//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/RISCVAsmBackend.h" #include "MCTargetDesc/RISCVMCExpr.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "MCTargetDesc/RISCVTargetStreamer.h" #include "Utils/RISCVBaseInfo.h" #include "Utils/RISCVMatInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include using namespace llvm; // Include the auto-generated portion of the compress emitter. #define GEN_COMPRESS_INSTR #include "RISCVGenCompressInstEmitter.inc" namespace { struct RISCVOperand; class RISCVAsmParser : public MCTargetAsmParser { SmallVector FeatureBitStack; SMLoc getLoc() const { return getParser().getTok().getLoc(); } bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); } RISCVTargetStreamer &getTargetStreamer() { MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast(TS); } unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper, Twine Msg); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; // Helper to actually emit an instruction to the MCStreamer. Also, when // possible, compression of the instruction is performed. void emitToStreamer(MCStreamer &S, const MCInst &Inst); // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that // synthesize the desired immedate value into the destination register. void emitLoadImm(unsigned DestReg, int64_t Value, MCStreamer &Out); // Helper to emit pseudo instruction "lla" used in PC-rel addressing. void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out); /// Helper for processing MC instructions that have been successfully matched /// by MatchAndEmitInstruction. Modifications to the emitted instructions, /// like the expansion of pseudo instructions (e.g., "li"), can be performed /// in this method. bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out); // Auto-generated instruction matching functions #define GET_ASSEMBLER_HEADER #include "RISCVGenAsmMatcher.inc" OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands); OperandMatchResultTy parseImmediate(OperandVector &Operands); OperandMatchResultTy parseRegister(OperandVector &Operands, bool AllowParens = false); OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands); OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands); OperandMatchResultTy parseBareSymbol(OperandVector &Operands); OperandMatchResultTy parseJALOffset(OperandVector &Operands); bool parseOperand(OperandVector &Operands, StringRef Mnemonic); bool parseDirectiveOption(); void setFeatureBits(uint64_t Feature, StringRef FeatureString) { if (!(getSTI().getFeatureBits()[Feature])) { MCSubtargetInfo &STI = copySTI(); setAvailableFeatures( ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); } } void clearFeatureBits(uint64_t Feature, StringRef FeatureString) { if (getSTI().getFeatureBits()[Feature]) { MCSubtargetInfo &STI = copySTI(); setAvailableFeatures( ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); } } void pushFeatureBits() { FeatureBitStack.push_back(getSTI().getFeatureBits()); } bool popFeatureBits() { if (FeatureBitStack.empty()) return true; FeatureBitset FeatureBits = FeatureBitStack.pop_back_val(); copySTI().setFeatureBits(FeatureBits); setAvailableFeatures(ComputeAvailableFeatures(FeatureBits)); return false; } public: enum RISCVMatchResultTy { Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "RISCVGenAsmMatcher.inc" #undef GET_OPERAND_DIAGNOSTIC_TYPES }; static bool classifySymbolRef(const MCExpr *Expr, RISCVMCExpr::VariantKind &Kind, int64_t &Addend); RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI, MII) { Parser.addAliasForDirective(".half", ".2byte"); Parser.addAliasForDirective(".hword", ".2byte"); Parser.addAliasForDirective(".word", ".4byte"); Parser.addAliasForDirective(".dword", ".8byte"); setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } }; /// RISCVOperand - Instances of this class represent a parsed machine /// instruction struct RISCVOperand : public MCParsedAsmOperand { enum KindTy { Token, Register, Immediate, SystemRegister } Kind; bool IsRV64; struct RegOp { unsigned RegNum; }; struct ImmOp { const MCExpr *Val; }; struct SysRegOp { const char *Data; unsigned Length; unsigned Encoding; // FIXME: Add the Encoding parsed fields as needed for checks, // e.g.: read/write or user/supervisor/machine privileges. }; SMLoc StartLoc, EndLoc; union { StringRef Tok; RegOp Reg; ImmOp Imm; struct SysRegOp SysReg; }; RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} public: RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; IsRV64 = o.IsRV64; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case Register: Reg = o.Reg; break; case Immediate: Imm = o.Imm; break; case Token: Tok = o.Tok; break; case SystemRegister: SysReg = o.SysReg; break; } } bool isToken() const override { return Kind == Token; } bool isReg() const override { return Kind == Register; } bool isImm() const override { return Kind == Immediate; } bool isMem() const override { return false; } bool isSystemRegister() const { return Kind == SystemRegister; } static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm, RISCVMCExpr::VariantKind &VK) { if (auto *RE = dyn_cast(Expr)) { VK = RE->getKind(); return RE->evaluateAsConstant(Imm); } if (auto CE = dyn_cast(Expr)) { VK = RISCVMCExpr::VK_RISCV_None; Imm = CE->getValue(); return true; } return false; } // True if operand is a symbol with no modifiers, or a constant with no // modifiers and isShiftedInt(Op). template bool isBareSimmNLsb0() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); bool IsValid; if (!IsConstantImm) IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm); else IsValid = isShiftedInt(Imm); return IsValid && VK == RISCVMCExpr::VK_RISCV_None; } // Predicate methods for AsmOperands defined in RISCVInstrInfo.td bool isBareSymbol() const { int64_t Imm; RISCVMCExpr::VariantKind VK; // Must be of 'immediate' type but not a constant. if (!isImm() || evaluateConstantImm(getImm(), Imm, VK)) return false; return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isCSRSystemRegister() const { return isSystemRegister(); } /// Return true if the operand is a valid for the fence instruction e.g. /// ('iorw'). bool isFenceArg() const { if (!isImm()) return false; const MCExpr *Val = getImm(); auto *SVal = dyn_cast(Val); if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None) return false; StringRef Str = SVal->getSymbol().getName(); // Letters must be unique, taken from 'iorw', and in ascending order. This // holds as long as each individual character is one of 'iorw' and is // greater than the previous character. char Prev = '\0'; for (char c : Str) { if (c != 'i' && c != 'o' && c != 'r' && c != 'w') return false; if (c <= Prev) return false; Prev = c; } return true; } /// Return true if the operand is a valid floating point rounding mode. bool isFRMArg() const { if (!isImm()) return false; const MCExpr *Val = getImm(); auto *SVal = dyn_cast(Val); if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None) return false; StringRef Str = SVal->getSymbol().getName(); return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid; } bool isImmXLenLI() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO) return true; // Given only Imm, ensuring that the actually specified constant is either // a signed or unsigned 64-bit number is unfortunately impossible. bool IsInRange = isRV64() ? true : isInt<32>(Imm) || isUInt<32>(Imm); return IsConstantImm && IsInRange && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImmLog2XLen() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; if (!evaluateConstantImm(getImm(), Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None) return false; return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm); } bool isUImmLog2XLenNonZero() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; if (!evaluateConstantImm(getImm(), Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None) return false; if (Imm == 0) return false; return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm); } bool isUImm5() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm5NonZero() const { int64_t Imm; RISCVMCExpr::VariantKind VK; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) && VK == RISCVMCExpr::VK_RISCV_None; } bool isSImm6() const { if (!isImm()) return false; RISCVMCExpr::VariantKind VK; int64_t Imm; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isInt<6>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isSImm6NonZero() const { if (!isImm()) return false; RISCVMCExpr::VariantKind VK; int64_t Imm; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isInt<6>(Imm) && (Imm != 0) && VK == RISCVMCExpr::VK_RISCV_None; } bool isCLUIImm() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && (Imm != 0) && (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm7Lsb00() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isShiftedUInt<5, 2>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm8Lsb00() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isShiftedUInt<6, 2>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm8Lsb000() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isShiftedUInt<5, 3>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); } bool isUImm9Lsb000() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isShiftedUInt<6, 3>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm10Lsb00NonZero() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) && VK == RISCVMCExpr::VK_RISCV_None; } bool isSImm12() const { RISCVMCExpr::VariantKind VK; int64_t Imm; bool IsValid; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); if (!IsConstantImm) IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm); else IsValid = isInt<12>(Imm); return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) || VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO); } bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); } bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); } bool isSImm10Lsb0000NonZero() const { if (!isImm()) return false; int64_t Imm; RISCVMCExpr::VariantKind VK; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) && VK == RISCVMCExpr::VK_RISCV_None; } bool isUImm20LUI() const { RISCVMCExpr::VariantKind VK; int64_t Imm; bool IsValid; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); if (!IsConstantImm) { IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm); return IsValid && VK == RISCVMCExpr::VK_RISCV_HI; } else { return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_HI); } } bool isUImm20AUIPC() const { RISCVMCExpr::VariantKind VK; int64_t Imm; bool IsValid; if (!isImm()) return false; bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK); if (!IsConstantImm) { IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm); return IsValid && VK == RISCVMCExpr::VK_RISCV_PCREL_HI; } else { return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_PCREL_HI); } } bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); } /// getStartLoc - Gets location of the first token of this operand SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Gets location of the last token of this operand SMLoc getEndLoc() const override { return EndLoc; } /// True if this operand is for an RV64 instruction bool isRV64() const { return IsRV64; } unsigned getReg() const override { assert(Kind == Register && "Invalid type access!"); return Reg.RegNum; } StringRef getSysReg() const { assert(Kind == SystemRegister && "Invalid access!"); return StringRef(SysReg.Data, SysReg.Length); } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid type access!"); return Imm.Val; } StringRef getToken() const { assert(Kind == Token && "Invalid type access!"); return Tok; } void print(raw_ostream &OS) const override { switch (Kind) { case Immediate: OS << *getImm(); break; case Register: OS << ""; break; case Token: OS << "'" << getToken() << "'"; break; case SystemRegister: OS << "'; break; } } static std::unique_ptr createToken(StringRef Str, SMLoc S, bool IsRV64) { auto Op = make_unique(Token); Op->Tok = Str; Op->StartLoc = S; Op->EndLoc = S; Op->IsRV64 = IsRV64; return Op; } static std::unique_ptr createReg(unsigned RegNo, SMLoc S, SMLoc E, bool IsRV64) { auto Op = make_unique(Register); Op->Reg.RegNum = RegNo; Op->StartLoc = S; Op->EndLoc = E; Op->IsRV64 = IsRV64; return Op; } static std::unique_ptr createImm(const MCExpr *Val, SMLoc S, SMLoc E, bool IsRV64) { auto Op = make_unique(Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; Op->IsRV64 = IsRV64; return Op; } static std::unique_ptr createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) { auto Op = make_unique(SystemRegister); Op->SysReg.Data = Str.data(); Op->SysReg.Length = Str.size(); Op->SysReg.Encoding = Encoding; Op->StartLoc = S; Op->IsRV64 = IsRV64; return Op; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { assert(Expr && "Expr shouldn't be null!"); int64_t Imm = 0; RISCVMCExpr::VariantKind VK; bool IsConstant = evaluateConstantImm(Expr, Imm, VK); if (IsConstant) Inst.addOperand(MCOperand::createImm(Imm)); else Inst.addOperand(MCOperand::createExpr(Expr)); } // Used by the TableGen Code void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addFenceArgOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // isFenceArg has validated the operand, meaning this cast is safe auto SE = cast(getImm()); unsigned Imm = 0; for (char c : SE->getSymbol().getName()) { switch (c) { default: llvm_unreachable("FenceArg must contain only [iorw]"); case 'i': Imm |= RISCVFenceField::I; break; case 'o': Imm |= RISCVFenceField::O; break; case 'r': Imm |= RISCVFenceField::R; break; case 'w': Imm |= RISCVFenceField::W; break; } } Inst.addOperand(MCOperand::createImm(Imm)); } void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SysReg.Encoding)); } // Returns the rounding mode represented by this RISCVOperand. Should only // be called after checking isFRMArg. RISCVFPRndMode::RoundingMode getRoundingMode() const { // isFRMArg has validated the operand, meaning this cast is safe. auto SE = cast(getImm()); RISCVFPRndMode::RoundingMode FRM = RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName()); assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode"); return FRM; } void addFRMArgOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getRoundingMode())); } }; } // end anonymous namespace. #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "RISCVGenAsmMatcher.inc" // Return the matching FPR64 register for the given FPR32. // FIXME: Ideally this function could be removed in favour of using // information from TableGen. unsigned convertFPR32ToFPR64(unsigned Reg) { switch (Reg) { default: llvm_unreachable("Not a recognised FPR32 register"); case RISCV::F0_32: return RISCV::F0_64; case RISCV::F1_32: return RISCV::F1_64; case RISCV::F2_32: return RISCV::F2_64; case RISCV::F3_32: return RISCV::F3_64; case RISCV::F4_32: return RISCV::F4_64; case RISCV::F5_32: return RISCV::F5_64; case RISCV::F6_32: return RISCV::F6_64; case RISCV::F7_32: return RISCV::F7_64; case RISCV::F8_32: return RISCV::F8_64; case RISCV::F9_32: return RISCV::F9_64; case RISCV::F10_32: return RISCV::F10_64; case RISCV::F11_32: return RISCV::F11_64; case RISCV::F12_32: return RISCV::F12_64; case RISCV::F13_32: return RISCV::F13_64; case RISCV::F14_32: return RISCV::F14_64; case RISCV::F15_32: return RISCV::F15_64; case RISCV::F16_32: return RISCV::F16_64; case RISCV::F17_32: return RISCV::F17_64; case RISCV::F18_32: return RISCV::F18_64; case RISCV::F19_32: return RISCV::F19_64; case RISCV::F20_32: return RISCV::F20_64; case RISCV::F21_32: return RISCV::F21_64; case RISCV::F22_32: return RISCV::F22_64; case RISCV::F23_32: return RISCV::F23_64; case RISCV::F24_32: return RISCV::F24_64; case RISCV::F25_32: return RISCV::F25_64; case RISCV::F26_32: return RISCV::F26_64; case RISCV::F27_32: return RISCV::F27_64; case RISCV::F28_32: return RISCV::F28_64; case RISCV::F29_32: return RISCV::F29_64; case RISCV::F30_32: return RISCV::F30_64; case RISCV::F31_32: return RISCV::F31_64; } } unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, unsigned Kind) { RISCVOperand &Op = static_cast(AsmOp); if (!Op.isReg()) return Match_InvalidOperand; unsigned Reg = Op.getReg(); bool IsRegFPR32 = RISCVMCRegisterClasses[RISCV::FPR32RegClassID].contains(Reg); bool IsRegFPR32C = RISCVMCRegisterClasses[RISCV::FPR32CRegClassID].contains(Reg); // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the // register from FPR32 to FPR64 or FPR32C to FPR64C if necessary. if ((IsRegFPR32 && Kind == MCK_FPR64) || (IsRegFPR32C && Kind == MCK_FPR64C)) { Op.Reg.RegNum = convertFPR32ToFPR64(Reg); return Match_Success; } return Match_InvalidOperand; } bool RISCVAsmParser::generateImmOutOfRangeError( OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper, Twine Msg = "immediate must be an integer in the range") { SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]"); } bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (Result) { default: break; case Match_Success: return processInstruction(Inst, IDLoc, Out); case Match_MissingFeature: return Error(IDLoc, "instruction use requires an option to be enabled"); case Match_MnemonicFail: return Error(IDLoc, "unrecognized instruction mnemonic"); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(ErrorLoc, "too few operands for instruction"); ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } } // Handle the case when the error message is of specific type // other than the generic Match_InvalidOperand, and the // corresponding operand is missing. if (Result > FIRST_TARGET_MATCH_RESULT_TY) { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U && ErrorInfo >= Operands.size()) return Error(ErrorLoc, "too few operands for instruction"); } switch(Result) { default: break; case Match_InvalidImmXLenLI: if (isRV64()) { SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); return Error(ErrorLoc, "operand must be a constant 64-bit integer"); } return generateImmOutOfRangeError(Operands, ErrorInfo, std::numeric_limits::min(), std::numeric_limits::max()); case Match_InvalidUImmLog2XLen: if (isRV64()) return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1); return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1); case Match_InvalidUImmLog2XLenNonZero: if (isRV64()) return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1); return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1); case Match_InvalidUImm5: return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1); case Match_InvalidSImm6: return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1); case Match_InvalidSImm6NonZero: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1, "immediate must be non-zero in the range"); case Match_InvalidCLUIImm: return generateImmOutOfRangeError( Operands, ErrorInfo, 1, (1 << 5) - 1, "immediate must be in [0xfffe0, 0xfffff] or"); case Match_InvalidUImm7Lsb00: return generateImmOutOfRangeError( Operands, ErrorInfo, 0, (1 << 7) - 4, "immediate must be a multiple of 4 bytes in the range"); case Match_InvalidUImm8Lsb00: return generateImmOutOfRangeError( Operands, ErrorInfo, 0, (1 << 8) - 4, "immediate must be a multiple of 4 bytes in the range"); case Match_InvalidUImm8Lsb000: return generateImmOutOfRangeError( Operands, ErrorInfo, 0, (1 << 8) - 8, "immediate must be a multiple of 8 bytes in the range"); case Match_InvalidSImm9Lsb0: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2, "immediate must be a multiple of 2 bytes in the range"); case Match_InvalidUImm9Lsb000: return generateImmOutOfRangeError( Operands, ErrorInfo, 0, (1 << 9) - 8, "immediate must be a multiple of 8 bytes in the range"); case Match_InvalidUImm10Lsb00NonZero: return generateImmOutOfRangeError( Operands, ErrorInfo, 4, (1 << 10) - 4, "immediate must be a multiple of 4 bytes in the range"); case Match_InvalidSImm10Lsb0000NonZero: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16, "immediate must be a multiple of 16 bytes and non-zero in the range"); case Match_InvalidSImm12: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1, "operand must be a symbol with %lo/%pcrel_lo modifier or an integer in " "the range"); case Match_InvalidSImm12Lsb0: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2, "immediate must be a multiple of 2 bytes in the range"); case Match_InvalidSImm13Lsb0: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2, "immediate must be a multiple of 2 bytes in the range"); case Match_InvalidUImm20LUI: return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1, "operand must be a symbol with %hi() " "modifier or an integer in the range"); case Match_InvalidUImm20AUIPC: return generateImmOutOfRangeError( Operands, ErrorInfo, 0, (1 << 20) - 1, "operand must be a symbol with %pcrel_hi() modifier or an integer in " "the range"); case Match_InvalidSImm21Lsb0JAL: return generateImmOutOfRangeError( Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2, "immediate must be a multiple of 2 bytes in the range"); case Match_InvalidCSRSystemRegister: { return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1, "operand must be a valid system register " "name or an integer in the range"); } case Match_InvalidFenceArg: { SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); return Error( ErrorLoc, "operand must be formed of letters selected in-order from 'iorw'"); } case Match_InvalidFRMArg: { SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); return Error( ErrorLoc, "operand must be a valid floating point rounding mode mnemonic"); } case Match_InvalidBareSymbol: { SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc(); return Error(ErrorLoc, "operand must be a bare symbol name"); } } llvm_unreachable("Unknown match type detected!"); } bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = getParser().getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); RegNo = 0; StringRef Name = getLexer().getTok().getIdentifier(); if (!MatchRegisterName(Name) || !MatchRegisterAltName(Name)) { getParser().Lex(); // Eat identifier token. return false; } return Error(StartLoc, "invalid register name"); } OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands, bool AllowParens) { SMLoc FirstS = getLoc(); bool HadParens = false; AsmToken Buf[2]; // If this a parenthesised register name is allowed, parse it atomically if (AllowParens && getLexer().is(AsmToken::LParen)) { size_t ReadCount = getLexer().peekTokens(Buf); if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) { HadParens = true; getParser().Lex(); // Eat '(' } } switch (getLexer().getKind()) { default: return MatchOperand_NoMatch; case AsmToken::Identifier: StringRef Name = getLexer().getTok().getIdentifier(); unsigned RegNo = MatchRegisterName(Name); if (RegNo == 0) { RegNo = MatchRegisterAltName(Name); if (RegNo == 0) { if (HadParens) getLexer().UnLex(Buf[0]); return MatchOperand_NoMatch; } } if (HadParens) Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64())); SMLoc S = getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); getLexer().Lex(); Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64())); } if (HadParens) { getParser().Lex(); // Eat ')' Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64())); } return MatchOperand_Success; } OperandMatchResultTy RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Res; switch (getLexer().getKind()) { default: return MatchOperand_NoMatch; case AsmToken::LParen: case AsmToken::Minus: case AsmToken::Plus: case AsmToken::Integer: case AsmToken::String: { if (getParser().parseExpression(Res)) return MatchOperand_ParseFail; auto *CE = dyn_cast(Res); if (CE) { int64_t Imm = CE->getValue(); if (isUInt<12>(Imm)) { auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm); // Accept an immediate representing a named or un-named Sys Reg // if the range is valid, regardless of the required features. Operands.push_back(RISCVOperand::createSysReg( SysReg ? SysReg->Name : "", S, Imm, isRV64())); return MatchOperand_Success; } } Twine Msg = "immediate must be an integer in the range"; Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]"); return MatchOperand_ParseFail; } case AsmToken::Identifier: { StringRef Identifier; if (getParser().parseIdentifier(Identifier)) return MatchOperand_ParseFail; auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier); // Accept a named Sys Reg if the required features are present. if (SysReg) { if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) { Error(S, "system register use requires an option to be enabled"); return MatchOperand_ParseFail; } Operands.push_back(RISCVOperand::createSysReg( Identifier, S, SysReg->Encoding, isRV64())); return MatchOperand_Success; } Twine Msg = "operand must be a valid system register name " "or an integer in the range"; Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]"); return MatchOperand_ParseFail; } case AsmToken::Percent: { // Discard operand with modifier. Twine Msg = "immediate must be an integer in the range"; Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]"); return MatchOperand_ParseFail; } } return MatchOperand_NoMatch; } OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) { SMLoc S = getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); const MCExpr *Res; switch (getLexer().getKind()) { default: return MatchOperand_NoMatch; case AsmToken::LParen: case AsmToken::Minus: case AsmToken::Plus: case AsmToken::Integer: case AsmToken::String: case AsmToken::Identifier: if (getParser().parseExpression(Res)) return MatchOperand_ParseFail; break; case AsmToken::Percent: return parseOperandWithModifier(Operands); } Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64())); return MatchOperand_Success; } OperandMatchResultTy RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) { SMLoc S = getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); if (getLexer().getKind() != AsmToken::Percent) { Error(getLoc(), "expected '%' for operand modifier"); return MatchOperand_ParseFail; } getParser().Lex(); // Eat '%' if (getLexer().getKind() != AsmToken::Identifier) { Error(getLoc(), "expected valid identifier for operand modifier"); return MatchOperand_ParseFail; } StringRef Identifier = getParser().getTok().getIdentifier(); RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier); if (VK == RISCVMCExpr::VK_RISCV_Invalid) { Error(getLoc(), "unrecognized operand modifier"); return MatchOperand_ParseFail; } getParser().Lex(); // Eat the identifier if (getLexer().getKind() != AsmToken::LParen) { Error(getLoc(), "expected '('"); return MatchOperand_ParseFail; } getParser().Lex(); // Eat '(' const MCExpr *SubExpr; if (getParser().parseParenExpression(SubExpr, E)) { return MatchOperand_ParseFail; } const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext()); Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64())); return MatchOperand_Success; } OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) { SMLoc S = getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); const MCExpr *Res; if (getLexer().getKind() != AsmToken::Identifier) return MatchOperand_NoMatch; StringRef Identifier; if (getParser().parseIdentifier(Identifier)) return MatchOperand_ParseFail; MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64())); return MatchOperand_Success; } OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) { // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo` // both being acceptable forms. When parsing `jal ra, foo` this function // will be called for the `ra` register operand in an attempt to match the // single-operand alias. parseJALOffset must fail for this case. It would // seem logical to try parse the operand using parseImmediate and return // NoMatch if the next token is a comma (meaning we must be parsing a jal in // the second form rather than the first). We can't do this as there's no // way of rewinding the lexer state. Instead, return NoMatch if this operand // is an identifier and is followed by a comma. if (getLexer().is(AsmToken::Identifier) && getLexer().peekTok().is(AsmToken::Comma)) return MatchOperand_NoMatch; return parseImmediate(Operands); } OperandMatchResultTy RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) { if (getLexer().isNot(AsmToken::LParen)) { Error(getLoc(), "expected '('"); return MatchOperand_ParseFail; } getParser().Lex(); // Eat '(' Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64())); if (parseRegister(Operands) != MatchOperand_Success) { Error(getLoc(), "expected register"); return MatchOperand_ParseFail; } if (getLexer().isNot(AsmToken::RParen)) { Error(getLoc(), "expected ')'"); return MatchOperand_ParseFail; } getParser().Lex(); // Eat ')' Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64())); return MatchOperand_Success; } /// Looks at a token type and creates the relevant operand from this /// information, adding to Operands. If operand was parsed, returns false, else /// true. bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy Result = MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true); if (Result == MatchOperand_Success) return false; if (Result == MatchOperand_ParseFail) return true; // Attempt to parse token as a register. if (parseRegister(Operands, true) == MatchOperand_Success) return false; // Attempt to parse token as an immediate if (parseImmediate(Operands) == MatchOperand_Success) { // Parse memory base register if present if (getLexer().is(AsmToken::LParen)) return parseMemOpBaseReg(Operands) != MatchOperand_Success; return false; } // Finally we have exhausted all options and must declare defeat. Error(getLoc(), "unknown operand"); return true; } bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // Ensure that if the instruction occurs when relaxation is enabled, // relocations are forced for the file. Ideally this would be done when there // is enough information to reliably determine if the instruction itself may // cause relaxations. Unfortunately instruction processing stage occurs in the // same pass as relocation emission, so it's too late to set a 'sticky bit' // for the entire file. if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) { auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr(); if (Assembler != nullptr) { RISCVAsmBackend &MAB = static_cast(Assembler->getBackend()); MAB.setForceRelocs(); } } // First operand is token for instruction Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64())); // If there are no more operands, then finish if (getLexer().is(AsmToken::EndOfStatement)) return false; // Parse first operand if (parseOperand(Operands, Name)) return true; // Parse until end of statement, consuming commas between operands unsigned OperandIdx = 1; while (getLexer().is(AsmToken::Comma)) { // Consume comma token getLexer().Lex(); // Parse next operand if (parseOperand(Operands, Name)) return true; ++OperandIdx; } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); getParser().eatToEndOfStatement(); return Error(Loc, "unexpected token"); } getParser().Lex(); // Consume the EndOfStatement. return false; } bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr, RISCVMCExpr::VariantKind &Kind, int64_t &Addend) { Kind = RISCVMCExpr::VK_RISCV_None; Addend = 0; if (const RISCVMCExpr *RE = dyn_cast(Expr)) { Kind = RE->getKind(); Expr = RE->getSubExpr(); } // It's a simple symbol reference or constant with no addend. if (isa(Expr) || isa(Expr)) return true; const MCBinaryExpr *BE = dyn_cast(Expr); if (!BE) return false; if (!isa(BE->getLHS())) return false; if (BE->getOpcode() != MCBinaryExpr::Add && BE->getOpcode() != MCBinaryExpr::Sub) return false; // We are able to support the subtraction of two symbol references if (BE->getOpcode() == MCBinaryExpr::Sub && isa(BE->getRHS())) return true; // See if the addend is a constant, otherwise there's more going // on here than we can deal with. auto AddendExpr = dyn_cast(BE->getRHS()); if (!AddendExpr) return false; Addend = AddendExpr->getValue(); if (BE->getOpcode() == MCBinaryExpr::Sub) Addend = -Addend; // It's some symbol reference + a constant addend return Kind != RISCVMCExpr::VK_RISCV_Invalid; } bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) { // This returns false if this function recognizes the directive // regardless of whether it is successfully handles or reports an // error. Otherwise it returns true to give the generic parser a // chance at recognizing it. StringRef IDVal = DirectiveID.getString(); if (IDVal == ".option") return parseDirectiveOption(); return true; } bool RISCVAsmParser::parseDirectiveOption() { MCAsmParser &Parser = getParser(); // Get the option token. AsmToken Tok = Parser.getTok(); // At the moment only identifiers are supported. if (Tok.isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "unexpected token, expected identifier"); StringRef Option = Tok.getIdentifier(); if (Option == "push") { getTargetStreamer().emitDirectiveOptionPush(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); pushFeatureBits(); return false; } if (Option == "pop") { SMLoc StartLoc = Parser.getTok().getLoc(); getTargetStreamer().emitDirectiveOptionPop(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); if (popFeatureBits()) return Error(StartLoc, ".option pop with no .option push"); return false; } if (Option == "rvc") { getTargetStreamer().emitDirectiveOptionRVC(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); setFeatureBits(RISCV::FeatureStdExtC, "c"); return false; } if (Option == "norvc") { getTargetStreamer().emitDirectiveOptionNoRVC(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); clearFeatureBits(RISCV::FeatureStdExtC, "c"); return false; } if (Option == "relax") { getTargetStreamer().emitDirectiveOptionRelax(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); setFeatureBits(RISCV::FeatureRelax, "relax"); return false; } if (Option == "norelax") { getTargetStreamer().emitDirectiveOptionNoRelax(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token, expected end of statement"); clearFeatureBits(RISCV::FeatureRelax, "relax"); return false; } // Unknown option. Warning(Parser.getTok().getLoc(), "unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or " "'norelax'"); Parser.eatToEndOfStatement(); return false; } void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) { MCInst CInst; bool Res = compressInst(CInst, Inst, getSTI(), S.getContext()); CInst.setLoc(Inst.getLoc()); S.EmitInstruction((Res ? CInst : Inst), getSTI()); } void RISCVAsmParser::emitLoadImm(unsigned DestReg, int64_t Value, MCStreamer &Out) { RISCVMatInt::InstSeq Seq; RISCVMatInt::generateInstSeq(Value, isRV64(), Seq); unsigned SrcReg = RISCV::X0; for (RISCVMatInt::Inst &Inst : Seq) { if (Inst.Opc == RISCV::LUI) { emitToStreamer( Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm)); } else { emitToStreamer( Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm( Inst.Imm)); } // Only the first instruction has X0 as its source. SrcReg = DestReg; } } void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out) { // The local load address pseudo-instruction "lla" is used in PC-relative // addressing of symbols: // lla rdest, symbol // expands to // TmpLabel: AUIPC rdest, %pcrel_hi(symbol) // ADDI rdest, %pcrel_lo(TmpLabel) MCContext &Ctx = getContext(); MCSymbol *TmpLabel = Ctx.createTempSymbol( "pcrel_hi", /* AlwaysAddSuffix */ true, /* CanBeUnnamed */ false); Out.EmitLabel(TmpLabel); MCOperand DestReg = Inst.getOperand(0); const RISCVMCExpr *Symbol = RISCVMCExpr::create( Inst.getOperand(1).getExpr(), RISCVMCExpr::VK_RISCV_PCREL_HI, Ctx); emitToStreamer( Out, MCInstBuilder(RISCV::AUIPC).addOperand(DestReg).addExpr(Symbol)); const MCExpr *RefToLinkTmpLabel = RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx), RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx); emitToStreamer(Out, MCInstBuilder(RISCV::ADDI) .addOperand(DestReg) .addOperand(DestReg) .addExpr(RefToLinkTmpLabel)); } bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out) { Inst.setLoc(IDLoc); if (Inst.getOpcode() == RISCV::PseudoLI) { unsigned Reg = Inst.getOperand(0).getReg(); const MCOperand &Op1 = Inst.getOperand(1); if (Op1.isExpr()) { // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar. // Just convert to an addi. This allows compatibility with gas. emitToStreamer(Out, MCInstBuilder(RISCV::ADDI) .addReg(Reg) .addReg(RISCV::X0) .addExpr(Op1.getExpr())); return false; } int64_t Imm = Inst.getOperand(1).getImm(); // On RV32 the immediate here can either be a signed or an unsigned // 32-bit number. Sign extension has to be performed to ensure that Imm // represents the expected signed 64-bit number. if (!isRV64()) Imm = SignExtend64<32>(Imm); emitLoadImm(Reg, Imm, Out); return false; } else if (Inst.getOpcode() == RISCV::PseudoLLA) { emitLoadLocalAddress(Inst, IDLoc, Out); return false; } emitToStreamer(Out, Inst); return false; } extern "C" void LLVMInitializeRISCVAsmParser() { RegisterMCAsmParser X(getTheRISCV32Target()); RegisterMCAsmParser Y(getTheRISCV64Target()); }