; #include "llvm/IR/DebugInfoFlags.def" } } unsigned DIDescriptor::splitFlags(unsigned Flags, SmallVectorImpl &SplitFlags) { // Accessibility flags need to be specially handled, since they're packed // together. if (unsigned A = Flags & FlagAccessibility) { if (A == FlagPrivate) SplitFlags.push_back(FlagPrivate); else if (A == FlagProtected) SplitFlags.push_back(FlagProtected); else SplitFlags.push_back(FlagPublic); Flags &= ~A; } #define HANDLE_DI_FLAG(ID, NAME) \ if (unsigned Bit = Flags & ID) { \ SplitFlags.push_back(Bit); \ Flags &= ~Bit; \ } #include "llvm/IR/DebugInfoFlags.def" return Flags; } static Metadata *getField(const MDNode *DbgNode, unsigned Elt) { if (!DbgNode || Elt >= DbgNode->getNumOperands()) return nullptr; return DbgNode->getOperand(Elt); } static MDNode *getNodeField(const MDNode *DbgNode, unsigned Elt) { return dyn_cast_or_null(getField(DbgNode, Elt)); } DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const { MDNode *Field = getNodeField(DbgNode, Elt); return DIDescriptor(Field); } /// \brief Return the size reported by the variable's type. unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) { DIType Ty = getType().resolve(Map); // Follow derived types until we reach a type that // reports back a size. while (Ty.isDerivedType() && !Ty.getSizeInBits()) { DIDerivedType DT(&*Ty); Ty = DT.getTypeDerivedFrom().resolve(Map); } assert(Ty.getSizeInBits() && "type with size 0"); return Ty.getSizeInBits(); } bool DIExpression::isBitPiece() const { unsigned N = getNumElements(); return N >=3 && getElement(N-3) == dwarf::DW_OP_bit_piece; } uint64_t DIExpression::getBitPieceOffset() const { assert(isBitPiece() && "not a piece"); return getElement(getNumElements()-2); } uint64_t DIExpression::getBitPieceSize() const { assert(isBitPiece() && "not a piece"); return getElement(getNumElements()-1); } DIExpression::iterator DIExpression::Operand::getNext() const { iterator it(I); return ++it; } //===----------------------------------------------------------------------===// // Simple Descriptor Constructors and other Methods //===----------------------------------------------------------------------===// void DIDescriptor::replaceAllUsesWith(LLVMContext &, DIDescriptor D) { assert(DbgNode && "Trying to replace an unverified type!"); assert(DbgNode->isTemporary() && "Expected temporary node"); TempMDNode Temp(get()); // Since we use a TrackingVH for the node, its easy for clients to manufacture // legitimate situations where they want to replaceAllUsesWith() on something // which, due to uniquing, has merged with the source. We shield clients from // this detail by allowing a value to be replaced with replaceAllUsesWith() // itself. if (Temp.get() == D.get()) { DbgNode = MDNode::replaceWithUniqued(std::move(Temp)); return; } Temp->replaceAllUsesWith(D.get()); DbgNode = D.get(); } void DIDescriptor::replaceAllUsesWith(MDNode *D) { assert(DbgNode && "Trying to replace an unverified type!"); assert(DbgNode != D && "This replacement should always happen"); assert(DbgNode->isTemporary() && "Expected temporary node"); TempMDNode Node(get()); Node->replaceAllUsesWith(D); } #ifndef NDEBUG /// \brief Check if a value can be a reference to a type. static bool isTypeRef(const Metadata *MD) { if (!MD) return true; if (auto *S = dyn_cast(MD)) return !S->getString().empty(); return isa(MD); } /// \brief Check if a value can be a ScopeRef. static bool isScopeRef(const Metadata *MD) { if (!MD) return true; if (auto *S = dyn_cast(MD)) return !S->getString().empty(); return isa(MD); } /// \brief Check if a value can be a DescriptorRef. static bool isDescriptorRef(const Metadata *MD) { if (!MD) return true; if (auto *S = dyn_cast(MD)) return !S->getString().empty(); return isa(MD); } #endif void DICompositeType::setArraysHelper(MDNode *Elements, MDNode *TParams) { TypedTrackingMDRef N(get()); if (Elements) N->replaceElements(cast(Elements)); if (TParams) N->replaceTemplateParams(cast(TParams)); DbgNode = N; } DIScopeRef DIScope::getRef() const { return MDScopeRef::get(get()); } void DICompositeType::setContainingType(DICompositeType ContainingType) { TypedTrackingMDRef N(get()); N->replaceVTableHolder(MDTypeRef::get(ContainingType)); DbgNode = N; } bool DIVariable::isInlinedFnArgument(const Function *CurFn) { assert(CurFn && "Invalid function"); if (!getContext().isSubprogram()) return false; // This variable is not inlined function argument if its scope // does not describe current function. return !DISubprogram(getContext()).describes(CurFn); } Function *DISubprogram::getFunction() const { if (auto *N = get()) if (auto *C = dyn_cast_or_null(N->getFunction())) return dyn_cast(C->getValue()); return nullptr; } bool DISubprogram::describes(const Function *F) { assert(F && "Invalid function"); if (F == getFunction()) return true; StringRef Name = getLinkageName(); if (Name.empty()) Name = getName(); if (F->getName() == Name) return true; return false; } GlobalVariable *DIGlobalVariable::getGlobal() const { return dyn_cast_or_null(getConstant()); } DIScopeRef DIScope::getContext() const { if (isType()) return DIType(DbgNode).getContext(); if (isSubprogram()) return DIScopeRef(DISubprogram(DbgNode).getContext()); if (isLexicalBlock()) return DIScopeRef(DILexicalBlock(DbgNode).getContext()); if (isLexicalBlockFile()) return DIScopeRef(DILexicalBlockFile(DbgNode).getContext()); if (isNameSpace()) return DIScopeRef(DINameSpace(DbgNode).getContext()); assert((isFile() || isCompileUnit()) && "Unhandled type of scope."); return DIScopeRef(nullptr); } StringRef DIScope::getName() const { if (isType()) return DIType(DbgNode).getName(); if (isSubprogram()) return DISubprogram(DbgNode).getName(); if (isNameSpace()) return DINameSpace(DbgNode).getName(); assert((isLexicalBlock() || isLexicalBlockFile() || isFile() || isCompileUnit()) && "Unhandled type of scope."); return StringRef(); } StringRef DIScope::getFilename() const { if (auto *N = get()) if (auto *F = N->getFile()) return F->getFilename(); return ""; } StringRef DIScope::getDirectory() const { if (auto *N = get()) if (auto *F = N->getFile()) return F->getDirectory(); return ""; } void DICompileUnit::replaceSubprograms(DIArray Subprograms) { get()->replaceSubprograms(cast_or_null(Subprograms.get())); } void DICompileUnit::replaceGlobalVariables(DIArray GlobalVariables) { get()->replaceGlobalVariables(cast_or_null(GlobalVariables.get())); } DILocation DILocation::copyWithNewScope(LLVMContext &Ctx, DILexicalBlockFile NewScope) { assert(NewScope && "Expected valid scope"); const auto *Old = cast(DbgNode); return DILocation(MDLocation::get(Ctx, Old->getLine(), Old->getColumn(), NewScope, Old->getInlinedAt())); } unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) { std::pair Key(getFilename().data(), getLineNumber()); return ++Ctx.pImpl->DiscriminatorTable[Key]; } DIVariable llvm::createInlinedVariable(MDNode *DV, MDNode *InlinedScope, LLVMContext &VMContext) { return cast(DV) ->withInline(cast_or_null(InlinedScope)); } DIVariable llvm::cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext) { return cast(DV)->withoutInline(); } DISubprogram llvm::getDISubprogram(const MDNode *Scope) { if (auto *LocalScope = dyn_cast_or_null(Scope)) return LocalScope->getSubprogram(); return nullptr; } DISubprogram llvm::getDISubprogram(const Function *F) { // We look for the first instr that has a debug annotation leading back to F. for (auto &BB : *F) { auto Inst = std::find_if(BB.begin(), BB.end(), [](const Instruction &Inst) { return Inst.getDebugLoc(); }); if (Inst == BB.end()) continue; DebugLoc DLoc = Inst->getDebugLoc(); const MDNode *Scope = DLoc.getInlinedAtScope(); DISubprogram Subprogram = getDISubprogram(Scope); return Subprogram.describes(F) ? Subprogram : DISubprogram(); } return DISubprogram(); } DICompositeType llvm::getDICompositeType(DIType T) { if (T.isCompositeType()) return DICompositeType(T); if (T.isDerivedType()) { // This function is currently used by dragonegg and dragonegg does // not generate identifier for types, so using an empty map to resolve // DerivedFrom should be fine. DITypeIdentifierMap EmptyMap; return getDICompositeType( DIDerivedType(T).getTypeDerivedFrom().resolve(EmptyMap)); } return DICompositeType(); } DITypeIdentifierMap llvm::generateDITypeIdentifierMap(const NamedMDNode *CU_Nodes) { DITypeIdentifierMap Map; for (unsigned CUi = 0, CUe = CU_Nodes->getNumOperands(); CUi != CUe; ++CUi) { DICompileUnit CU(CU_Nodes->getOperand(CUi)); DIArray Retain = CU.getRetainedTypes(); for (unsigned Ti = 0, Te = Retain.getNumElements(); Ti != Te; ++Ti) { if (!Retain.getElement(Ti).isCompositeType()) continue; DICompositeType Ty(Retain.getElement(Ti)); if (MDString *TypeId = Ty.getIdentifier()) { // Definition has priority over declaration. // Try to insert (TypeId, Ty) to Map. std::pair P = Map.insert(std::make_pair(TypeId, Ty)); // If TypeId already exists in Map and this is a definition, replace // whatever we had (declaration or definition) with the definition. if (!P.second && !Ty.isForwardDecl()) P.first->second = Ty; } } } return Map; } //===----------------------------------------------------------------------===// // DebugInfoFinder implementations. //===----------------------------------------------------------------------===// void DebugInfoFinder::reset() { CUs.clear(); SPs.clear(); GVs.clear(); TYs.clear(); Scopes.clear(); NodesSeen.clear(); TypeIdentifierMap.clear(); TypeMapInitialized = false; } void DebugInfoFinder::InitializeTypeMap(const Module &M) { if (!TypeMapInitialized) if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) { TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes); TypeMapInitialized = true; } } void DebugInfoFinder::processModule(const Module &M) { InitializeTypeMap(M); if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) { for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit CU(CU_Nodes->getOperand(i)); addCompileUnit(CU); DIArray GVs = CU.getGlobalVariables(); for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) { DIGlobalVariable DIG(GVs.getElement(i)); if (addGlobalVariable(DIG)) { processScope(DIG.getContext()); processType(DIG.getType().resolve(TypeIdentifierMap)); } } DIArray SPs = CU.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) processSubprogram(DISubprogram(SPs.getElement(i))); DIArray EnumTypes = CU.getEnumTypes(); for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) processType(DIType(EnumTypes.getElement(i))); DIArray RetainedTypes = CU.getRetainedTypes(); for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) processType(DIType(RetainedTypes.getElement(i))); DIArray Imports = CU.getImportedEntities(); for (unsigned i = 0, e = Imports.getNumElements(); i != e; ++i) { DIImportedEntity Import = DIImportedEntity(Imports.getElement(i)); if (!Import) continue; DIDescriptor Entity = Import.getEntity().resolve(TypeIdentifierMap); if (Entity.isType()) processType(DIType(Entity)); else if (Entity.isSubprogram()) processSubprogram(DISubprogram(Entity)); else if (Entity.isNameSpace()) processScope(DINameSpace(Entity).getContext()); } } } } void DebugInfoFinder::processLocation(const Module &M, DILocation Loc) { if (!Loc) return; InitializeTypeMap(M); processScope(Loc.getScope()); processLocation(M, Loc.getOrigLocation()); } void DebugInfoFinder::processType(DIType DT) { if (!addType(DT)) return; processScope(DT.getContext().resolve(TypeIdentifierMap)); if (DT.isCompositeType()) { DICompositeType DCT(DT); processType(DCT.getTypeDerivedFrom().resolve(TypeIdentifierMap)); if (DT.isSubroutineType()) { DITypeArray DTA = DISubroutineType(DT).getTypeArray(); for (unsigned i = 0, e = DTA.getNumElements(); i != e; ++i) processType(DTA.getElement(i).resolve(TypeIdentifierMap)); return; } DIArray DA = DCT.getElements(); for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) { DIDescriptor D = DA.getElement(i); if (D.isType()) processType(DIType(D)); else if (D.isSubprogram()) processSubprogram(DISubprogram(D)); } } else if (DT.isDerivedType()) { DIDerivedType DDT(DT); processType(DDT.getTypeDerivedFrom().resolve(TypeIdentifierMap)); } } void DebugInfoFinder::processScope(DIScope Scope) { if (Scope.isType()) { DIType Ty(Scope); processType(Ty); return; } if (Scope.isCompileUnit()) { addCompileUnit(DICompileUnit(Scope)); return; } if (Scope.isSubprogram()) { processSubprogram(DISubprogram(Scope)); return; } if (!addScope(Scope)) return; if (Scope.isLexicalBlock()) { DILexicalBlock LB(Scope); processScope(LB.getContext()); } else if (Scope.isNameSpace()) { DINameSpace NS(Scope); processScope(NS.getContext()); } } void DebugInfoFinder::processSubprogram(DISubprogram SP) { if (!addSubprogram(SP)) return; processScope(SP.getContext().resolve(TypeIdentifierMap)); processType(SP.getType()); DIArray TParams = SP.getTemplateParams(); for (unsigned I = 0, E = TParams.getNumElements(); I != E; ++I) { DIDescriptor Element = TParams.getElement(I); if (Element.isTemplateTypeParameter()) { DITemplateTypeParameter TType(Element); processType(TType.getType().resolve(TypeIdentifierMap)); } else if (Element.isTemplateValueParameter()) { DITemplateValueParameter TVal(Element); processType(TVal.getType().resolve(TypeIdentifierMap)); } } } void DebugInfoFinder::processDeclare(const Module &M, const DbgDeclareInst *DDI) { MDNode *N = dyn_cast(DDI->getVariable()); if (!N) return; InitializeTypeMap(M); DIDescriptor DV(N); if (!DV.isVariable()) return; if (!NodesSeen.insert(DV).second) return; processScope(DIVariable(N).getContext()); processType(DIVariable(N).getType().resolve(TypeIdentifierMap)); } void DebugInfoFinder::processValue(const Module &M, const DbgValueInst *DVI) { MDNode *N = dyn_cast(DVI->getVariable()); if (!N) return; InitializeTypeMap(M); DIDescriptor DV(N); if (!DV.isVariable()) return; if (!NodesSeen.insert(DV).second) return; processScope(DIVariable(N).getContext()); processType(DIVariable(N).getType().resolve(TypeIdentifierMap)); } bool DebugInfoFinder::addType(DIType DT) { if (!DT) return false; if (!NodesSeen.insert(DT).second) return false; TYs.push_back(DT); return true; } bool DebugInfoFinder::addCompileUnit(DICompileUnit CU) { if (!CU) return false; if (!NodesSeen.insert(CU).second) return false; CUs.push_back(CU); return true; } bool DebugInfoFinder::addGlobalVariable(DIGlobalVariable DIG) { if (!DIG) return false; if (!NodesSeen.insert(DIG).second) return false; GVs.push_back(DIG); return true; } bool DebugInfoFinder::addSubprogram(DISubprogram SP) { if (!SP) return false; if (!NodesSeen.insert(SP).second) return false; SPs.push_back(SP); return true; } bool DebugInfoFinder::addScope(DIScope Scope) { if (!Scope) return false; // FIXME: Ocaml binding generates a scope with no content, we treat it // as null for now. if (Scope->getNumOperands() == 0) return false; if (!NodesSeen.insert(Scope).second) return false; Scopes.push_back(Scope); return true; } //===----------------------------------------------------------------------===// // DIDescriptor: dump routines for all descriptors. //===----------------------------------------------------------------------===// void DIDescriptor::dump() const { print(dbgs()); dbgs() << '\n'; } void DIDescriptor::print(raw_ostream &OS) const { if (!get()) return; get()->print(OS); } static void printDebugLoc(DebugLoc DL, raw_ostream &CommentOS, const LLVMContext &Ctx) { if (!DL) return; DIScope Scope(DL.getScope()); assert(Scope.isScope() && "Scope of a DebugLoc should be a DIScope."); // Omit the directory, because it's likely to be long and uninteresting. CommentOS << Scope.getFilename(); CommentOS << ':' << DL.getLine(); if (DL.getCol() != 0) CommentOS << ':' << DL.getCol(); DebugLoc InlinedAtDL = DL.getInlinedAt(); if (!InlinedAtDL) return; CommentOS << " @[ "; printDebugLoc(InlinedAtDL, CommentOS, Ctx); CommentOS << " ]"; } void DIVariable::printExtendedName(raw_ostream &OS) const { const LLVMContext &Ctx = DbgNode->getContext(); StringRef Res = getName(); if (!Res.empty()) OS << Res << "," << getLineNumber(); if (auto *InlinedAt = get()->getInlinedAt()) { if (DebugLoc InlinedAtDL = InlinedAt) { OS << " @["; printDebugLoc(InlinedAtDL, OS, Ctx); OS << "]"; } } } template <> DIRef::DIRef(const Metadata *V) : Val(V) { assert(isDescriptorRef(V) && "DIDescriptorRef should be a MDString or MDNode"); } template <> DIRef::DIRef(const Metadata *V) : Val(V) { assert(isScopeRef(V) && "DIScopeRef should be a MDString or MDNode"); } template <> DIRef::DIRef(const Metadata *V) : Val(V) { assert(isTypeRef(V) && "DITypeRef should be a MDString or MDNode"); } template <> DIDescriptorRef DIDescriptor::getFieldAs(unsigned Elt) const { return DIDescriptorRef(cast_or_null(getField(DbgNode, Elt))); } template <> DIScopeRef DIDescriptor::getFieldAs(unsigned Elt) const { return DIScopeRef(cast_or_null(getField(DbgNode, Elt))); } template <> DITypeRef DIDescriptor::getFieldAs(unsigned Elt) const { return DITypeRef(cast_or_null(getField(DbgNode, Elt))); } template <> DIDescriptor DIRef::resolve(const DITypeIdentifierMap &Map) const { return DIDescriptor(DebugNodeRef(Val).resolve(Map)); } template <> DIScope DIRef::resolve(const DITypeIdentifierMap &Map) const { return MDScopeRef(Val).resolve(Map); } template <> DIType DIRef::resolve(const DITypeIdentifierMap &Map) const { return MDTypeRef(Val).resolve(Map); } bool llvm::stripDebugInfo(Function &F) { bool Changed = false; for (BasicBlock &BB : F) { for (Instruction &I : BB) { if (I.getDebugLoc()) { Changed = true; I.setDebugLoc(DebugLoc()); } } } return Changed; } bool llvm::StripDebugInfo(Module &M) { bool Changed = false; // Remove all of the calls to the debugger intrinsics, and remove them from // the module. if (Function *Declare = M.getFunction("llvm.dbg.declare")) { while (!Declare->use_empty()) { CallInst *CI = cast(Declare->user_back()); CI->eraseFromParent(); } Declare->eraseFromParent(); Changed = true; } if (Function *DbgVal = M.getFunction("llvm.dbg.value")) { while (!DbgVal->use_empty()) { CallInst *CI = cast(DbgVal->user_back()); CI->eraseFromParent(); } DbgVal->eraseFromParent(); Changed = true; } for (Module::named_metadata_iterator NMI = M.named_metadata_begin(), NME = M.named_metadata_end(); NMI != NME;) { NamedMDNode *NMD = NMI; ++NMI; if (NMD->getName().startswith("llvm.dbg.")) { NMD->eraseFromParent(); Changed = true; } } for (Function &F : M) Changed |= stripDebugInfo(F); if (GVMaterializer *Materializer = M.getMaterializer()) Materializer->setStripDebugInfo(); return Changed; } unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) { if (auto *Val = mdconst::dyn_extract_or_null( M.getModuleFlag("Debug Info Version"))) return Val->getZExtValue(); return 0; } llvm::DenseMap llvm::makeSubprogramMap(const Module &M) { DenseMap R; NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return R; for (MDNode *N : CU_Nodes->operands()) { DICompileUnit CUNode(N); DIArray SPs = CUNode.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) { DISubprogram SP(SPs.getElement(i)); if (Function *F = SP.getFunction()) R.insert(std::make_pair(F, SP)); } } return R; }