//===-- llvm-lipo.cpp - a tool for manipulating universal binaries --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // A utility for creating / splitting / inspecting universal binaries. // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/Object/Binary.h" #include "llvm/Object/MachO.h" #include "llvm/Object/MachOUniversal.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/WithColor.h" #include "llvm/TextAPI/MachO/Architecture.h" using namespace llvm; using namespace llvm::object; static const StringRef ToolName = "llvm-lipo"; LLVM_ATTRIBUTE_NORETURN static void reportError(Twine Message) { WithColor::error(errs(), ToolName) << Message << "\n"; errs().flush(); exit(EXIT_FAILURE); } LLVM_ATTRIBUTE_NORETURN static void reportError(StringRef File, Error E) { assert(E); std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS); OS.flush(); WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf; exit(EXIT_FAILURE); } namespace { enum LipoID { LIPO_INVALID = 0, // This is not an option ID. #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ HELPTEXT, METAVAR, VALUES) \ LIPO_##ID, #include "LipoOpts.inc" #undef OPTION }; // LipoInfoTable below references LIPO_##PREFIX. OptionGroup has prefix nullptr. const char *const *LIPO_nullptr = nullptr; #define PREFIX(NAME, VALUE) const char *const LIPO_##NAME[] = VALUE; #include "LipoOpts.inc" #undef PREFIX static const opt::OptTable::Info LipoInfoTable[] = { #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ HELPTEXT, METAVAR, VALUES) \ {LIPO_##PREFIX, NAME, HELPTEXT, \ METAVAR, LIPO_##ID, opt::Option::KIND##Class, \ PARAM, FLAGS, LIPO_##GROUP, \ LIPO_##ALIAS, ALIASARGS, VALUES}, #include "LipoOpts.inc" #undef OPTION }; class LipoOptTable : public opt::OptTable { public: LipoOptTable() : OptTable(LipoInfoTable) {} }; enum class LipoAction { PrintArchs, PrintInfo, VerifyArch, ThinArch, ExtractArch, CreateUniversal, ReplaceArch, }; struct InputFile { Optional ArchType; StringRef FileName; }; struct Config { SmallVector InputFiles; SmallVector VerifyArchList; SmallVector ReplacementFiles; StringMap SegmentAlignments; std::string ArchType; std::string OutputFile; LipoAction ActionToPerform; }; // For compatibility with cctools lipo, a file's alignment is calculated as the // minimum aligment of all segments. For object files, the file's alignment is // the maximum alignment of its sections. static uint32_t calculateFileAlignment(const MachOObjectFile &O) { uint32_t P2CurrentAlignment; uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment; const bool Is64Bit = O.is64Bit(); for (const auto &LC : O.load_commands()) { if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT)) continue; if (O.getHeader().filetype == MachO::MH_OBJECT) { unsigned NumberOfSections = (Is64Bit ? O.getSegment64LoadCommand(LC).nsects : O.getSegmentLoadCommand(LC).nsects); P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment; for (unsigned SI = 0; SI < NumberOfSections; ++SI) { P2CurrentAlignment = std::max(P2CurrentAlignment, (Is64Bit ? O.getSection64(LC, SI).align : O.getSection(LC, SI).align)); } } else { P2CurrentAlignment = countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr : O.getSegmentLoadCommand(LC).vmaddr); } P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment); } // return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment return std::max( static_cast(2), std::min(P2MinAlignment, static_cast( MachOUniversalBinary::MaxSectionAlignment))); } static uint32_t calculateAlignment(const MachOObjectFile *ObjectFile) { switch (ObjectFile->getHeader().cputype) { case MachO::CPU_TYPE_I386: case MachO::CPU_TYPE_X86_64: case MachO::CPU_TYPE_POWERPC: case MachO::CPU_TYPE_POWERPC64: return 12; // log2 value of page size(4k) for x86 and PPC case MachO::CPU_TYPE_ARM: case MachO::CPU_TYPE_ARM64: case MachO::CPU_TYPE_ARM64_32: return 14; // log2 value of page size(16k) for Darwin ARM default: return calculateFileAlignment(*ObjectFile); } } class Slice { const Binary *B; uint32_t CPUType; uint32_t CPUSubType; std::string ArchName; // P2Alignment field stores slice alignment values from universal // binaries. This is also needed to order the slices so the total // file size can be calculated before creating the output buffer. uint32_t P2Alignment; public: Slice(const MachOObjectFile *O, uint32_t Align) : B(O), CPUType(O->getHeader().cputype), CPUSubType(O->getHeader().cpusubtype), ArchName(std::string(O->getArchTriple().getArchName())), P2Alignment(Align) {} explicit Slice(const MachOObjectFile *O) : Slice(O, calculateAlignment(O)){}; explicit Slice(const Archive *A) : B(A) { Error Err = Error::success(); std::unique_ptr FO = nullptr; for (const Archive::Child &Child : A->children(Err)) { Expected> ChildOrErr = Child.getAsBinary(); if (!ChildOrErr) reportError(A->getFileName(), ChildOrErr.takeError()); Binary *Bin = ChildOrErr.get().get(); if (Bin->isMachOUniversalBinary()) reportError(("archive member " + Bin->getFileName() + " is a fat file (not allowed in an archive)") .str()); if (!Bin->isMachO()) reportError(("archive member " + Bin->getFileName() + " is not a MachO file (not allowed in an archive)")); MachOObjectFile *O = cast(Bin); if (FO && std::tie(FO->getHeader().cputype, FO->getHeader().cpusubtype) != std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) { reportError(("archive member " + O->getFileName() + " cputype (" + Twine(O->getHeader().cputype) + ") and cpusubtype(" + Twine(O->getHeader().cpusubtype) + ") does not match previous archive members cputype (" + Twine(FO->getHeader().cputype) + ") and cpusubtype(" + Twine(FO->getHeader().cpusubtype) + ") (all members must match) " + FO->getFileName()) .str()); } if (!FO) { ChildOrErr.get().release(); FO.reset(O); } } if (Err) reportError(A->getFileName(), std::move(Err)); if (!FO) reportError(("empty archive with no architecture specification: " + A->getFileName() + " (can't determine architecture for it)") .str()); CPUType = FO->getHeader().cputype; CPUSubType = FO->getHeader().cpusubtype; ArchName = std::string(FO->getArchTriple().getArchName()); // Replicate the behavior of cctools lipo. P2Alignment = FO->is64Bit() ? 3 : 2; } void setP2Alignment(uint32_t Align) { P2Alignment = Align; } const Binary *getBinary() const { return B; } uint32_t getCPUType() const { return CPUType; } uint32_t getCPUSubType() const { return CPUSubType; } uint32_t getP2Alignment() const { return P2Alignment; } uint64_t getCPUID() const { return static_cast(CPUType) << 32 | CPUSubType; } std::string getArchString() const { if (!ArchName.empty()) return ArchName; return ("unknown(" + Twine(CPUType) + "," + Twine(CPUSubType & ~MachO::CPU_SUBTYPE_MASK) + ")") .str(); } friend bool operator<(const Slice &Lhs, const Slice &Rhs) { if (Lhs.CPUType == Rhs.CPUType) return Lhs.CPUSubType < Rhs.CPUSubType; // force arm64-family to follow after all other slices for // compatibility with cctools lipo if (Lhs.CPUType == MachO::CPU_TYPE_ARM64) return false; if (Rhs.CPUType == MachO::CPU_TYPE_ARM64) return true; // Sort by alignment to minimize file size return Lhs.P2Alignment < Rhs.P2Alignment; } }; } // end namespace static void validateArchitectureName(StringRef ArchitectureName) { if (!MachOObjectFile::isValidArch(ArchitectureName)) { std::string Buf; raw_string_ostream OS(Buf); OS << "Invalid architecture: " << ArchitectureName << "\nValid architecture names are:"; for (auto arch : MachOObjectFile::getValidArchs()) OS << " " << arch; reportError(OS.str()); } } static Config parseLipoOptions(ArrayRef ArgsArr) { Config C; LipoOptTable T; unsigned MissingArgumentIndex, MissingArgumentCount; opt::InputArgList InputArgs = T.ParseArgs(ArgsArr, MissingArgumentIndex, MissingArgumentCount); if (MissingArgumentCount) reportError("missing argument to " + StringRef(InputArgs.getArgString(MissingArgumentIndex)) + " option"); if (InputArgs.size() == 0) { // PrintHelp does not accept Twine. T.PrintHelp(errs(), "llvm-lipo input[s] option[s]", "llvm-lipo"); exit(EXIT_FAILURE); } if (InputArgs.hasArg(LIPO_help)) { // PrintHelp does not accept Twine. T.PrintHelp(outs(), "llvm-lipo input[s] option[s]", "llvm-lipo"); exit(EXIT_SUCCESS); } if (InputArgs.hasArg(LIPO_version)) { outs() << ToolName + "\n"; cl::PrintVersionMessage(); exit(EXIT_SUCCESS); } for (auto Arg : InputArgs.filtered(LIPO_UNKNOWN)) reportError("unknown argument '" + Arg->getAsString(InputArgs) + "'"); for (auto Arg : InputArgs.filtered(LIPO_INPUT)) C.InputFiles.push_back({None, Arg->getValue()}); for (auto Arg : InputArgs.filtered(LIPO_arch)) { validateArchitectureName(Arg->getValue(0)); if (!Arg->getValue(1)) reportError( "arch is missing an argument: expects -arch arch_type file_name"); C.InputFiles.push_back({StringRef(Arg->getValue(0)), Arg->getValue(1)}); } if (C.InputFiles.empty()) reportError("at least one input file should be specified"); if (InputArgs.hasArg(LIPO_output)) C.OutputFile = std::string(InputArgs.getLastArgValue(LIPO_output)); for (auto Segalign : InputArgs.filtered(LIPO_segalign)) { if (!Segalign->getValue(1)) reportError("segalign is missing an argument: expects -segalign " "arch_type alignment_value"); validateArchitectureName(Segalign->getValue(0)); uint32_t AlignmentValue; if (!to_integer(Segalign->getValue(1), AlignmentValue, 16)) reportError("argument to -segalign " + Twine(Segalign->getValue(1)) + " (hex) is not a proper hexadecimal number"); if (!isPowerOf2_32(AlignmentValue)) reportError("argument to -segalign " + Twine(Segalign->getValue(1)) + " (hex) must be a non-zero power of two"); if (Log2_32(AlignmentValue) > MachOUniversalBinary::MaxSectionAlignment) reportError( "argument to -segalign " + Twine(Segalign->getValue(1)) + " (hex) must be less than or equal to the maximum section align 2^" + Twine(MachOUniversalBinary::MaxSectionAlignment)); auto Entry = C.SegmentAlignments.try_emplace(Segalign->getValue(0), Log2_32(AlignmentValue)); if (!Entry.second) reportError("-segalign " + Twine(Segalign->getValue(0)) + " specified multiple times: " + Twine(1 << Entry.first->second) + ", " + Twine(AlignmentValue)); } SmallVector ActionArgs(InputArgs.filtered(LIPO_action_group)); if (ActionArgs.empty()) reportError("at least one action should be specified"); // errors if multiple actions specified other than replace // multiple replace flags may be specified, as long as they are not mixed with // other action flags auto ReplacementArgsRange = InputArgs.filtered(LIPO_replace); if (ActionArgs.size() > 1 && ActionArgs.size() != static_cast(std::distance(ReplacementArgsRange.begin(), ReplacementArgsRange.end()))) { std::string Buf; raw_string_ostream OS(Buf); OS << "only one of the following actions can be specified:"; for (auto Arg : ActionArgs) OS << " " << Arg->getSpelling(); reportError(OS.str()); } switch (ActionArgs[0]->getOption().getID()) { case LIPO_verify_arch: for (auto A : InputArgs.getAllArgValues(LIPO_verify_arch)) C.VerifyArchList.push_back(A); if (C.VerifyArchList.empty()) reportError( "verify_arch requires at least one architecture to be specified"); if (C.InputFiles.size() > 1) reportError("verify_arch expects a single input file"); C.ActionToPerform = LipoAction::VerifyArch; return C; case LIPO_archs: if (C.InputFiles.size() > 1) reportError("archs expects a single input file"); C.ActionToPerform = LipoAction::PrintArchs; return C; case LIPO_info: C.ActionToPerform = LipoAction::PrintInfo; return C; case LIPO_thin: if (C.InputFiles.size() > 1) reportError("thin expects a single input file"); if (C.OutputFile.empty()) reportError("thin expects a single output file"); C.ArchType = ActionArgs[0]->getValue(); validateArchitectureName(C.ArchType); C.ActionToPerform = LipoAction::ThinArch; return C; case LIPO_extract: if (C.InputFiles.size() > 1) reportError("extract expects a single input file"); if (C.OutputFile.empty()) reportError("extract expects a single output file"); C.ArchType = ActionArgs[0]->getValue(); validateArchitectureName(C.ArchType); C.ActionToPerform = LipoAction::ExtractArch; return C; case LIPO_create: if (C.OutputFile.empty()) reportError("create expects a single output file to be specified"); C.ActionToPerform = LipoAction::CreateUniversal; return C; case LIPO_replace: for (auto Action : ActionArgs) { if (!Action->getValue(1)) reportError( "replace is missing an argument: expects -replace arch_type " "file_name"); validateArchitectureName(Action->getValue(0)); C.ReplacementFiles.push_back( {StringRef(Action->getValue(0)), Action->getValue(1)}); } if (C.OutputFile.empty()) reportError("replace expects a single output file to be specified"); if (C.InputFiles.size() > 1) reportError("replace expects a single input file"); C.ActionToPerform = LipoAction::ReplaceArch; return C; default: reportError("llvm-lipo action unspecified"); } } static SmallVector, 1> readInputBinaries(ArrayRef InputFiles) { SmallVector, 1> InputBinaries; for (const InputFile &IF : InputFiles) { Expected> BinaryOrErr = createBinary(IF.FileName); if (!BinaryOrErr) reportError(IF.FileName, BinaryOrErr.takeError()); const Binary *B = BinaryOrErr->getBinary(); if (!B->isArchive() && !B->isMachO() && !B->isMachOUniversalBinary()) reportError("File " + IF.FileName + " has unsupported binary format"); if (IF.ArchType && (B->isMachO() || B->isArchive())) { const auto S = B->isMachO() ? Slice(cast(B)) : Slice(cast(B)); const auto SpecifiedCPUType = MachO::getCPUTypeFromArchitecture( MachO::getArchitectureFromName( Triple(*IF.ArchType).getArchName())) .first; // For compatibility with cctools' lipo the comparison is relaxed just to // checking cputypes. if (S.getCPUType() != SpecifiedCPUType) reportError("specified architecture: " + *IF.ArchType + " for file: " + B->getFileName() + " does not match the file's architecture (" + S.getArchString() + ")"); } InputBinaries.push_back(std::move(*BinaryOrErr)); } return InputBinaries; } LLVM_ATTRIBUTE_NORETURN static void verifyArch(ArrayRef> InputBinaries, ArrayRef VerifyArchList) { assert(!VerifyArchList.empty() && "The list of architectures should be non-empty"); assert(InputBinaries.size() == 1 && "Incorrect number of input binaries"); for (StringRef Arch : VerifyArchList) validateArchitectureName(Arch); if (auto UO = dyn_cast(InputBinaries.front().getBinary())) { for (StringRef Arch : VerifyArchList) { Expected Obj = UO->getObjectForArch(Arch); if (!Obj) exit(EXIT_FAILURE); } } else if (auto O = dyn_cast(InputBinaries.front().getBinary())) { const Triple::ArchType ObjectArch = O->getArch(); for (StringRef Arch : VerifyArchList) if (ObjectArch != Triple(Arch).getArch()) exit(EXIT_FAILURE); } else { llvm_unreachable("Unexpected binary format"); } exit(EXIT_SUCCESS); } static void printBinaryArchs(const Binary *Binary, raw_ostream &OS) { // Prints trailing space for compatibility with cctools lipo. if (auto UO = dyn_cast(Binary)) { for (const auto &O : UO->objects()) { Expected> MachOObjOrError = O.getAsObjectFile(); if (MachOObjOrError) { OS << Slice(MachOObjOrError->get()).getArchString() << " "; continue; } Expected> ArchiveOrError = O.getAsArchive(); if (ArchiveOrError) { consumeError(MachOObjOrError.takeError()); OS << Slice(ArchiveOrError->get()).getArchString() << " "; continue; } consumeError(ArchiveOrError.takeError()); reportError(Binary->getFileName(), MachOObjOrError.takeError()); } OS << "\n"; return; } OS << Slice(cast(Binary)).getArchString() << " \n"; } LLVM_ATTRIBUTE_NORETURN static void printArchs(ArrayRef> InputBinaries) { assert(InputBinaries.size() == 1 && "Incorrect number of input binaries"); printBinaryArchs(InputBinaries.front().getBinary(), outs()); exit(EXIT_SUCCESS); } LLVM_ATTRIBUTE_NORETURN static void printInfo(ArrayRef> InputBinaries) { // Group universal and thin files together for compatibility with cctools lipo for (auto &IB : InputBinaries) { const Binary *Binary = IB.getBinary(); if (Binary->isMachOUniversalBinary()) { outs() << "Architectures in the fat file: " << Binary->getFileName() << " are: "; printBinaryArchs(Binary, outs()); } } for (auto &IB : InputBinaries) { const Binary *Binary = IB.getBinary(); if (!Binary->isMachOUniversalBinary()) { assert(Binary->isMachO() && "expected MachO binary"); outs() << "Non-fat file: " << Binary->getFileName() << " is architecture: "; printBinaryArchs(Binary, outs()); } } exit(EXIT_SUCCESS); } LLVM_ATTRIBUTE_NORETURN static void thinSlice(ArrayRef> InputBinaries, StringRef ArchType, StringRef OutputFileName) { assert(!ArchType.empty() && "The architecture type should be non-empty"); assert(InputBinaries.size() == 1 && "Incorrect number of input binaries"); assert(!OutputFileName.empty() && "Thin expects a single output file"); if (InputBinaries.front().getBinary()->isMachO()) { reportError("input file " + InputBinaries.front().getBinary()->getFileName() + " must be a fat file when the -thin option is specified"); exit(EXIT_FAILURE); } auto *UO = cast(InputBinaries.front().getBinary()); Expected> Obj = UO->getMachOObjectForArch(ArchType); Expected> Ar = UO->getArchiveForArch(ArchType); if (!Obj && !Ar) reportError("fat input file " + UO->getFileName() + " does not contain the specified architecture " + ArchType + " to thin it to"); Binary *B = Obj ? static_cast(Obj->get()) : static_cast(Ar->get()); Expected> OutFileOrError = FileOutputBuffer::create(OutputFileName, B->getMemoryBufferRef().getBufferSize(), sys::fs::can_execute(UO->getFileName()) ? FileOutputBuffer::F_executable : 0); if (!OutFileOrError) reportError(OutputFileName, OutFileOrError.takeError()); std::copy(B->getMemoryBufferRef().getBufferStart(), B->getMemoryBufferRef().getBufferEnd(), OutFileOrError.get()->getBufferStart()); if (Error E = OutFileOrError.get()->commit()) reportError(OutputFileName, std::move(E)); exit(EXIT_SUCCESS); } static void checkArchDuplicates(ArrayRef Slices) { DenseMap CPUIds; for (const auto &S : Slices) { auto Entry = CPUIds.try_emplace(S.getCPUID(), S.getBinary()); if (!Entry.second) reportError(Entry.first->second->getFileName() + " and " + S.getBinary()->getFileName() + " have the same architecture " + S.getArchString() + " and therefore cannot be in the same universal binary"); } } template static void updateAlignments(Range &Slices, const StringMap &Alignments) { for (auto &Slice : Slices) { auto Alignment = Alignments.find(Slice.getArchString()); if (Alignment != Alignments.end()) Slice.setP2Alignment(Alignment->second); } } static void checkUnusedAlignments(ArrayRef Slices, const StringMap &Alignments) { auto HasArch = [&](StringRef Arch) { return llvm::find_if(Slices, [Arch](Slice S) { return S.getArchString() == Arch; }) != Slices.end(); }; for (StringRef Arch : Alignments.keys()) if (!HasArch(Arch)) reportError("-segalign " + Arch + " specified but resulting fat file does not contain " "that architecture "); } // Updates vector ExtractedObjects with the MachOObjectFiles extracted from // Universal Binary files to transfer ownership. static SmallVector buildSlices( ArrayRef> InputBinaries, const StringMap &Alignments, SmallVectorImpl> &ExtractedObjects) { SmallVector Slices; for (auto &IB : InputBinaries) { const Binary *InputBinary = IB.getBinary(); if (auto UO = dyn_cast(InputBinary)) { for (const auto &O : UO->objects()) { Expected> BinaryOrError = O.getAsObjectFile(); if (!BinaryOrError) reportError(InputBinary->getFileName(), BinaryOrError.takeError()); ExtractedObjects.push_back(std::move(BinaryOrError.get())); Slices.emplace_back(ExtractedObjects.back().get(), O.getAlign()); } } else if (auto O = dyn_cast(InputBinary)) { Slices.emplace_back(O); } else if (auto A = dyn_cast(InputBinary)) { Slices.emplace_back(A); } else { llvm_unreachable("Unexpected binary format"); } } updateAlignments(Slices, Alignments); return Slices; } static SmallVector buildFatArchList(ArrayRef Slices) { SmallVector FatArchList; uint64_t Offset = sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch); for (const auto &S : Slices) { Offset = alignTo(Offset, 1ull << S.getP2Alignment()); if (Offset > UINT32_MAX) reportError("fat file too large to be created because the offset " "field in struct fat_arch is only 32-bits and the offset " + Twine(Offset) + " for " + S.getBinary()->getFileName() + " for architecture " + S.getArchString() + "exceeds that."); MachO::fat_arch FatArch; FatArch.cputype = S.getCPUType(); FatArch.cpusubtype = S.getCPUSubType(); FatArch.offset = Offset; FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize(); FatArch.align = S.getP2Alignment(); Offset += FatArch.size; FatArchList.push_back(FatArch); } return FatArchList; } static void createUniversalBinary(SmallVectorImpl &Slices, StringRef OutputFileName) { MachO::fat_header FatHeader; FatHeader.magic = MachO::FAT_MAGIC; FatHeader.nfat_arch = Slices.size(); stable_sort(Slices); SmallVector FatArchList = buildFatArchList(Slices); const bool IsExecutable = any_of(Slices, [](Slice S) { return sys::fs::can_execute(S.getBinary()->getFileName()); }); const uint64_t OutputFileSize = static_cast(FatArchList.back().offset) + FatArchList.back().size; Expected> OutFileOrError = FileOutputBuffer::create(OutputFileName, OutputFileSize, IsExecutable ? FileOutputBuffer::F_executable : 0); if (!OutFileOrError) reportError(OutputFileName, OutFileOrError.takeError()); std::unique_ptr OutFile = std::move(OutFileOrError.get()); std::memset(OutFile->getBufferStart(), 0, OutputFileSize); if (sys::IsLittleEndianHost) MachO::swapStruct(FatHeader); std::memcpy(OutFile->getBufferStart(), &FatHeader, sizeof(MachO::fat_header)); for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) { MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef(); std::copy(BufferRef.getBufferStart(), BufferRef.getBufferEnd(), OutFile->getBufferStart() + FatArchList[Index].offset); } // FatArchs written after Slices in order to reduce the number of swaps for // the LittleEndian case if (sys::IsLittleEndianHost) for (MachO::fat_arch &FA : FatArchList) MachO::swapStruct(FA); std::memcpy(OutFile->getBufferStart() + sizeof(MachO::fat_header), FatArchList.begin(), sizeof(MachO::fat_arch) * FatArchList.size()); if (Error E = OutFile->commit()) reportError(OutputFileName, std::move(E)); } LLVM_ATTRIBUTE_NORETURN static void createUniversalBinary(ArrayRef> InputBinaries, const StringMap &Alignments, StringRef OutputFileName) { assert(InputBinaries.size() >= 1 && "Incorrect number of input binaries"); assert(!OutputFileName.empty() && "Create expects a single output file"); SmallVector, 1> ExtractedObjects; SmallVector Slices = buildSlices(InputBinaries, Alignments, ExtractedObjects); checkArchDuplicates(Slices); checkUnusedAlignments(Slices, Alignments); createUniversalBinary(Slices, OutputFileName); exit(EXIT_SUCCESS); } LLVM_ATTRIBUTE_NORETURN static void extractSlice(ArrayRef> InputBinaries, const StringMap &Alignments, StringRef ArchType, StringRef OutputFileName) { assert(!ArchType.empty() && "The architecture type should be non-empty"); assert(InputBinaries.size() == 1 && "Incorrect number of input binaries"); assert(!OutputFileName.empty() && "Thin expects a single output file"); if (InputBinaries.front().getBinary()->isMachO()) { reportError("input file " + InputBinaries.front().getBinary()->getFileName() + " must be a fat file when the -extract option is specified"); } SmallVector, 2> ExtractedObjects; SmallVector Slices = buildSlices(InputBinaries, Alignments, ExtractedObjects); erase_if(Slices, [ArchType](const Slice &S) { return ArchType != S.getArchString(); }); if (Slices.empty()) reportError( "fat input file " + InputBinaries.front().getBinary()->getFileName() + " does not contain the specified architecture " + ArchType); createUniversalBinary(Slices, OutputFileName); exit(EXIT_SUCCESS); } static StringMap buildReplacementSlices(ArrayRef> ReplacementBinaries, const StringMap &Alignments) { StringMap Slices; // populates StringMap of slices to replace with; error checks for mismatched // replace flag args, fat files, and duplicate arch_types for (const auto &OB : ReplacementBinaries) { const Binary *ReplacementBinary = OB.getBinary(); auto O = dyn_cast(ReplacementBinary); if (!O) reportError("replacement file: " + ReplacementBinary->getFileName() + " is a fat file (must be a thin file)"); Slice S(O); auto Entry = Slices.try_emplace(S.getArchString(), S); if (!Entry.second) reportError("-replace " + S.getArchString() + " specified multiple times: " + Entry.first->second.getBinary()->getFileName() + ", " + O->getFileName()); } auto SlicesMapRange = map_range( Slices, [](StringMapEntry &E) -> Slice & { return E.getValue(); }); updateAlignments(SlicesMapRange, Alignments); return Slices; } LLVM_ATTRIBUTE_NORETURN static void replaceSlices(ArrayRef> InputBinaries, const StringMap &Alignments, StringRef OutputFileName, ArrayRef ReplacementFiles) { assert(InputBinaries.size() == 1 && "Incorrect number of input binaries"); assert(!OutputFileName.empty() && "Replace expects a single output file"); if (InputBinaries.front().getBinary()->isMachO()) reportError("input file " + InputBinaries.front().getBinary()->getFileName() + " must be a fat file when the -replace option is specified"); SmallVector, 1> ReplacementBinaries = readInputBinaries(ReplacementFiles); StringMap ReplacementSlices = buildReplacementSlices(ReplacementBinaries, Alignments); SmallVector, 2> ExtractedObjects; SmallVector Slices = buildSlices(InputBinaries, Alignments, ExtractedObjects); for (auto &Slice : Slices) { auto It = ReplacementSlices.find(Slice.getArchString()); if (It != ReplacementSlices.end()) { Slice = It->second; ReplacementSlices.erase(It); // only keep remaining replacing arch_types } } if (!ReplacementSlices.empty()) reportError("-replace " + ReplacementSlices.begin()->first() + " specified but fat file: " + InputBinaries.front().getBinary()->getFileName() + " does not contain that architecture"); checkUnusedAlignments(Slices, Alignments); createUniversalBinary(Slices, OutputFileName); exit(EXIT_SUCCESS); } int main(int argc, char **argv) { InitLLVM X(argc, argv); Config C = parseLipoOptions(makeArrayRef(argv + 1, argc)); SmallVector, 1> InputBinaries = readInputBinaries(C.InputFiles); switch (C.ActionToPerform) { case LipoAction::VerifyArch: verifyArch(InputBinaries, C.VerifyArchList); break; case LipoAction::PrintArchs: printArchs(InputBinaries); break; case LipoAction::PrintInfo: printInfo(InputBinaries); break; case LipoAction::ThinArch: thinSlice(InputBinaries, C.ArchType, C.OutputFile); break; case LipoAction::ExtractArch: extractSlice(InputBinaries, C.SegmentAlignments, C.ArchType, C.OutputFile); break; case LipoAction::CreateUniversal: createUniversalBinary(InputBinaries, C.SegmentAlignments, C.OutputFile); break; case LipoAction::ReplaceArch: replaceSlices(InputBinaries, C.SegmentAlignments, C.OutputFile, C.ReplacementFiles); break; } return EXIT_SUCCESS; }