//===- SIMemoryLegalizer.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Memory legalizer - implements memory model. More information can be /// found here: /// http://llvm.org/docs/AMDGPUUsage.html#memory-model // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUMachineModuleInfo.h" #include "AMDGPUSubtarget.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/BitmaskEnum.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; using namespace llvm::AMDGPU; #define DEBUG_TYPE "si-memory-legalizer" #define PASS_NAME "SI Memory Legalizer" static cl::opt AmdgcnSkipCacheInvalidations( "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden, cl::desc("Use this to skip inserting cache invalidating instructions.")); namespace { LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); /// Memory operation flags. Can be ORed together. enum class SIMemOp { NONE = 0u, LOAD = 1u << 0, STORE = 1u << 1, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) }; /// Position to insert a new instruction relative to an existing /// instruction. enum class Position { BEFORE, AFTER }; /// The atomic synchronization scopes supported by the AMDGPU target. enum class SIAtomicScope { NONE, SINGLETHREAD, WAVEFRONT, WORKGROUP, AGENT, SYSTEM }; /// The distinct address spaces supported by the AMDGPU target for /// atomic memory operation. Can be ORed toether. enum class SIAtomicAddrSpace { NONE = 0u, GLOBAL = 1u << 0, LDS = 1u << 1, SCRATCH = 1u << 2, GDS = 1u << 3, OTHER = 1u << 4, /// The address spaces that can be accessed by a FLAT instruction. FLAT = GLOBAL | LDS | SCRATCH, /// The address spaces that support atomic instructions. ATOMIC = GLOBAL | LDS | SCRATCH | GDS, /// All address spaces. ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) }; /// Sets named bit \p BitName to "true" if present in instruction \p MI. /// \returns Returns true if \p MI is modified, false otherwise. template bool enableNamedBit(const MachineBasicBlock::iterator &MI) { int BitIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), BitName); if (BitIdx == -1) return false; MachineOperand &Bit = MI->getOperand(BitIdx); if (Bit.getImm() != 0) return false; Bit.setImm(1); return true; } class SIMemOpInfo final { private: friend class SIMemOpAccess; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; SIAtomicScope Scope = SIAtomicScope::SYSTEM; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; bool IsNonTemporal = false; SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, SIAtomicScope Scope = SIAtomicScope::SYSTEM, SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, bool IsCrossAddressSpaceOrdering = true, AtomicOrdering FailureOrdering = AtomicOrdering::SequentiallyConsistent, bool IsNonTemporal = false) : Ordering(Ordering), FailureOrdering(FailureOrdering), Scope(Scope), OrderingAddrSpace(OrderingAddrSpace), InstrAddrSpace(InstrAddrSpace), IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), IsNonTemporal(IsNonTemporal) { // There is also no cross address space ordering if the ordering // address space is the same as the instruction address space and // only contains a single address space. if ((OrderingAddrSpace == InstrAddrSpace) && isPowerOf2_32(uint32_t(InstrAddrSpace))) this->IsCrossAddressSpaceOrdering = false; } public: /// \returns Atomic synchronization scope of the machine instruction used to /// create this SIMemOpInfo. SIAtomicScope getScope() const { return Scope; } /// \returns Ordering constraint of the machine instruction used to /// create this SIMemOpInfo. AtomicOrdering getOrdering() const { return Ordering; } /// \returns Failure ordering constraint of the machine instruction used to /// create this SIMemOpInfo. AtomicOrdering getFailureOrdering() const { return FailureOrdering; } /// \returns The address spaces be accessed by the machine /// instruction used to create this SiMemOpInfo. SIAtomicAddrSpace getInstrAddrSpace() const { return InstrAddrSpace; } /// \returns The address spaces that must be ordered by the machine /// instruction used to create this SiMemOpInfo. SIAtomicAddrSpace getOrderingAddrSpace() const { return OrderingAddrSpace; } /// \returns Return true iff memory ordering of operations on /// different address spaces is required. bool getIsCrossAddressSpaceOrdering() const { return IsCrossAddressSpaceOrdering; } /// \returns True if memory access of the machine instruction used to /// create this SIMemOpInfo is non-temporal, false otherwise. bool isNonTemporal() const { return IsNonTemporal; } /// \returns True if ordering constraint of the machine instruction used to /// create this SIMemOpInfo is unordered or higher, false otherwise. bool isAtomic() const { return Ordering != AtomicOrdering::NotAtomic; } }; class SIMemOpAccess final { private: AMDGPUMachineModuleInfo *MMI = nullptr; /// Reports unsupported message \p Msg for \p MI to LLVM context. void reportUnsupported(const MachineBasicBlock::iterator &MI, const char *Msg) const; /// Inspects the target synchonization scope \p SSID and determines /// the SI atomic scope it corresponds to, the address spaces it /// covers, and whether the memory ordering applies between address /// spaces. Optional> toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrScope) const; /// \return Return a bit set of the address spaces accessed by \p AS. SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; /// \returns Info constructed from \p MI, which has at least machine memory /// operand. Optional constructFromMIWithMMO( const MachineBasicBlock::iterator &MI) const; public: /// Construct class to support accessing the machine memory operands /// of instructions in the machine function \p MF. SIMemOpAccess(MachineFunction &MF); /// \returns Load info if \p MI is a load operation, "None" otherwise. Optional getLoadInfo( const MachineBasicBlock::iterator &MI) const; /// \returns Store info if \p MI is a store operation, "None" otherwise. Optional getStoreInfo( const MachineBasicBlock::iterator &MI) const; /// \returns Atomic fence info if \p MI is an atomic fence operation, /// "None" otherwise. Optional getAtomicFenceInfo( const MachineBasicBlock::iterator &MI) const; /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or /// rmw operation, "None" otherwise. Optional getAtomicCmpxchgOrRmwInfo( const MachineBasicBlock::iterator &MI) const; }; class SICacheControl { protected: /// AMDGPU subtarget info. const GCNSubtarget &ST; /// Instruction info. const SIInstrInfo *TII = nullptr; IsaVersion IV; /// Whether to insert cache invalidating instructions. bool InsertCacheInv; SICacheControl(const GCNSubtarget &ST); public: /// Create a cache control for the subtarget \p ST. static std::unique_ptr create(const GCNSubtarget &ST); /// Update \p MI memory load instruction to bypass any caches up to /// the \p Scope memory scope for address spaces \p /// AddrSpace. Return true iff the instruction was modified. virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const = 0; /// Update \p MI memory instruction to indicate it is /// nontemporal. Return true iff the instruction was modified. virtual bool enableNonTemporal(const MachineBasicBlock::iterator &MI) const = 0; /// Inserts any necessary instructions at position \p Pos relative /// to instruction \p MI to ensure memory instructions before \p Pos of kind /// \p Op associated with address spaces \p AddrSpace have completed. Used /// between memory instructions to enforce the order they become visible as /// observed by other memory instructions executing in memory scope \p Scope. /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between /// address spaces. Returns true iff any instructions inserted. virtual bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const = 0; /// Inserts any necessary instructions at position \p Pos relative to /// instruction \p MI to ensure any subsequent memory instructions of this /// thread with address spaces \p AddrSpace will observe the previous memory /// operations by any thread for memory scopes up to memory scope \p Scope . /// Returns true iff any instructions inserted. virtual bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const = 0; /// Inserts any necessary instructions at position \p Pos relative to /// instruction \p MI to ensure previous memory instructions by this thread /// with address spaces \p AddrSpace have completed and can be observed by /// subsequent memory instructions by any thread executing in memory scope \p /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is /// between address spaces. Returns true iff any instructions inserted. virtual bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const = 0; /// Virtual destructor to allow derivations to be deleted. virtual ~SICacheControl() = default; }; class SIGfx6CacheControl : public SICacheControl { protected: /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI); } /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI); } public: SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {}; bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableNonTemporal(const MachineBasicBlock::iterator &MI) const override; bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const override; }; class SIGfx7CacheControl : public SIGfx6CacheControl { public: SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {}; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; }; class SIGfx10CacheControl : public SIGfx7CacheControl { protected: /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI); } public: SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {}; bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableNonTemporal(const MachineBasicBlock::iterator &MI) const override; bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; }; class SIMemoryLegalizer final : public MachineFunctionPass { private: /// Cache Control. std::unique_ptr CC = nullptr; /// List of atomic pseudo instructions. std::list AtomicPseudoMIs; /// Return true iff instruction \p MI is a atomic instruction that /// returns a result. bool isAtomicRet(const MachineInstr &MI) const { return AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1; } /// Removes all processed atomic pseudo instructions from the current /// function. Returns true if current function is modified, false otherwise. bool removeAtomicPseudoMIs(); /// Expands load operation \p MI. Returns true if instructions are /// added/deleted or \p MI is modified, false otherwise. bool expandLoad(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands store operation \p MI. Returns true if instructions are /// added/deleted or \p MI is modified, false otherwise. bool expandStore(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands atomic fence operation \p MI. Returns true if /// instructions are added/deleted or \p MI is modified, false otherwise. bool expandAtomicFence(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if /// instructions are added/deleted or \p MI is modified, false otherwise. bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); public: static char ID; SIMemoryLegalizer() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return PASS_NAME; } bool runOnMachineFunction(MachineFunction &MF) override; }; } // end namespace anonymous void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, const char *Msg) const { const Function &Func = MI->getParent()->getParent()->getFunction(); DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc()); Func.getContext().diagnose(Diag); } Optional> SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrScope) const { if (SSID == SyncScope::System) return std::make_tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getAgentSSID()) return std::make_tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getWorkgroupSSID()) return std::make_tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getWavefrontSSID()) return std::make_tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC, true); if (SSID == SyncScope::SingleThread) return std::make_tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getSystemOneAddressSpaceSSID()) return std::make_tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC & InstrScope, false); if (SSID == MMI->getAgentOneAddressSpaceSSID()) return std::make_tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC & InstrScope, false); if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) return std::make_tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC & InstrScope, false); if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) return std::make_tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC & InstrScope, false); if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) return std::make_tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC & InstrScope, false); return None; } SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { if (AS == AMDGPUAS::FLAT_ADDRESS) return SIAtomicAddrSpace::FLAT; if (AS == AMDGPUAS::GLOBAL_ADDRESS) return SIAtomicAddrSpace::GLOBAL; if (AS == AMDGPUAS::LOCAL_ADDRESS) return SIAtomicAddrSpace::LDS; if (AS == AMDGPUAS::PRIVATE_ADDRESS) return SIAtomicAddrSpace::SCRATCH; if (AS == AMDGPUAS::REGION_ADDRESS) return SIAtomicAddrSpace::GDS; return SIAtomicAddrSpace::OTHER; } SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) { MMI = &MF.getMMI().getObjFileInfo(); } Optional SIMemOpAccess::constructFromMIWithMMO( const MachineBasicBlock::iterator &MI) const { assert(MI->getNumMemOperands() > 0); SyncScope::ID SSID = SyncScope::SingleThread; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; bool IsNonTemporal = true; // Validator should check whether or not MMOs cover the entire set of // locations accessed by the memory instruction. for (const auto &MMO : MI->memoperands()) { IsNonTemporal &= MMO->isNonTemporal(); InstrAddrSpace |= toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace()); AtomicOrdering OpOrdering = MMO->getOrdering(); if (OpOrdering != AtomicOrdering::NotAtomic) { const auto &IsSyncScopeInclusion = MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID()); if (!IsSyncScopeInclusion) { reportUnsupported(MI, "Unsupported non-inclusive atomic synchronization scope"); return None; } SSID = IsSyncScopeInclusion.getValue() ? SSID : MMO->getSyncScopeID(); Ordering = isStrongerThan(Ordering, OpOrdering) ? Ordering : MMO->getOrdering(); assert(MMO->getFailureOrdering() != AtomicOrdering::Release && MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); FailureOrdering = isStrongerThan(FailureOrdering, MMO->getFailureOrdering()) ? FailureOrdering : MMO->getFailureOrdering(); } } SIAtomicScope Scope = SIAtomicScope::NONE; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; if (Ordering != AtomicOrdering::NotAtomic) { auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); if (!ScopeOrNone) { reportUnsupported(MI, "Unsupported atomic synchronization scope"); return None; } std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = ScopeOrNone.getValue(); if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { reportUnsupported(MI, "Unsupported atomic address space"); return None; } } return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, IsCrossAddressSpaceOrdering, FailureOrdering, IsNonTemporal); } Optional SIMemOpAccess::getLoadInfo( const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(MI->mayLoad() && !MI->mayStore())) return None; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } Optional SIMemOpAccess::getStoreInfo( const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(!MI->mayLoad() && MI->mayStore())) return None; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } Optional SIMemOpAccess::getAtomicFenceInfo( const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) return None; AtomicOrdering Ordering = static_cast(MI->getOperand(0).getImm()); SyncScope::ID SSID = static_cast(MI->getOperand(1).getImm()); auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC); if (!ScopeOrNone) { reportUnsupported(MI, "Unsupported atomic synchronization scope"); return None; } SIAtomicScope Scope = SIAtomicScope::NONE; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = ScopeOrNone.getValue(); if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { reportUnsupported(MI, "Unsupported atomic address space"); return None; } return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, IsCrossAddressSpaceOrdering); } Optional SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(MI->mayLoad() && MI->mayStore())) return None; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { TII = ST.getInstrInfo(); IV = getIsaVersion(ST.getCPU()); InsertCacheInv = !AmdgcnSkipCacheInvalidations; } /* static */ std::unique_ptr SICacheControl::create(const GCNSubtarget &ST) { GCNSubtarget::Generation Generation = ST.getGeneration(); if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) return std::make_unique(ST); if (Generation < AMDGPUSubtarget::GFX10) return std::make_unique(ST); return std::make_unique(ST); } bool SIGfx6CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: Changed |= enableGLCBit(MI); break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx6CacheControl::enableNonTemporal( const MachineBasicBlock::iterator &MI) const { assert(MI->mayLoad() ^ MI->mayStore()); bool Changed = false; /// TODO: Do not enableGLCBit if rmw atomic. Changed |= enableGLCBit(MI); Changed |= enableSLCBit(MI); return Changed; } bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; bool VMCnt = false; bool LGKMCnt = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: VMCnt |= true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The L1 cache keeps all memory operations in order for // wavefronts in the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is // not needed as LDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/GDS memory as LDS operations could be // reordered with respect to later global/GDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The LDS keeps all memory operations in order for // the same wavesfront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" // is not needed as GDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/LDS memory as GDS operations could be // reordered with respect to later global/LDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The GDS keeps all memory operations in order for // the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (VMCnt || LGKMCnt) { unsigned WaitCntImmediate = AMDGPU::encodeWaitcnt(IV, VMCnt ? 0 : getVmcntBitMask(IV), getExpcntBitMask(IV), LGKMCnt ? 0 : getLgkmcntBitMask(IV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); Changed = true; } if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1)); Changed = true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const { return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, IsCrossAddrSpaceOrdering, Pos); } bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); const GCNSubtarget &STM = MBB.getParent()->getSubtarget(); const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() ? AMDGPU::BUFFER_WBINVL1 : AMDGPU::BUFFER_WBINVL1_VOL; if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(InvalidateL1)); Changed = true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx10CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { /// TODO Do not set glc for rmw atomic operations as they /// implicitly bypass the L0/L1 caches. switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: Changed |= enableGLCBit(MI); Changed |= enableDLCBit(MI); break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in // CU mode all waves of a work-group are on the same CU, and so the L0 // does not need to be bypassed. if (!ST.isCuModeEnabled()) Changed |= enableGLCBit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx10CacheControl::enableNonTemporal( const MachineBasicBlock::iterator &MI) const { assert(MI->mayLoad() ^ MI->mayStore()); bool Changed = false; Changed |= enableSLCBit(MI); /// TODO for store (non-rmw atomic) instructions also enableGLCBit(MI) return Changed; } bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; bool VMCnt = false; bool VSCnt = false; bool LGKMCnt = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) VMCnt |= true; if ((Op & SIMemOp::STORE) != SIMemOp::NONE) VSCnt |= true; break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to wait for operations to complete to ensure // they are visible to waves in the other CU as the L0 is per CU. // Otherwise in CU mode and all waves of a work-group are on the same CU // which shares the same L0. if (!ST.isCuModeEnabled()) { if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) VMCnt |= true; if ((Op & SIMemOp::STORE) != SIMemOp::NONE) VSCnt |= true; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The L0 cache keeps all memory operations in order for // work-items in the same wavefront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is // not needed as LDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/GDS memory as LDS operations could be // reordered with respect to later global/GDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The LDS keeps all memory operations in order for // the same wavesfront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" // is not needed as GDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/LDS memory as GDS operations could be // reordered with respect to later global/LDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The GDS keeps all memory operations in order for // the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (VMCnt || LGKMCnt) { unsigned WaitCntImmediate = AMDGPU::encodeWaitcnt(IV, VMCnt ? 0 : getVmcntBitMask(IV), getExpcntBitMask(IV), LGKMCnt ? 0 : getLgkmcntBitMask(IV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); Changed = true; } if (VSCnt) { BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) .addReg(AMDGPU::SGPR_NULL, RegState::Undef) .addImm(0); Changed = true; } if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV)); Changed = true; break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise // in CU mode and all waves of a work-group are on the same CU, and so the // L0 does not need to be invalidated. if (!ST.isCuModeEnabled()) { BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); Changed = true; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIMemoryLegalizer::removeAtomicPseudoMIs() { if (AtomicPseudoMIs.empty()) return false; for (auto &MI : AtomicPseudoMIs) MI->eraseFromParent(); AtomicPseudoMIs.clear(); return true; } bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Monotonic || MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(), MOI.getOrderingAddrSpace()); } if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), SIMemOp::LOAD | SIMemOp::STORE, MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getInstrAddrSpace(), SIMemOp::LOAD, MOI.getIsCrossAddressSpaceOrdering(), Position::AFTER); Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::AFTER); } return Changed; } // Atomic instructions do not have the nontemporal attribute. if (MOI.isNonTemporal()) { Changed |= CC->enableNonTemporal(MI); return Changed; } return Changed; } bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(!MI->mayLoad() && MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); return Changed; } // Atomic instructions do not have the nontemporal attribute. if (MOI.isNonTemporal()) { Changed |= CC->enableNonTemporal(MI); return Changed; } return Changed; } bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); AtomicPseudoMIs.push_back(MI); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) /// TODO: This relies on a barrier always generating a waitcnt /// for LDS to ensure it is not reordered with the completion of /// the proceeding LDS operations. If barrier had a memory /// ordering and memory scope, then library does not need to /// generate a fence. Could add support in this file for /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally /// adding S_WAITCNT before a S_BARRIER. Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); // TODO: If both release and invalidate are happening they could be combined // to use the single "BUFFER_WBL2" instruction. This could be done by // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to // track cache invalidate and write back instructions. if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::BEFORE); return Changed; } return Changed; } bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->mayLoad() && MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || MOI.getFailureOrdering() == AtomicOrdering::Acquire || MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), isAtomicRet(*MI) ? SIMemOp::LOAD : SIMemOp::STORE, MOI.getIsCrossAddressSpaceOrdering(), Position::AFTER); Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::AFTER); } return Changed; } return Changed; } bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; SIMemOpAccess MOA(MF); CC = SICacheControl::create(MF.getSubtarget()); for (auto &MBB : MF) { for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { if (MI->getOpcode() == TargetOpcode::BUNDLE && MI->mayLoadOrStore()) { MachineBasicBlock::instr_iterator II(MI->getIterator()); for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); I != E && I->isBundledWithPred(); ++I) { I->unbundleFromPred(); for (MachineOperand &MO : I->operands()) if (MO.isReg()) MO.setIsInternalRead(false); } MI->eraseFromParent(); MI = II->getIterator(); } if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) continue; if (const auto &MOI = MOA.getLoadInfo(MI)) Changed |= expandLoad(MOI.getValue(), MI); else if (const auto &MOI = MOA.getStoreInfo(MI)) Changed |= expandStore(MOI.getValue(), MI); else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) Changed |= expandAtomicFence(MOI.getValue(), MI); else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) Changed |= expandAtomicCmpxchgOrRmw(MOI.getValue(), MI); } } Changed |= removeAtomicPseudoMIs(); return Changed; } INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false) char SIMemoryLegalizer::ID = 0; char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID; FunctionPass *llvm::createSIMemoryLegalizerPass() { return new SIMemoryLegalizer(); }