//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM module linker. // //===----------------------------------------------------------------------===// #include "llvm/Linker/Linker.h" #include "llvm-c/Linker.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/TypeFinder.h" #include "llvm/Transforms/Utils/Cloning.h" using namespace llvm; //===----------------------------------------------------------------------===// // TypeMap implementation. //===----------------------------------------------------------------------===// namespace { class TypeMapTy : public ValueMapTypeRemapper { /// This is a mapping from a source type to a destination type to use. DenseMap MappedTypes; /// When checking to see if two subgraphs are isomorphic, we speculatively /// add types to MappedTypes, but keep track of them here in case we need to /// roll back. SmallVector SpeculativeTypes; SmallVector SpeculativeDstOpaqueTypes; /// This is a list of non-opaque structs in the source module that are mapped /// to an opaque struct in the destination module. SmallVector SrcDefinitionsToResolve; /// This is the set of opaque types in the destination modules who are /// getting a body from the source module. SmallPtrSet DstResolvedOpaqueTypes; public: TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet) : DstStructTypesSet(DstStructTypesSet) {} Linker::IdentifiedStructTypeSet &DstStructTypesSet; /// Indicate that the specified type in the destination module is conceptually /// equivalent to the specified type in the source module. void addTypeMapping(Type *DstTy, Type *SrcTy); /// Produce a body for an opaque type in the dest module from a type /// definition in the source module. void linkDefinedTypeBodies(); /// Return the mapped type to use for the specified input type from the /// source module. Type *get(Type *SrcTy); Type *get(Type *SrcTy, SmallPtrSet &Visited); void finishType(StructType *DTy, StructType *STy, ArrayRef ETypes); FunctionType *get(FunctionType *T) { return cast(get((Type *)T)); } /// Dump out the type map for debugging purposes. void dump() const { for (auto &Pair : MappedTypes) { dbgs() << "TypeMap: "; Pair.first->print(dbgs()); dbgs() << " => "; Pair.second->print(dbgs()); dbgs() << '\n'; } } private: Type *remapType(Type *SrcTy) override { return get(SrcTy); } bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); }; } void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { assert(SpeculativeTypes.empty()); assert(SpeculativeDstOpaqueTypes.empty()); // Check to see if these types are recursively isomorphic and establish a // mapping between them if so. if (!areTypesIsomorphic(DstTy, SrcTy)) { // Oops, they aren't isomorphic. Just discard this request by rolling out // any speculative mappings we've established. for (Type *Ty : SpeculativeTypes) MappedTypes.erase(Ty); SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - SpeculativeDstOpaqueTypes.size()); for (StructType *Ty : SpeculativeDstOpaqueTypes) DstResolvedOpaqueTypes.erase(Ty); } else { for (Type *Ty : SpeculativeTypes) if (auto *STy = dyn_cast(Ty)) if (STy->hasName()) STy->setName(""); } SpeculativeTypes.clear(); SpeculativeDstOpaqueTypes.clear(); } /// Recursively walk this pair of types, returning true if they are isomorphic, /// false if they are not. bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Two types with differing kinds are clearly not isomorphic. if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; // If we have an entry in the MappedTypes table, then we have our answer. Type *&Entry = MappedTypes[SrcTy]; if (Entry) return Entry == DstTy; // Two identical types are clearly isomorphic. Remember this // non-speculatively. if (DstTy == SrcTy) { Entry = DstTy; return true; } // Okay, we have two types with identical kinds that we haven't seen before. // If this is an opaque struct type, special case it. if (StructType *SSTy = dyn_cast(SrcTy)) { // Mapping an opaque type to any struct, just keep the dest struct. if (SSTy->isOpaque()) { Entry = DstTy; SpeculativeTypes.push_back(SrcTy); return true; } // Mapping a non-opaque source type to an opaque dest. If this is the first // type that we're mapping onto this destination type then we succeed. Keep // the dest, but fill it in later. If this is the second (different) type // that we're trying to map onto the same opaque type then we fail. if (cast(DstTy)->isOpaque()) { // We can only map one source type onto the opaque destination type. if (!DstResolvedOpaqueTypes.insert(cast(DstTy)).second) return false; SrcDefinitionsToResolve.push_back(SSTy); SpeculativeTypes.push_back(SrcTy); SpeculativeDstOpaqueTypes.push_back(cast(DstTy)); Entry = DstTy; return true; } } // If the number of subtypes disagree between the two types, then we fail. if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) return false; // Fail if any of the extra properties (e.g. array size) of the type disagree. if (isa(DstTy)) return false; // bitwidth disagrees. if (PointerType *PT = dyn_cast(DstTy)) { if (PT->getAddressSpace() != cast(SrcTy)->getAddressSpace()) return false; } else if (FunctionType *FT = dyn_cast(DstTy)) { if (FT->isVarArg() != cast(SrcTy)->isVarArg()) return false; } else if (StructType *DSTy = dyn_cast(DstTy)) { StructType *SSTy = cast(SrcTy); if (DSTy->isLiteral() != SSTy->isLiteral() || DSTy->isPacked() != SSTy->isPacked()) return false; } else if (ArrayType *DATy = dyn_cast(DstTy)) { if (DATy->getNumElements() != cast(SrcTy)->getNumElements()) return false; } else if (VectorType *DVTy = dyn_cast(DstTy)) { if (DVTy->getNumElements() != cast(SrcTy)->getNumElements()) return false; } // Otherwise, we speculate that these two types will line up and recursively // check the subelements. Entry = DstTy; SpeculativeTypes.push_back(SrcTy); for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) if (!areTypesIsomorphic(DstTy->getContainedType(I), SrcTy->getContainedType(I))) return false; // If everything seems to have lined up, then everything is great. return true; } void TypeMapTy::linkDefinedTypeBodies() { SmallVector Elements; for (StructType *SrcSTy : SrcDefinitionsToResolve) { StructType *DstSTy = cast(MappedTypes[SrcSTy]); assert(DstSTy->isOpaque()); // Map the body of the source type over to a new body for the dest type. Elements.resize(SrcSTy->getNumElements()); for (unsigned I = 0, E = Elements.size(); I != E; ++I) Elements[I] = get(SrcSTy->getElementType(I)); DstSTy->setBody(Elements, SrcSTy->isPacked()); DstStructTypesSet.switchToNonOpaque(DstSTy); } SrcDefinitionsToResolve.clear(); DstResolvedOpaqueTypes.clear(); } void TypeMapTy::finishType(StructType *DTy, StructType *STy, ArrayRef ETypes) { DTy->setBody(ETypes, STy->isPacked()); // Steal STy's name. if (STy->hasName()) { SmallString<16> TmpName = STy->getName(); STy->setName(""); DTy->setName(TmpName); } DstStructTypesSet.addNonOpaque(DTy); } Type *TypeMapTy::get(Type *Ty) { SmallPtrSet Visited; return get(Ty, Visited); } Type *TypeMapTy::get(Type *Ty, SmallPtrSet &Visited) { // If we already have an entry for this type, return it. Type **Entry = &MappedTypes[Ty]; if (*Entry) return *Entry; // These are types that LLVM itself will unique. bool IsUniqued = !isa(Ty) || cast(Ty)->isLiteral(); #ifndef NDEBUG if (!IsUniqued) { for (auto &Pair : MappedTypes) { assert(!(Pair.first != Ty && Pair.second == Ty) && "mapping to a source type"); } } #endif if (!IsUniqued && !Visited.insert(cast(Ty)).second) { StructType *DTy = StructType::create(Ty->getContext()); return *Entry = DTy; } // If this is not a recursive type, then just map all of the elements and // then rebuild the type from inside out. SmallVector ElementTypes; // If there are no element types to map, then the type is itself. This is // true for the anonymous {} struct, things like 'float', integers, etc. if (Ty->getNumContainedTypes() == 0 && IsUniqued) return *Entry = Ty; // Remap all of the elements, keeping track of whether any of them change. bool AnyChange = false; ElementTypes.resize(Ty->getNumContainedTypes()); for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { ElementTypes[I] = get(Ty->getContainedType(I), Visited); AnyChange |= ElementTypes[I] != Ty->getContainedType(I); } // If we found our type while recursively processing stuff, just use it. Entry = &MappedTypes[Ty]; if (*Entry) { if (auto *DTy = dyn_cast(*Entry)) { if (DTy->isOpaque()) { auto *STy = cast(Ty); finishType(DTy, STy, ElementTypes); } } return *Entry; } // If all of the element types mapped directly over and the type is not // a nomed struct, then the type is usable as-is. if (!AnyChange && IsUniqued) return *Entry = Ty; // Otherwise, rebuild a modified type. switch (Ty->getTypeID()) { default: llvm_unreachable("unknown derived type to remap"); case Type::ArrayTyID: return *Entry = ArrayType::get(ElementTypes[0], cast(Ty)->getNumElements()); case Type::VectorTyID: return *Entry = VectorType::get(ElementTypes[0], cast(Ty)->getNumElements()); case Type::PointerTyID: return *Entry = PointerType::get(ElementTypes[0], cast(Ty)->getAddressSpace()); case Type::FunctionTyID: return *Entry = FunctionType::get(ElementTypes[0], makeArrayRef(ElementTypes).slice(1), cast(Ty)->isVarArg()); case Type::StructTyID: { auto *STy = cast(Ty); bool IsPacked = STy->isPacked(); if (IsUniqued) return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); // If the type is opaque, we can just use it directly. if (STy->isOpaque()) { DstStructTypesSet.addOpaque(STy); return *Entry = Ty; } if (StructType *OldT = DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { STy->setName(""); return *Entry = OldT; } if (!AnyChange) { DstStructTypesSet.addNonOpaque(STy); return *Entry = Ty; } StructType *DTy = StructType::create(Ty->getContext()); finishType(DTy, STy, ElementTypes); return *Entry = DTy; } } } //===----------------------------------------------------------------------===// // ModuleLinker implementation. //===----------------------------------------------------------------------===// namespace { class ModuleLinker; /// Creates prototypes for functions that are lazily linked on the fly. This /// speeds up linking for modules with many/ lazily linked functions of which /// few get used. class ValueMaterializerTy final : public ValueMaterializer { ModuleLinker *ModLinker; public: ValueMaterializerTy(ModuleLinker *ModLinker) : ModLinker(ModLinker) {} Value *materializeDeclFor(Value *V) override; void materializeInitFor(GlobalValue *New, GlobalValue *Old) override; }; class LinkDiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg); void print(DiagnosticPrinter &DP) const override; }; LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg) : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } /// This is an implementation class for the LinkModules function, which is the /// entrypoint for this file. class ModuleLinker { Module &DstM; Module &SrcM; TypeMapTy TypeMap; ValueMaterializerTy ValMaterializer; /// Mapping of values from what they used to be in Src, to what they are now /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead /// due to the use of Value handles which the Linker doesn't actually need, /// but this allows us to reuse the ValueMapper code. ValueToValueMapTy ValueMap; SetVector ValuesToLink; DiagnosticHandlerFunction DiagnosticHandler; /// For symbol clashes, prefer those from Src. unsigned Flags; /// Function index passed into ModuleLinker for using in function /// importing/exporting handling. const FunctionInfoIndex *ImportIndex; /// Function to import from source module, all other functions are /// imported as declarations instead of definitions. DenseSet *ImportFunction; /// Set to true if the given FunctionInfoIndex contains any functions /// from this source module, in which case we must conservatively assume /// that any of its functions may be imported into another module /// as part of a different backend compilation process. bool HasExportedFunctions = false; /// Set to true when all global value body linking is complete (including /// lazy linking). Used to prevent metadata linking from creating new /// references. bool DoneLinkingBodies = false; bool HasError = false; public: ModuleLinker(Module &DstM, Linker::IdentifiedStructTypeSet &Set, Module &SrcM, DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags, const FunctionInfoIndex *Index = nullptr, DenseSet *FunctionsToImport = nullptr) : DstM(DstM), SrcM(SrcM), TypeMap(Set), ValMaterializer(this), DiagnosticHandler(DiagnosticHandler), Flags(Flags), ImportIndex(Index), ImportFunction(FunctionsToImport) { assert((ImportIndex || !ImportFunction) && "Expect a FunctionInfoIndex when importing"); // If we have a FunctionInfoIndex but no function to import, // then this is the primary module being compiled in a ThinLTO // backend compilation, and we need to see if it has functions that // may be exported to another backend compilation. if (ImportIndex && !ImportFunction) HasExportedFunctions = ImportIndex->hasExportedFunctions(SrcM); } bool run(); Value *materializeDeclFor(Value *V); void materializeInitFor(GlobalValue *New, GlobalValue *Old); private: bool shouldOverrideFromSrc() { return Flags & Linker::OverrideFromSrc; } bool shouldLinkOnlyNeeded() { return Flags & Linker::LinkOnlyNeeded; } bool shouldInternalizeLinkedSymbols() { return Flags & Linker::InternalizeLinkedSymbols; } /// Handles cloning of a global values from the source module into /// the destination module, including setting the attributes and visibility. GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, const GlobalValue *DGV, bool ForDefinition); /// Check if we should promote the given local value to global scope. bool doPromoteLocalToGlobal(const GlobalValue *SGV); bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, const GlobalValue &Src); /// Helper method for setting a message and returning an error code. bool emitError(const Twine &Message) { DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message)); HasError = true; return true; } void emitWarning(const Twine &Message) { DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message)); } bool getComdatLeader(Module &M, StringRef ComdatName, const GlobalVariable *&GVar); bool computeResultingSelectionKind(StringRef ComdatName, Comdat::SelectionKind Src, Comdat::SelectionKind Dst, Comdat::SelectionKind &Result, bool &LinkFromSrc); std::map> ComdatsChosen; bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK, bool &LinkFromSrc); // Keep track of the global value members of each comdat in source. DenseMap> ComdatMembers; /// Given a global in the source module, return the global in the /// destination module that is being linked to, if any. GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { // If the source has no name it can't link. If it has local linkage, // there is no name match-up going on. if (!SrcGV->hasName() || GlobalValue::isLocalLinkage(getLinkage(SrcGV))) return nullptr; // Otherwise see if we have a match in the destination module's symtab. GlobalValue *DGV = DstM.getNamedValue(getName(SrcGV)); if (!DGV) return nullptr; // If we found a global with the same name in the dest module, but it has // internal linkage, we are really not doing any linkage here. if (DGV->hasLocalLinkage()) return nullptr; // Otherwise, we do in fact link to the destination global. return DGV; } void computeTypeMapping(); void upgradeMismatchedGlobalArray(StringRef Name); void upgradeMismatchedGlobals(); bool linkIfNeeded(GlobalValue &GV); Constant *linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV); Constant *linkGlobalValueProto(GlobalValue *GV); bool linkModuleFlagsMetadata(); void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src); bool linkFunctionBody(Function &Dst, Function &Src); void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src); bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); /// Functions that take care of cloning a specific global value type /// into the destination module. GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); Function *copyFunctionProto(const Function *SF); GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA); /// Helper methods to check if we are importing from or potentially /// exporting from the current source module. bool isPerformingImport() { return ImportFunction != nullptr; } bool isModuleExporting() { return HasExportedFunctions; } /// If we are importing from the source module, checks if we should /// import SGV as a definition, otherwise import as a declaration. bool doImportAsDefinition(const GlobalValue *SGV); /// Get the name for SGV that should be used in the linked destination /// module. Specifically, this handles the case where we need to rename /// a local that is being promoted to global scope. std::string getName(const GlobalValue *SGV); /// Get the new linkage for SGV that should be used in the linked destination /// module. Specifically, for ThinLTO importing or exporting it may need /// to be adjusted. GlobalValue::LinkageTypes getLinkage(const GlobalValue *SGV); /// Copies the necessary global value attributes and name from the source /// to the newly cloned global value. void copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV); /// Updates the visibility for the new global cloned from the source /// and, if applicable, linked with an existing destination global. /// Handles visibility change required for promoted locals. void setVisibility(GlobalValue *NewGV, const GlobalValue *SGV, const GlobalValue *DGV = nullptr); void linkNamedMDNodes(); }; } /// The LLVM SymbolTable class autorenames globals that conflict in the symbol /// table. This is good for all clients except for us. Go through the trouble /// to force this back. static void forceRenaming(GlobalValue *GV, StringRef Name) { // If the global doesn't force its name or if it already has the right name, // there is nothing for us to do. // Note that any required local to global promotion should already be done, // so promoted locals will not skip this handling as their linkage is no // longer local. if (GV->hasLocalLinkage() || GV->getName() == Name) return; Module *M = GV->getParent(); // If there is a conflict, rename the conflict. if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { GV->takeName(ConflictGV); ConflictGV->setName(Name); // This will cause ConflictGV to get renamed assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); } else { GV->setName(Name); // Force the name back } } /// copy additional attributes (those not needed to construct a GlobalValue) /// from the SrcGV to the DestGV. void ModuleLinker::copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV) { NewGV->copyAttributesFrom(SrcGV); forceRenaming(NewGV, getName(SrcGV)); } bool ModuleLinker::doImportAsDefinition(const GlobalValue *SGV) { if (!isPerformingImport()) return false; auto *GA = dyn_cast(SGV); if (GA) { if (GA->hasWeakAnyLinkage()) return false; const GlobalObject *GO = GA->getBaseObject(); if (!GO->hasLinkOnceODRLinkage()) return false; return doImportAsDefinition(GO); } // Always import GlobalVariable definitions, except for the special // case of WeakAny which are imported as ExternalWeak declarations // (see comments in ModuleLinker::getLinkage). The linkage changes // described in ModuleLinker::getLinkage ensure the correct behavior (e.g. // global variables with external linkage are transformed to // available_externally definitions, which are ultimately turned into // declarations after the EliminateAvailableExternally pass). if (isa(SGV) && !SGV->isDeclaration() && !SGV->hasWeakAnyLinkage()) return true; // Only import the function requested for importing. auto *SF = dyn_cast(SGV); if (SF && ImportFunction->count(SF)) return true; // Otherwise no. return false; } bool ModuleLinker::doPromoteLocalToGlobal(const GlobalValue *SGV) { assert(SGV->hasLocalLinkage()); // Both the imported references and the original local variable must // be promoted. if (!isPerformingImport() && !isModuleExporting()) return false; // Local const variables never need to be promoted unless they are address // taken. The imported uses can simply use the clone created in this module. // For now we are conservative in determining which variables are not // address taken by checking the unnamed addr flag. To be more aggressive, // the address taken information must be checked earlier during parsing // of the module and recorded in the function index for use when importing // from that module. auto *GVar = dyn_cast(SGV); if (GVar && GVar->isConstant() && GVar->hasUnnamedAddr()) return false; // Eventually we only need to promote functions in the exporting module that // are referenced by a potentially exported function (i.e. one that is in the // function index). return true; } std::string ModuleLinker::getName(const GlobalValue *SGV) { // For locals that must be promoted to global scope, ensure that // the promoted name uniquely identifies the copy in the original module, // using the ID assigned during combined index creation. When importing, // we rename all locals (not just those that are promoted) in order to // avoid naming conflicts between locals imported from different modules. if (SGV->hasLocalLinkage() && (doPromoteLocalToGlobal(SGV) || isPerformingImport())) return FunctionInfoIndex::getGlobalNameForLocal( SGV->getName(), ImportIndex->getModuleId(SGV->getParent()->getModuleIdentifier())); return SGV->getName(); } GlobalValue::LinkageTypes ModuleLinker::getLinkage(const GlobalValue *SGV) { // Any local variable that is referenced by an exported function needs // to be promoted to global scope. Since we don't currently know which // functions reference which local variables/functions, we must treat // all as potentially exported if this module is exporting anything. if (isModuleExporting()) { if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV)) return GlobalValue::ExternalLinkage; return SGV->getLinkage(); } // Otherwise, if we aren't importing, no linkage change is needed. if (!isPerformingImport()) return SGV->getLinkage(); switch (SGV->getLinkage()) { case GlobalValue::ExternalLinkage: // External defnitions are converted to available_externally // definitions upon import, so that they are available for inlining // and/or optimization, but are turned into declarations later // during the EliminateAvailableExternally pass. if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) return GlobalValue::AvailableExternallyLinkage; // An imported external declaration stays external. return SGV->getLinkage(); case GlobalValue::AvailableExternallyLinkage: // An imported available_externally definition converts // to external if imported as a declaration. if (!doImportAsDefinition(SGV)) return GlobalValue::ExternalLinkage; // An imported available_externally declaration stays that way. return SGV->getLinkage(); case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: // These both stay the same when importing the definition. // The ThinLTO pass will eventually force-import their definitions. return SGV->getLinkage(); case GlobalValue::WeakAnyLinkage: // Can't import weak_any definitions correctly, or we might change the // program semantics, since the linker will pick the first weak_any // definition and importing would change the order they are seen by the // linker. The module linking caller needs to enforce this. assert(!doImportAsDefinition(SGV)); // If imported as a declaration, it becomes external_weak. return GlobalValue::ExternalWeakLinkage; case GlobalValue::WeakODRLinkage: // For weak_odr linkage, there is a guarantee that all copies will be // equivalent, so the issue described above for weak_any does not exist, // and the definition can be imported. It can be treated similarly // to an imported externally visible global value. if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) return GlobalValue::AvailableExternallyLinkage; else return GlobalValue::ExternalLinkage; case GlobalValue::AppendingLinkage: // It would be incorrect to import an appending linkage variable, // since it would cause global constructors/destructors to be // executed multiple times. This should have already been handled // by linkIfNeeded, and we will assert in shouldLinkFromSource // if we try to import, so we simply return AppendingLinkage here // as this helper is called more widely in getLinkedToGlobal. return GlobalValue::AppendingLinkage; case GlobalValue::InternalLinkage: case GlobalValue::PrivateLinkage: // If we are promoting the local to global scope, it is handled // similarly to a normal externally visible global. if (doPromoteLocalToGlobal(SGV)) { if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) return GlobalValue::AvailableExternallyLinkage; else return GlobalValue::ExternalLinkage; } // A non-promoted imported local definition stays local. // The ThinLTO pass will eventually force-import their definitions. return SGV->getLinkage(); case GlobalValue::ExternalWeakLinkage: // External weak doesn't apply to definitions, must be a declaration. assert(!doImportAsDefinition(SGV)); // Linkage stays external_weak. return SGV->getLinkage(); case GlobalValue::CommonLinkage: // Linkage stays common on definitions. // The ThinLTO pass will eventually force-import their definitions. return SGV->getLinkage(); } llvm_unreachable("unknown linkage type"); } /// Loop through the global variables in the src module and merge them into the /// dest module. GlobalVariable * ModuleLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { // No linking to be performed or linking from the source: simply create an // identical version of the symbol over in the dest module... the // initializer will be filled in later by LinkGlobalInits. GlobalVariable *NewDGV = new GlobalVariable(DstM, TypeMap.get(SGVar->getType()->getElementType()), SGVar->isConstant(), GlobalValue::ExternalLinkage, /*init*/ nullptr, getName(SGVar), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), SGVar->getType()->getAddressSpace()); return NewDGV; } /// Link the function in the source module into the destination module if /// needed, setting up mapping information. Function *ModuleLinker::copyFunctionProto(const Function *SF) { // If there is no linkage to be performed or we are linking from the source, // bring SF over. return Function::Create(TypeMap.get(SF->getFunctionType()), GlobalValue::ExternalLinkage, getName(SF), &DstM); } /// Set up prototypes for any aliases that come over from the source module. GlobalValue *ModuleLinker::copyGlobalAliasProto(const GlobalAlias *SGA) { // If there is no linkage to be performed or we're linking from the source, // bring over SGA. auto *Ty = TypeMap.get(SGA->getValueType()); return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(), GlobalValue::ExternalLinkage, getName(SGA), &DstM); } static GlobalValue::VisibilityTypes getMinVisibility(GlobalValue::VisibilityTypes A, GlobalValue::VisibilityTypes B) { if (A == GlobalValue::HiddenVisibility || B == GlobalValue::HiddenVisibility) return GlobalValue::HiddenVisibility; if (A == GlobalValue::ProtectedVisibility || B == GlobalValue::ProtectedVisibility) return GlobalValue::ProtectedVisibility; return GlobalValue::DefaultVisibility; } void ModuleLinker::setVisibility(GlobalValue *NewGV, const GlobalValue *SGV, const GlobalValue *DGV) { GlobalValue::VisibilityTypes Visibility = SGV->getVisibility(); if (DGV) Visibility = getMinVisibility(DGV->getVisibility(), Visibility); // For promoted locals, mark them hidden so that they can later be // stripped from the symbol table to reduce bloat. if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV)) Visibility = GlobalValue::HiddenVisibility; NewGV->setVisibility(Visibility); } GlobalValue *ModuleLinker::copyGlobalValueProto(const GlobalValue *SGV, const GlobalValue *DGV, bool ForDefinition) { GlobalValue *NewGV; if (auto *SGVar = dyn_cast(SGV)) { NewGV = copyGlobalVariableProto(SGVar); } else if (auto *SF = dyn_cast(SGV)) { NewGV = copyFunctionProto(SF); } else { if (ForDefinition) NewGV = copyGlobalAliasProto(cast(SGV)); else NewGV = new GlobalVariable( DstM, TypeMap.get(SGV->getType()->getElementType()), /*isConstant*/ false, GlobalValue::ExternalLinkage, /*init*/ nullptr, getName(SGV), /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), SGV->getType()->getAddressSpace()); } if (ForDefinition) NewGV->setLinkage(getLinkage(SGV)); else if (SGV->hasAvailableExternallyLinkage() || SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); copyGVAttributes(NewGV, SGV); setVisibility(NewGV, SGV, DGV); return NewGV; } Value *ValueMaterializerTy::materializeDeclFor(Value *V) { return ModLinker->materializeDeclFor(V); } Value *ModuleLinker::materializeDeclFor(Value *V) { auto *SGV = dyn_cast(V); if (!SGV) return nullptr; return linkGlobalValueProto(SGV); } void ValueMaterializerTy::materializeInitFor(GlobalValue *New, GlobalValue *Old) { return ModLinker->materializeInitFor(New, Old); } static bool shouldLazyLink(const GlobalValue &GV) { return GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() || GV.hasAvailableExternallyLinkage(); } void ModuleLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old) { if (auto *F = dyn_cast(New)) { if (!F->isDeclaration()) return; } else if (auto *V = dyn_cast(New)) { if (V->hasInitializer()) return; } else { auto *A = cast(New); if (A->getAliasee()) return; } if (Old->isDeclaration()) return; if (isPerformingImport() && !doImportAsDefinition(Old)) return; if (!ValuesToLink.count(Old) && !shouldLazyLink(*Old)) return; linkGlobalValueBody(*New, *Old); } bool ModuleLinker::getComdatLeader(Module &M, StringRef ComdatName, const GlobalVariable *&GVar) { const GlobalValue *GVal = M.getNamedValue(ComdatName); if (const auto *GA = dyn_cast_or_null(GVal)) { GVal = GA->getBaseObject(); if (!GVal) // We cannot resolve the size of the aliasee yet. return emitError("Linking COMDATs named '" + ComdatName + "': COMDAT key involves incomputable alias size."); } GVar = dyn_cast_or_null(GVal); if (!GVar) return emitError( "Linking COMDATs named '" + ComdatName + "': GlobalVariable required for data dependent selection!"); return false; } bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName, Comdat::SelectionKind Src, Comdat::SelectionKind Dst, Comdat::SelectionKind &Result, bool &LinkFromSrc) { // The ability to mix Comdat::SelectionKind::Any with // Comdat::SelectionKind::Largest is a behavior that comes from COFF. bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any || Dst == Comdat::SelectionKind::Largest; bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any || Src == Comdat::SelectionKind::Largest; if (DstAnyOrLargest && SrcAnyOrLargest) { if (Dst == Comdat::SelectionKind::Largest || Src == Comdat::SelectionKind::Largest) Result = Comdat::SelectionKind::Largest; else Result = Comdat::SelectionKind::Any; } else if (Src == Dst) { Result = Dst; } else { return emitError("Linking COMDATs named '" + ComdatName + "': invalid selection kinds!"); } switch (Result) { case Comdat::SelectionKind::Any: // Go with Dst. LinkFromSrc = false; break; case Comdat::SelectionKind::NoDuplicates: return emitError("Linking COMDATs named '" + ComdatName + "': noduplicates has been violated!"); case Comdat::SelectionKind::ExactMatch: case Comdat::SelectionKind::Largest: case Comdat::SelectionKind::SameSize: { const GlobalVariable *DstGV; const GlobalVariable *SrcGV; if (getComdatLeader(DstM, ComdatName, DstGV) || getComdatLeader(SrcM, ComdatName, SrcGV)) return true; const DataLayout &DstDL = DstM.getDataLayout(); const DataLayout &SrcDL = SrcM.getDataLayout(); uint64_t DstSize = DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType()); uint64_t SrcSize = SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType()); if (Result == Comdat::SelectionKind::ExactMatch) { if (SrcGV->getInitializer() != DstGV->getInitializer()) return emitError("Linking COMDATs named '" + ComdatName + "': ExactMatch violated!"); LinkFromSrc = false; } else if (Result == Comdat::SelectionKind::Largest) { LinkFromSrc = SrcSize > DstSize; } else if (Result == Comdat::SelectionKind::SameSize) { if (SrcSize != DstSize) return emitError("Linking COMDATs named '" + ComdatName + "': SameSize violated!"); LinkFromSrc = false; } else { llvm_unreachable("unknown selection kind"); } break; } } return false; } bool ModuleLinker::getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &Result, bool &LinkFromSrc) { Comdat::SelectionKind SSK = SrcC->getSelectionKind(); StringRef ComdatName = SrcC->getName(); Module::ComdatSymTabType &ComdatSymTab = DstM.getComdatSymbolTable(); Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName); if (DstCI == ComdatSymTab.end()) { // Use the comdat if it is only available in one of the modules. LinkFromSrc = true; Result = SSK; return false; } const Comdat *DstC = &DstCI->second; Comdat::SelectionKind DSK = DstC->getSelectionKind(); return computeResultingSelectionKind(ComdatName, SSK, DSK, Result, LinkFromSrc); } bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, const GlobalValue &Src) { // Should we unconditionally use the Src? if (shouldOverrideFromSrc()) { LinkFromSrc = true; return false; } // We always have to add Src if it has appending linkage. if (Src.hasAppendingLinkage()) { // Should have prevented importing for appending linkage in linkIfNeeded. assert(!isPerformingImport()); LinkFromSrc = true; return false; } bool SrcIsDeclaration = Src.isDeclarationForLinker(); bool DestIsDeclaration = Dest.isDeclarationForLinker(); if (isPerformingImport()) { if (isa(&Src)) { // For functions, LinkFromSrc iff this is the function requested // for importing. For variables, decide below normally. LinkFromSrc = ImportFunction->count(&Src); return false; } // Check if this is an alias with an already existing definition // in Dest, which must have come from a prior importing pass from // the same Src module. Unlike imported function and variable // definitions, which are imported as available_externally and are // not definitions for the linker, that is not a valid linkage for // imported aliases which must be definitions. Simply use the existing // Dest copy. if (isa(&Src) && !DestIsDeclaration) { assert(isa(&Dest)); LinkFromSrc = false; return false; } } if (SrcIsDeclaration) { // If Src is external or if both Src & Dest are external.. Just link the // external globals, we aren't adding anything. if (Src.hasDLLImportStorageClass()) { // If one of GVs is marked as DLLImport, result should be dllimport'ed. LinkFromSrc = DestIsDeclaration; return false; } // If the Dest is weak, use the source linkage. LinkFromSrc = Dest.hasExternalWeakLinkage(); return false; } if (DestIsDeclaration) { // If Dest is external but Src is not: LinkFromSrc = true; return false; } if (Src.hasCommonLinkage()) { if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) { LinkFromSrc = true; return false; } if (!Dest.hasCommonLinkage()) { LinkFromSrc = false; return false; } const DataLayout &DL = Dest.getParent()->getDataLayout(); uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType()); uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType()); LinkFromSrc = SrcSize > DestSize; return false; } if (Src.isWeakForLinker()) { assert(!Dest.hasExternalWeakLinkage()); assert(!Dest.hasAvailableExternallyLinkage()); if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) { LinkFromSrc = true; return false; } LinkFromSrc = false; return false; } if (Dest.isWeakForLinker()) { assert(Src.hasExternalLinkage()); LinkFromSrc = true; return false; } assert(!Src.hasExternalWeakLinkage()); assert(!Dest.hasExternalWeakLinkage()); assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() && "Unexpected linkage type!"); return emitError("Linking globals named '" + Src.getName() + "': symbol multiply defined!"); } /// Loop over all of the linked values to compute type mappings. For example, /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct /// types 'Foo' but one got renamed when the module was loaded into the same /// LLVMContext. void ModuleLinker::computeTypeMapping() { for (GlobalValue &SGV : SrcM.globals()) { GlobalValue *DGV = getLinkedToGlobal(&SGV); if (!DGV) continue; if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); continue; } // Unify the element type of appending arrays. ArrayType *DAT = cast(DGV->getType()->getElementType()); ArrayType *SAT = cast(SGV.getType()->getElementType()); TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); } for (GlobalValue &SGV : SrcM) { if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); } for (GlobalValue &SGV : SrcM.aliases()) { if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); } // Incorporate types by name, scanning all the types in the source module. // At this point, the destination module may have a type "%foo = { i32 }" for // example. When the source module got loaded into the same LLVMContext, if // it had the same type, it would have been renamed to "%foo.42 = { i32 }". std::vector Types = SrcM.getIdentifiedStructTypes(); for (StructType *ST : Types) { if (!ST->hasName()) continue; // Check to see if there is a dot in the name followed by a digit. size_t DotPos = ST->getName().rfind('.'); if (DotPos == 0 || DotPos == StringRef::npos || ST->getName().back() == '.' || !isdigit(static_cast(ST->getName()[DotPos + 1]))) continue; // Check to see if the destination module has a struct with the prefix name. StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos)); if (!DST) continue; // Don't use it if this actually came from the source module. They're in // the same LLVMContext after all. Also don't use it unless the type is // actually used in the destination module. This can happen in situations // like this: // // Module A Module B // -------- -------- // %Z = type { %A } %B = type { %C.1 } // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } // %C = type { i8* } %B.3 = type { %C.1 } // // When we link Module B with Module A, the '%B' in Module B is // used. However, that would then use '%C.1'. But when we process '%C.1', // we prefer to take the '%C' version. So we are then left with both // '%C.1' and '%C' being used for the same types. This leads to some // variables using one type and some using the other. if (TypeMap.DstStructTypesSet.hasType(DST)) TypeMap.addTypeMapping(DST, ST); } // Now that we have discovered all of the type equivalences, get a body for // any 'opaque' types in the dest module that are now resolved. TypeMap.linkDefinedTypeBodies(); } static void upgradeGlobalArray(GlobalVariable *GV) { ArrayType *ATy = cast(GV->getType()->getElementType()); StructType *OldTy = cast(ATy->getElementType()); assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements"); // Get the upgraded 3 element type. PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo(); Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1), VoidPtrTy}; StructType *NewTy = StructType::get(GV->getContext(), Tys, false); // Build new constants with a null third field filled in. Constant *OldInitC = GV->getInitializer(); ConstantArray *OldInit = dyn_cast(OldInitC); if (!OldInit && !isa(OldInitC)) // Invalid initializer; give up. return; std::vector Initializers; if (OldInit && OldInit->getNumOperands()) { Value *Null = Constant::getNullValue(VoidPtrTy); for (Use &U : OldInit->operands()) { ConstantStruct *Init = cast(U.get()); Initializers.push_back(ConstantStruct::get( NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr)); } } assert(Initializers.size() == ATy->getNumElements() && "Failed to copy all array elements"); // Replace the old GV with a new one. ATy = ArrayType::get(NewTy, Initializers.size()); Constant *NewInit = ConstantArray::get(ATy, Initializers); GlobalVariable *NewGV = new GlobalVariable( *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "", GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(), GV->isExternallyInitialized()); NewGV->copyAttributesFrom(GV); NewGV->takeName(GV); assert(GV->use_empty() && "program cannot use initializer list"); GV->eraseFromParent(); } void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) { // Look for the global arrays. auto *DstGV = dyn_cast_or_null(DstM.getNamedValue(Name)); if (!DstGV) return; auto *SrcGV = dyn_cast_or_null(SrcM.getNamedValue(Name)); if (!SrcGV) return; // Check if the types already match. auto *DstTy = cast(DstGV->getType()->getElementType()); auto *SrcTy = cast(TypeMap.get(SrcGV->getType()->getElementType())); if (DstTy == SrcTy) return; // Grab the element types. We can only upgrade an array of a two-field // struct. Only bother if the other one has three-fields. auto *DstEltTy = cast(DstTy->getElementType()); auto *SrcEltTy = cast(SrcTy->getElementType()); if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) { upgradeGlobalArray(DstGV); return; } if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2) upgradeGlobalArray(SrcGV); // We can't upgrade any other differences. } void ModuleLinker::upgradeMismatchedGlobals() { upgradeMismatchedGlobalArray("llvm.global_ctors"); upgradeMismatchedGlobalArray("llvm.global_dtors"); } static void getArrayElements(const Constant *C, SmallVectorImpl &Dest) { unsigned NumElements = cast(C->getType())->getNumElements(); for (unsigned i = 0; i != NumElements; ++i) Dest.push_back(C->getAggregateElement(i)); } /// If there were any appending global variables, link them together now. /// Return true on error. Constant *ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV) { ArrayType *SrcTy = cast(TypeMap.get(SrcGV->getType()->getElementType())); Type *EltTy = SrcTy->getElementType(); if (DstGV) { ArrayType *DstTy = cast(DstGV->getType()->getElementType()); if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) { emitError( "Linking globals named '" + SrcGV->getName() + "': can only link appending global with another appending global!"); return nullptr; } // Check to see that they two arrays agree on type. if (EltTy != DstTy->getElementType()) { emitError("Appending variables with different element types!"); return nullptr; } if (DstGV->isConstant() != SrcGV->isConstant()) { emitError("Appending variables linked with different const'ness!"); return nullptr; } if (DstGV->getAlignment() != SrcGV->getAlignment()) { emitError( "Appending variables with different alignment need to be linked!"); return nullptr; } if (DstGV->getVisibility() != SrcGV->getVisibility()) { emitError( "Appending variables with different visibility need to be linked!"); return nullptr; } if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) { emitError( "Appending variables with different unnamed_addr need to be linked!"); return nullptr; } if (StringRef(DstGV->getSection()) != SrcGV->getSection()) { emitError( "Appending variables with different section name need to be linked!"); return nullptr; } } SmallVector DstElements; if (DstGV) getArrayElements(DstGV->getInitializer(), DstElements); SmallVector SrcElements; getArrayElements(SrcGV->getInitializer(), SrcElements); StringRef Name = SrcGV->getName(); bool IsNewStructor = (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") && cast(EltTy)->getNumElements() == 3; if (IsNewStructor) SrcElements.erase( std::remove_if(SrcElements.begin(), SrcElements.end(), [this](Constant *E) { auto *Key = dyn_cast( E->getAggregateElement(2)->stripPointerCasts()); return Key && !ValuesToLink.count(Key) && !shouldLazyLink(*Key); }), SrcElements.end()); uint64_t NewSize = DstElements.size() + SrcElements.size(); ArrayType *NewType = ArrayType::get(EltTy, NewSize); // Create the new global variable. GlobalVariable *NG = new GlobalVariable( DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), SrcGV->getType()->getAddressSpace()); // Propagate alignment, visibility and section info. copyGVAttributes(NG, SrcGV); Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); // Stop recursion. ValueMap[SrcGV] = Ret; for (auto *V : SrcElements) { DstElements.push_back( MapValue(V, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); } NG->setInitializer(ConstantArray::get(NewType, DstElements)); // Replace any uses of the two global variables with uses of the new // global. if (DstGV) { DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); DstGV->eraseFromParent(); } return Ret; } Constant *ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) { GlobalValue *DGV = getLinkedToGlobal(SGV); // Handle the ultra special appending linkage case first. assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); if (SGV->hasAppendingLinkage()) { // Should have prevented importing for appending linkage in linkIfNeeded. assert(!isPerformingImport()); return linkAppendingVarProto(cast_or_null(DGV), cast(SGV)); } bool LinkFromSrc = true; Comdat *C = nullptr; bool HasUnnamedAddr = SGV->hasUnnamedAddr(); if (isPerformingImport() && !doImportAsDefinition(SGV)) { LinkFromSrc = false; } else if (const Comdat *SC = SGV->getComdat()) { Comdat::SelectionKind SK; std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; C = DstM.getOrInsertComdat(SC->getName()); C->setSelectionKind(SK); if (SGV->hasLocalLinkage()) LinkFromSrc = true; } else if (DGV) { if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV)) return nullptr; } if (DGV) HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); GlobalValue *NewGV; if (!LinkFromSrc && DGV) { NewGV = DGV; // When linking from source we setVisibility from copyGlobalValueProto. setVisibility(NewGV, SGV, DGV); } else { // If we are done linking global value bodies (i.e. we are performing // metadata linking), don't link in the global value due to this // reference, simply map it to null. if (DoneLinkingBodies) return nullptr; NewGV = copyGlobalValueProto(SGV, DGV, LinkFromSrc); } NewGV->setUnnamedAddr(HasUnnamedAddr); if (auto *NewGO = dyn_cast(NewGV)) { if (C && LinkFromSrc) NewGO->setComdat(C); if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage()) NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment())); } if (auto *NewGVar = dyn_cast(NewGV)) { auto *DGVar = dyn_cast_or_null(DGV); auto *SGVar = dyn_cast(SGV); if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() && (!DGVar->isConstant() || !SGVar->isConstant())) NewGVar->setConstant(false); } if (NewGV != DGV && DGV) { DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType())); DGV->eraseFromParent(); } return ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType())); } /// Update the initializers in the Dest module now that all globals that may be /// referenced are in Dest. void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) { // Figure out what the initializer looks like in the dest module. Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); } /// Copy the source function over into the dest function and fix up references /// to values. At this point we know that Dest is an external function, and /// that Src is not. bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) { assert(Dst.isDeclaration() && !Src.isDeclaration()); // Materialize if needed. if (std::error_code EC = Src.materialize()) return emitError(EC.message()); // Link in the prefix data. if (Src.hasPrefixData()) Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); // Link in the prologue data. if (Src.hasPrologueData()) Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); // Link in the personality function. if (Src.hasPersonalityFn()) Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); // Go through and convert function arguments over, remembering the mapping. Function::arg_iterator DI = Dst.arg_begin(); for (Argument &Arg : Src.args()) { DI->setName(Arg.getName()); // Copy the name over. // Add a mapping to our mapping. ValueMap[&Arg] = &*DI; ++DI; } // Copy over the metadata attachments. SmallVector, 8> MDs; Src.getAllMetadata(MDs); for (const auto &I : MDs) Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); // Splice the body of the source function into the dest function. Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); // At this point, all of the instructions and values of the function are now // copied over. The only problem is that they are still referencing values in // the Source function as operands. Loop through all of the operands of the // functions and patch them up to point to the local versions. for (BasicBlock &BB : Dst) for (Instruction &I : BB) RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries | RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); // There is no need to map the arguments anymore. for (Argument &Arg : Src.args()) ValueMap.erase(&Arg); Src.dematerialize(); return false; } void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { Constant *Aliasee = Src.getAliasee(); Constant *Val = MapValue(Aliasee, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); Dst.setAliasee(Val); } bool ModuleLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { if (const Comdat *SC = Src.getComdat()) { // To ensure that we don't generate an incomplete comdat group, // we must materialize and map in any other members that are not // yet materialized in Dst, which also ensures their definitions // are linked in. Otherwise, linkonce and other lazy linked GVs will // not be materialized if they aren't referenced. for (auto *SGV : ComdatMembers[SC]) { auto *DGV = cast_or_null(ValueMap.lookup(SGV)); if (DGV && !DGV->isDeclaration()) continue; MapValue(SGV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); } } if (shouldInternalizeLinkedSymbols()) if (auto *DGV = dyn_cast(&Dst)) DGV->setLinkage(GlobalValue::InternalLinkage); if (auto *F = dyn_cast(&Src)) return linkFunctionBody(cast(Dst), *F); if (auto *GVar = dyn_cast(&Src)) { linkGlobalInit(cast(Dst), *GVar); return false; } linkAliasBody(cast(Dst), cast(Src)); return false; } /// Insert all of the named MDNodes in Src into the Dest module. void ModuleLinker::linkNamedMDNodes() { const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata(); for (const NamedMDNode &NMD : SrcM.named_metadata()) { // Don't link module flags here. Do them separately. if (&NMD == SrcModFlags) continue; NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); // Add Src elements into Dest node. for (const MDNode *op : NMD.operands()) DestNMD->addOperand(MapMetadata( op, ValueMap, RF_MoveDistinctMDs | RF_NullMapMissingGlobalValues, &TypeMap, &ValMaterializer)); } } /// Merge the linker flags in Src into the Dest module. bool ModuleLinker::linkModuleFlagsMetadata() { // If the source module has no module flags, we are done. const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata(); if (!SrcModFlags) return false; // If the destination module doesn't have module flags yet, then just copy // over the source module's flags. NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); if (DstModFlags->getNumOperands() == 0) { for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) DstModFlags->addOperand(SrcModFlags->getOperand(I)); return false; } // First build a map of the existing module flags and requirements. DenseMap> Flags; SmallSetVector Requirements; for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = DstModFlags->getOperand(I); ConstantInt *Behavior = mdconst::extract(Op->getOperand(0)); MDString *ID = cast(Op->getOperand(1)); if (Behavior->getZExtValue() == Module::Require) { Requirements.insert(cast(Op->getOperand(2))); } else { Flags[ID] = std::make_pair(Op, I); } } // Merge in the flags from the source module, and also collect its set of // requirements. bool HasErr = false; for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { MDNode *SrcOp = SrcModFlags->getOperand(I); ConstantInt *SrcBehavior = mdconst::extract(SrcOp->getOperand(0)); MDString *ID = cast(SrcOp->getOperand(1)); MDNode *DstOp; unsigned DstIndex; std::tie(DstOp, DstIndex) = Flags.lookup(ID); unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); // If this is a requirement, add it and continue. if (SrcBehaviorValue == Module::Require) { // If the destination module does not already have this requirement, add // it. if (Requirements.insert(cast(SrcOp->getOperand(2)))) { DstModFlags->addOperand(SrcOp); } continue; } // If there is no existing flag with this ID, just add it. if (!DstOp) { Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); DstModFlags->addOperand(SrcOp); continue; } // Otherwise, perform a merge. ConstantInt *DstBehavior = mdconst::extract(DstOp->getOperand(0)); unsigned DstBehaviorValue = DstBehavior->getZExtValue(); // If either flag has override behavior, handle it first. if (DstBehaviorValue == Module::Override) { // Diagnose inconsistent flags which both have override behavior. if (SrcBehaviorValue == Module::Override && SrcOp->getOperand(2) != DstOp->getOperand(2)) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting override values"); } continue; } else if (SrcBehaviorValue == Module::Override) { // Update the destination flag to that of the source. DstModFlags->setOperand(DstIndex, SrcOp); Flags[ID].first = SrcOp; continue; } // Diagnose inconsistent merge behavior types. if (SrcBehaviorValue != DstBehaviorValue) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting behaviors"); continue; } auto replaceDstValue = [&](MDNode *New) { Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); DstModFlags->setOperand(DstIndex, Flag); Flags[ID].first = Flag; }; // Perform the merge for standard behavior types. switch (SrcBehaviorValue) { case Module::Require: case Module::Override: llvm_unreachable("not possible"); case Module::Error: { // Emit an error if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting values"); } continue; } case Module::Warning: { // Emit a warning if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { emitWarning("linking module flags '" + ID->getString() + "': IDs have conflicting values"); } continue; } case Module::Append: { MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); SmallVector MDs; MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); MDs.append(DstValue->op_begin(), DstValue->op_end()); MDs.append(SrcValue->op_begin(), SrcValue->op_end()); replaceDstValue(MDNode::get(DstM.getContext(), MDs)); break; } case Module::AppendUnique: { SmallSetVector Elts; MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); Elts.insert(DstValue->op_begin(), DstValue->op_end()); Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); replaceDstValue(MDNode::get(DstM.getContext(), makeArrayRef(Elts.begin(), Elts.end()))); break; } } } // Check all of the requirements. for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { MDNode *Requirement = Requirements[I]; MDString *Flag = cast(Requirement->getOperand(0)); Metadata *ReqValue = Requirement->getOperand(1); MDNode *Op = Flags[Flag].first; if (!Op || Op->getOperand(2) != ReqValue) { HasErr |= emitError("linking module flags '" + Flag->getString() + "': does not have the required value"); continue; } } return HasErr; } // This function returns true if the triples match. static bool triplesMatch(const Triple &T0, const Triple &T1) { // If vendor is apple, ignore the version number. if (T0.getVendor() == Triple::Apple) return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() && T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS(); return T0 == T1; } // This function returns the merged triple. static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple) { // If vendor is apple, pick the triple with the larger version number. if (SrcTriple.getVendor() == Triple::Apple) if (DstTriple.isOSVersionLT(SrcTriple)) return SrcTriple.str(); return DstTriple.str(); } bool ModuleLinker::linkIfNeeded(GlobalValue &GV) { GlobalValue *DGV = getLinkedToGlobal(&GV); if (shouldLinkOnlyNeeded() && !(DGV && DGV->isDeclaration())) return false; if (DGV && !GV.hasLocalLinkage() && !GV.hasAppendingLinkage()) { auto *DGVar = dyn_cast(DGV); auto *SGVar = dyn_cast(&GV); if (DGVar && SGVar) { if (DGVar->isDeclaration() && SGVar->isDeclaration() && (!DGVar->isConstant() || !SGVar->isConstant())) { DGVar->setConstant(false); SGVar->setConstant(false); } if (DGVar->hasCommonLinkage() && SGVar->hasCommonLinkage()) { unsigned Align = std::max(DGVar->getAlignment(), SGVar->getAlignment()); SGVar->setAlignment(Align); DGVar->setAlignment(Align); } } GlobalValue::VisibilityTypes Visibility = getMinVisibility(DGV->getVisibility(), GV.getVisibility()); DGV->setVisibility(Visibility); GV.setVisibility(Visibility); bool HasUnnamedAddr = GV.hasUnnamedAddr() && DGV->hasUnnamedAddr(); DGV->setUnnamedAddr(HasUnnamedAddr); GV.setUnnamedAddr(HasUnnamedAddr); } // Don't want to append to global_ctors list, for example, when we // are importing for ThinLTO, otherwise the global ctors and dtors // get executed multiple times for local variables (the latter causing // double frees). if (GV.hasAppendingLinkage() && isPerformingImport()) return false; if (isPerformingImport() && !doImportAsDefinition(&GV)) return false; if (!DGV && !shouldOverrideFromSrc() && (GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() || GV.hasAvailableExternallyLinkage())) return false; if (const Comdat *SC = GV.getComdat()) { bool LinkFromSrc; Comdat::SelectionKind SK; std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; if (LinkFromSrc) ValuesToLink.insert(&GV); return false; } bool LinkFromSrc = true; if (DGV && shouldLinkFromSource(LinkFromSrc, *DGV, GV)) return true; if (LinkFromSrc) ValuesToLink.insert(&GV); return false; } bool ModuleLinker::run() { // Inherit the target data from the source module if the destination module // doesn't have one already. if (DstM.getDataLayout().isDefault()) DstM.setDataLayout(SrcM.getDataLayout()); if (SrcM.getDataLayout() != DstM.getDataLayout()) { emitWarning("Linking two modules of different data layouts: '" + SrcM.getModuleIdentifier() + "' is '" + SrcM.getDataLayoutStr() + "' whereas '" + DstM.getModuleIdentifier() + "' is '" + DstM.getDataLayoutStr() + "'\n"); } // Copy the target triple from the source to dest if the dest's is empty. if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty()) DstM.setTargetTriple(SrcM.getTargetTriple()); Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple()); if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple)) emitWarning("Linking two modules of different target triples: " + SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() + "' whereas '" + DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + "'\n"); DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple)); // Append the module inline asm string. if (!SrcM.getModuleInlineAsm().empty()) { if (DstM.getModuleInlineAsm().empty()) DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm()); else DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + SrcM.getModuleInlineAsm()); } // Loop over all of the linked values to compute type mappings. computeTypeMapping(); ComdatsChosen.clear(); for (const auto &SMEC : SrcM.getComdatSymbolTable()) { const Comdat &C = SMEC.getValue(); if (ComdatsChosen.count(&C)) continue; Comdat::SelectionKind SK; bool LinkFromSrc; if (getComdatResult(&C, SK, LinkFromSrc)) return true; ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc); } // Upgrade mismatched global arrays. upgradeMismatchedGlobals(); for (GlobalVariable &GV : SrcM.globals()) if (const Comdat *SC = GV.getComdat()) ComdatMembers[SC].push_back(&GV); for (Function &SF : SrcM) if (const Comdat *SC = SF.getComdat()) ComdatMembers[SC].push_back(&SF); for (GlobalAlias &GA : SrcM.aliases()) if (const Comdat *SC = GA.getComdat()) ComdatMembers[SC].push_back(&GA); // Insert all of the globals in src into the DstM module... without linking // initializers (which could refer to functions not yet mapped over). for (GlobalVariable &GV : SrcM.globals()) if (linkIfNeeded(GV)) return true; for (Function &SF : SrcM) if (linkIfNeeded(SF)) return true; for (GlobalAlias &GA : SrcM.aliases()) if (linkIfNeeded(GA)) return true; for (GlobalValue *GV : ValuesToLink) { MapValue(GV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); if (HasError) return true; } // Note that we are done linking global value bodies. This prevents // metadata linking from creating new references. DoneLinkingBodies = true; // Remap all of the named MDNodes in Src into the DstM module. We do this // after linking GlobalValues so that MDNodes that reference GlobalValues // are properly remapped. linkNamedMDNodes(); // Merge the module flags into the DstM module. if (linkModuleFlagsMetadata()) return true; return false; } Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef E, bool P) : ETypes(E), IsPacked(P) {} Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { if (IsPacked != That.IsPacked) return false; if (ETypes != That.ETypes) return false; return true; } bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { return !this->operator==(That); } StructType *Linker::StructTypeKeyInfo::getEmptyKey() { return DenseMapInfo::getEmptyKey(); } StructType *Linker::StructTypeKeyInfo::getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.IsPacked); } unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) { return getHashValue(KeyTy(ST)); } bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS, const StructType *RHS) { if (RHS == getEmptyKey()) return LHS == getEmptyKey(); if (RHS == getTombstoneKey()) return LHS == getTombstoneKey(); return KeyTy(LHS) == KeyTy(RHS); } void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { assert(!Ty->isOpaque()); NonOpaqueStructTypes.insert(Ty); } void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { assert(!Ty->isOpaque()); NonOpaqueStructTypes.insert(Ty); bool Removed = OpaqueStructTypes.erase(Ty); (void)Removed; assert(Removed); } void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { assert(Ty->isOpaque()); OpaqueStructTypes.insert(Ty); } StructType * Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef ETypes, bool IsPacked) { Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); auto I = NonOpaqueStructTypes.find_as(Key); if (I == NonOpaqueStructTypes.end()) return nullptr; return *I; } bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) { if (Ty->isOpaque()) return OpaqueStructTypes.count(Ty); auto I = NonOpaqueStructTypes.find(Ty); if (I == NonOpaqueStructTypes.end()) return false; return *I == Ty; } Linker::Linker(Module &M, DiagnosticHandlerFunction DiagnosticHandler) : Composite(M), DiagnosticHandler(DiagnosticHandler) { TypeFinder StructTypes; StructTypes.run(M, true); for (StructType *Ty : StructTypes) { if (Ty->isOpaque()) IdentifiedStructTypes.addOpaque(Ty); else IdentifiedStructTypes.addNonOpaque(Ty); } } bool Linker::linkInModule(Module &Src, unsigned Flags, const FunctionInfoIndex *Index, DenseSet *FunctionsToImport) { ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, DiagnosticHandler, Flags, Index, FunctionsToImport); bool RetCode = TheLinker.run(); Composite.dropTriviallyDeadConstantArrays(); return RetCode; } //===----------------------------------------------------------------------===// // LinkModules entrypoint. //===----------------------------------------------------------------------===// /// This function links two modules together, with the resulting Dest module /// modified to be the composite of the two input modules. If an error occurs, /// true is returned and ErrorMsg (if not null) is set to indicate the problem. /// Upon failure, the Dest module could be in a modified state, and shouldn't be /// relied on to be consistent. bool Linker::linkModules(Module &Dest, Module &Src, DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags) { Linker L(Dest, DiagnosticHandler); return L.linkInModule(Src, Flags); } std::unique_ptr llvm::renameModuleForThinLTO(std::unique_ptr &M, const FunctionInfoIndex *Index, DiagnosticHandlerFunction DiagnosticHandler) { std::unique_ptr RenamedModule( new llvm::Module(M->getModuleIdentifier(), M->getContext())); Linker L(*RenamedModule.get(), DiagnosticHandler); if (L.linkInModule(*M.get(), llvm::Linker::Flags::None, Index)) return nullptr; return RenamedModule; } //===----------------------------------------------------------------------===// // C API. //===----------------------------------------------------------------------===// LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src, LLVMLinkerMode Unused, char **OutMessages) { Module *D = unwrap(Dest); std::string Message; raw_string_ostream Stream(Message); DiagnosticPrinterRawOStream DP(Stream); LLVMBool Result = Linker::linkModules( *D, *unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); }); if (OutMessages && Result) { Stream.flush(); *OutMessages = strdup(Message.c_str()); } return Result; }