//===- llvm/unittest/ADT/SmallVectorTest.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // SmallVector unit tests. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Compiler.h" #include "gtest/gtest.h" #include #include using namespace llvm; namespace { /// A helper class that counts the total number of constructor and /// destructor calls. class Constructable { private: static int numConstructorCalls; static int numMoveConstructorCalls; static int numCopyConstructorCalls; static int numDestructorCalls; static int numAssignmentCalls; static int numMoveAssignmentCalls; static int numCopyAssignmentCalls; bool constructed; int value; public: Constructable() : constructed(true), value(0) { ++numConstructorCalls; } Constructable(int val) : constructed(true), value(val) { ++numConstructorCalls; } Constructable(const Constructable & src) : constructed(true) { value = src.value; ++numConstructorCalls; ++numCopyConstructorCalls; } Constructable(Constructable && src) : constructed(true) { value = src.value; src.value = 0; ++numConstructorCalls; ++numMoveConstructorCalls; } ~Constructable() { EXPECT_TRUE(constructed); ++numDestructorCalls; constructed = false; } Constructable & operator=(const Constructable & src) { EXPECT_TRUE(constructed); value = src.value; ++numAssignmentCalls; ++numCopyAssignmentCalls; return *this; } Constructable & operator=(Constructable && src) { EXPECT_TRUE(constructed); value = src.value; src.value = 0; ++numAssignmentCalls; ++numMoveAssignmentCalls; return *this; } int getValue() const { return abs(value); } static void reset() { numConstructorCalls = 0; numMoveConstructorCalls = 0; numCopyConstructorCalls = 0; numDestructorCalls = 0; numAssignmentCalls = 0; numMoveAssignmentCalls = 0; numCopyAssignmentCalls = 0; } static int getNumConstructorCalls() { return numConstructorCalls; } static int getNumMoveConstructorCalls() { return numMoveConstructorCalls; } static int getNumCopyConstructorCalls() { return numCopyConstructorCalls; } static int getNumDestructorCalls() { return numDestructorCalls; } static int getNumAssignmentCalls() { return numAssignmentCalls; } static int getNumMoveAssignmentCalls() { return numMoveAssignmentCalls; } static int getNumCopyAssignmentCalls() { return numCopyAssignmentCalls; } friend bool operator==(const Constructable & c0, const Constructable & c1) { return c0.getValue() == c1.getValue(); } friend bool LLVM_ATTRIBUTE_UNUSED operator!=(const Constructable & c0, const Constructable & c1) { return c0.getValue() != c1.getValue(); } }; int Constructable::numConstructorCalls; int Constructable::numCopyConstructorCalls; int Constructable::numMoveConstructorCalls; int Constructable::numDestructorCalls; int Constructable::numAssignmentCalls; int Constructable::numCopyAssignmentCalls; int Constructable::numMoveAssignmentCalls; struct NonCopyable { NonCopyable() {} NonCopyable(NonCopyable &&) {} NonCopyable &operator=(NonCopyable &&) { return *this; } private: NonCopyable(const NonCopyable &) = delete; NonCopyable &operator=(const NonCopyable &) = delete; }; LLVM_ATTRIBUTE_USED void CompileTest() { SmallVector V; V.resize(42); } class SmallVectorTestBase : public testing::Test { protected: void SetUp() override { Constructable::reset(); } template void assertEmpty(VectorT & v) { // Size tests EXPECT_EQ(0u, v.size()); EXPECT_TRUE(v.empty()); // Iterator tests EXPECT_TRUE(v.begin() == v.end()); } // Assert that v contains the specified values, in order. template void assertValuesInOrder(VectorT & v, size_t size, ...) { EXPECT_EQ(size, v.size()); va_list ap; va_start(ap, size); for (size_t i = 0; i < size; ++i) { int value = va_arg(ap, int); EXPECT_EQ(value, v[i].getValue()); } va_end(ap); } // Generate a sequence of values to initialize the vector. template void makeSequence(VectorT & v, int start, int end) { for (int i = start; i <= end; ++i) { v.push_back(Constructable(i)); } } }; // Test fixture class template class SmallVectorTest : public SmallVectorTestBase { protected: VectorT theVector; VectorT otherVector; }; typedef ::testing::Types, SmallVector, SmallVector, SmallVector, SmallVector > SmallVectorTestTypes; TYPED_TEST_SUITE(SmallVectorTest, SmallVectorTestTypes, ); // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorNonIterTest) { SCOPED_TRACE("ConstructorTest"); this->theVector = SmallVector(2, 2); this->assertValuesInOrder(this->theVector, 2u, 2, 2); } // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorIterTest) { SCOPED_TRACE("ConstructorTest"); int arr[] = {1, 2, 3}; this->theVector = SmallVector(std::begin(arr), std::end(arr)); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // New vector test. TYPED_TEST(SmallVectorTest, EmptyVectorTest) { SCOPED_TRACE("EmptyVectorTest"); this->assertEmpty(this->theVector); EXPECT_TRUE(this->theVector.rbegin() == this->theVector.rend()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); } // Simple insertions and deletions. TYPED_TEST(SmallVectorTest, PushPopTest) { SCOPED_TRACE("PushPopTest"); // Track whether the vector will potentially have to grow. bool RequiresGrowth = this->theVector.capacity() < 3; // Push an element this->theVector.push_back(Constructable(1)); // Size tests this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_FALSE(this->theVector.begin() == this->theVector.end()); EXPECT_FALSE(this->theVector.empty()); // Push another element this->theVector.push_back(Constructable(2)); this->assertValuesInOrder(this->theVector, 2u, 1, 2); // Insert at beginning. Reserve space to avoid reference invalidation from // this->theVector[1]. this->theVector.reserve(this->theVector.size() + 1); this->theVector.insert(this->theVector.begin(), this->theVector[1]); this->assertValuesInOrder(this->theVector, 3u, 2, 1, 2); // Pop one element this->theVector.pop_back(); this->assertValuesInOrder(this->theVector, 2u, 2, 1); // Pop remaining elements this->theVector.pop_back_n(2); this->assertEmpty(this->theVector); // Check number of constructor calls. Should be 2 for each list element, // one for the argument to push_back, one for the argument to insert, // and one for the list element itself. if (!RequiresGrowth) { EXPECT_EQ(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } else { // If we had to grow the vector, these only have a lower bound, but should // always be equal. EXPECT_LE(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } } // Clear test. TYPED_TEST(SmallVectorTest, ClearTest) { SCOPED_TRACE("ClearTest"); this->theVector.reserve(2); this->makeSequence(this->theVector, 1, 2); this->theVector.clear(); this->assertEmpty(this->theVector); EXPECT_EQ(4, Constructable::getNumConstructorCalls()); EXPECT_EQ(4, Constructable::getNumDestructorCalls()); } // Resize smaller test. TYPED_TEST(SmallVectorTest, ResizeShrinkTest) { SCOPED_TRACE("ResizeShrinkTest"); this->theVector.reserve(3); this->makeSequence(this->theVector, 1, 3); this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_EQ(6, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } // Resize bigger test. TYPED_TEST(SmallVectorTest, ResizeGrowTest) { SCOPED_TRACE("ResizeGrowTest"); this->theVector.resize(2); EXPECT_EQ(2, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); EXPECT_EQ(2u, this->theVector.size()); } TYPED_TEST(SmallVectorTest, ResizeWithElementsTest) { this->theVector.resize(2); Constructable::reset(); this->theVector.resize(4); size_t Ctors = Constructable::getNumConstructorCalls(); EXPECT_TRUE(Ctors == 2 || Ctors == 4); size_t MoveCtors = Constructable::getNumMoveConstructorCalls(); EXPECT_TRUE(MoveCtors == 0 || MoveCtors == 2); size_t Dtors = Constructable::getNumDestructorCalls(); EXPECT_TRUE(Dtors == 0 || Dtors == 2); } // Resize with fill value. TYPED_TEST(SmallVectorTest, ResizeFillTest) { SCOPED_TRACE("ResizeFillTest"); this->theVector.resize(3, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 77, 77, 77); } TEST(SmallVectorTest, ResizeForOverwrite) { { // Heap allocated storage. SmallVector V; V.push_back(5U); V.pop_back(); V.resize_for_overwrite(V.size() + 1U); EXPECT_EQ(5U, V.back()); V.pop_back(); V.resize(V.size() + 1); EXPECT_EQ(0U, V.back()); } { // Inline storage. SmallVector V; V.push_back(5U); V.pop_back(); V.resize_for_overwrite(V.size() + 1U); EXPECT_EQ(5U, V.back()); V.pop_back(); V.resize(V.size() + 1); EXPECT_EQ(0U, V.back()); } } // Overflow past fixed size. TYPED_TEST(SmallVectorTest, OverflowTest) { SCOPED_TRACE("OverflowTest"); // Push more elements than the fixed size. this->makeSequence(this->theVector, 1, 10); // Test size and values. EXPECT_EQ(10u, this->theVector.size()); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i+1, this->theVector[i].getValue()); } // Now resize back to fixed size. this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); } // Iteration tests. TYPED_TEST(SmallVectorTest, IterationTest) { this->makeSequence(this->theVector, 1, 2); // Forward Iteration typename TypeParam::iterator it = this->theVector.begin(); EXPECT_TRUE(*it == this->theVector.front()); EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); ++it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_TRUE(*it == this->theVector.back()); EXPECT_EQ(2, it->getValue()); ++it; EXPECT_TRUE(it == this->theVector.end()); --it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_EQ(2, it->getValue()); --it; EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); // Reverse Iteration typename TypeParam::reverse_iterator rit = this->theVector.rbegin(); EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); ++rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); ++rit; EXPECT_TRUE(rit == this->theVector.rend()); --rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); --rit; EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); } // Swap test. TYPED_TEST(SmallVectorTest, SwapTest) { SCOPED_TRACE("SwapTest"); this->makeSequence(this->theVector, 1, 2); std::swap(this->theVector, this->otherVector); this->assertEmpty(this->theVector); this->assertValuesInOrder(this->otherVector, 2u, 1, 2); } // Append test TYPED_TEST(SmallVectorTest, AppendTest) { SCOPED_TRACE("AppendTest"); this->makeSequence(this->otherVector, 2, 3); this->theVector.push_back(Constructable(1)); this->theVector.append(this->otherVector.begin(), this->otherVector.end()); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // Append repeated test TYPED_TEST(SmallVectorTest, AppendRepeatedTest) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 1, 77, 77); } // Append test TYPED_TEST(SmallVectorTest, AppendNonIterTest) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(2, 7); this->assertValuesInOrder(this->theVector, 3u, 1, 7, 7); } struct output_iterator { typedef std::output_iterator_tag iterator_category; typedef int value_type; typedef int difference_type; typedef value_type *pointer; typedef value_type &reference; operator int() { return 2; } operator Constructable() { return 7; } }; TYPED_TEST(SmallVectorTest, AppendRepeatedNonForwardIterator) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(output_iterator(), output_iterator()); this->assertValuesInOrder(this->theVector, 3u, 1, 7, 7); } TYPED_TEST(SmallVectorTest, AppendSmallVector) { SCOPED_TRACE("AppendSmallVector"); SmallVector otherVector = {7, 7}; this->theVector.push_back(Constructable(1)); this->theVector.append(otherVector); this->assertValuesInOrder(this->theVector, 3u, 1, 7, 7); } // Assign test TYPED_TEST(SmallVectorTest, AssignTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); this->theVector.assign(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 2u, 77, 77); } // Assign test TYPED_TEST(SmallVectorTest, AssignRangeTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); int arr[] = {1, 2, 3}; this->theVector.assign(std::begin(arr), std::end(arr)); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // Assign test TYPED_TEST(SmallVectorTest, AssignNonIterTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); this->theVector.assign(2, 7); this->assertValuesInOrder(this->theVector, 2u, 7, 7); } TYPED_TEST(SmallVectorTest, AssignSmallVector) { SCOPED_TRACE("AssignSmallVector"); SmallVector otherVector = {7, 7}; this->theVector.push_back(Constructable(1)); this->theVector.assign(otherVector); this->assertValuesInOrder(this->theVector, 2u, 7, 7); } // Move-assign test TYPED_TEST(SmallVectorTest, MoveAssignTest) { SCOPED_TRACE("MoveAssignTest"); // Set up our vector with a single element, but enough capacity for 4. this->theVector.reserve(4); this->theVector.push_back(Constructable(1)); // Set up the other vector with 2 elements. this->otherVector.push_back(Constructable(2)); this->otherVector.push_back(Constructable(3)); // Move-assign from the other vector. this->theVector = std::move(this->otherVector); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 2u, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-2, Constructable::getNumDestructorCalls()); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } // Erase a single element TYPED_TEST(SmallVectorTest, EraseTest) { SCOPED_TRACE("EraseTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin()); this->assertValuesInOrder(this->theVector, 2u, 2, 3); } // Erase a range of elements TYPED_TEST(SmallVectorTest, EraseRangeTest) { SCOPED_TRACE("EraseRangeTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin(), theConstVector.begin() + 2); this->assertValuesInOrder(this->theVector, 1u, 3); } // Insert a single element. TYPED_TEST(SmallVectorTest, InsertTest) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, Constructable(77)); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert a copy of a single element. TYPED_TEST(SmallVectorTest, InsertCopy) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); Constructable C(77); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, C); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert repeated elements. TYPED_TEST(SmallVectorTest, InsertRepeatedTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, 2, Constructable(16)); // Move construct the top element into newly allocated space, and optionally // reallocate the whole buffer, move constructing into it. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 4 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 6); // Move assign the next two to shift them up and make a gap. EXPECT_EQ(1, Constructable::getNumMoveAssignmentCalls()); // Copy construct the two new elements from the parameter. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // All without any copy construction. EXPECT_EQ(0, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 16, 16, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedNonIterTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, 2, 7); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 7, 7, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedAtEndTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), 2, Constructable(16)); // Just copy construct them into newly allocated space EXPECT_EQ(2, Constructable::getNumCopyConstructorCalls()); // Move everything across if reallocation is needed. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 4); // Without ever moving or copying anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 4, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 4, 16, 16); } TYPED_TEST(SmallVectorTest, InsertRepeatedEmptyTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 10, 15); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), 0, Constructable(42))); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, 0, Constructable(42))); } // Insert range. TYPED_TEST(SmallVectorTest, InsertRangeTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, Arr, Arr + 3); // Move construct the top 3 elements into newly allocated space. // Possibly move the whole sequence into new space first. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 3 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 5); // Copy assign the lower 2 new elements into existing space. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // Copy construct the third element into newly allocated space. EXPECT_EQ(1, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 77, 77, 77, 2, 3); } TYPED_TEST(SmallVectorTest, InsertRangeAtEndTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); // Insert at end. Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), Arr, Arr+3); // Copy construct the 3 elements into new space at the top. EXPECT_EQ(3, Constructable::getNumCopyConstructorCalls()); // Don't copy/move anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); // Reallocation might occur, causing all elements to be moved into the new // buffer. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 3); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 3, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 77, 77, 77); } TYPED_TEST(SmallVectorTest, InsertEmptyRangeTest) { SCOPED_TRACE("InsertRangeTest"); this->makeSequence(this->theVector, 1, 3); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), this->theVector.begin(), this->theVector.begin())); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, this->theVector.begin(), this->theVector.begin())); } // Comparison tests. TYPED_TEST(SmallVectorTest, ComparisonTest) { SCOPED_TRACE("ComparisonTest"); this->makeSequence(this->theVector, 1, 3); this->makeSequence(this->otherVector, 1, 3); EXPECT_TRUE(this->theVector == this->otherVector); EXPECT_FALSE(this->theVector != this->otherVector); this->otherVector.clear(); this->makeSequence(this->otherVector, 2, 4); EXPECT_FALSE(this->theVector == this->otherVector); EXPECT_TRUE(this->theVector != this->otherVector); } // Constant vector tests. TYPED_TEST(SmallVectorTest, ConstVectorTest) { const TypeParam constVector; EXPECT_EQ(0u, constVector.size()); EXPECT_TRUE(constVector.empty()); EXPECT_TRUE(constVector.begin() == constVector.end()); } // Direct array access. TYPED_TEST(SmallVectorTest, DirectVectorTest) { EXPECT_EQ(0u, this->theVector.size()); this->theVector.reserve(4); EXPECT_LE(4u, this->theVector.capacity()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); this->theVector.push_back(1); this->theVector.push_back(2); this->theVector.push_back(3); this->theVector.push_back(4); EXPECT_EQ(4u, this->theVector.size()); EXPECT_EQ(8, Constructable::getNumConstructorCalls()); EXPECT_EQ(1, this->theVector[0].getValue()); EXPECT_EQ(2, this->theVector[1].getValue()); EXPECT_EQ(3, this->theVector[2].getValue()); EXPECT_EQ(4, this->theVector[3].getValue()); } TYPED_TEST(SmallVectorTest, IteratorTest) { std::list L; this->theVector.insert(this->theVector.end(), L.begin(), L.end()); } template class DualSmallVectorsTest; template class DualSmallVectorsTest> : public SmallVectorTestBase { protected: VectorT1 theVector; VectorT2 otherVector; template static unsigned NumBuiltinElts(const SmallVector&) { return N; } }; typedef ::testing::Types< // Small mode -> Small mode. std::pair, SmallVector>, // Small mode -> Big mode. std::pair, SmallVector>, // Big mode -> Small mode. std::pair, SmallVector>, // Big mode -> Big mode. std::pair, SmallVector> > DualSmallVectorTestTypes; TYPED_TEST_SUITE(DualSmallVectorsTest, DualSmallVectorTestTypes, ); TYPED_TEST(DualSmallVectorsTest, MoveAssignment) { SCOPED_TRACE("MoveAssignTest-DualVectorTypes"); // Set up our vector with four elements. for (unsigned I = 0; I < 4; ++I) this->otherVector.push_back(Constructable(I)); const Constructable *OrigDataPtr = this->otherVector.data(); // Move-assign from the other vector. this->theVector = std::move(static_cast&>(this->otherVector)); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 4u, 0, 1, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-4, Constructable::getNumDestructorCalls()); // If the source vector (otherVector) was in small-mode, assert that we just // moved the data pointer over. EXPECT_TRUE(this->NumBuiltinElts(this->otherVector) == 4 || this->theVector.data() == OrigDataPtr); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); // We shouldn't have copied anything in this whole process. EXPECT_EQ(Constructable::getNumCopyConstructorCalls(), 0); } struct notassignable { int &x; notassignable(int &x) : x(x) {} }; TEST(SmallVectorCustomTest, NoAssignTest) { int x = 0; SmallVector vec; vec.push_back(notassignable(x)); x = 42; EXPECT_EQ(42, vec.pop_back_val().x); } struct MovedFrom { bool hasValue; MovedFrom() : hasValue(true) { } MovedFrom(MovedFrom&& m) : hasValue(m.hasValue) { m.hasValue = false; } MovedFrom &operator=(MovedFrom&& m) { hasValue = m.hasValue; m.hasValue = false; return *this; } }; TEST(SmallVectorTest, MidInsert) { SmallVector v; v.push_back(MovedFrom()); v.insert(v.begin(), MovedFrom()); for (MovedFrom &m : v) EXPECT_TRUE(m.hasValue); } enum EmplaceableArgState { EAS_Defaulted, EAS_Arg, EAS_LValue, EAS_RValue, EAS_Failure }; template struct EmplaceableArg { EmplaceableArgState State; EmplaceableArg() : State(EAS_Defaulted) {} EmplaceableArg(EmplaceableArg &&X) : State(X.State == EAS_Arg ? EAS_RValue : EAS_Failure) {} EmplaceableArg(EmplaceableArg &X) : State(X.State == EAS_Arg ? EAS_LValue : EAS_Failure) {} explicit EmplaceableArg(bool) : State(EAS_Arg) {} private: EmplaceableArg &operator=(EmplaceableArg &&) = delete; EmplaceableArg &operator=(const EmplaceableArg &) = delete; }; enum EmplaceableState { ES_Emplaced, ES_Moved }; struct Emplaceable { EmplaceableArg<0> A0; EmplaceableArg<1> A1; EmplaceableArg<2> A2; EmplaceableArg<3> A3; EmplaceableState State; Emplaceable() : State(ES_Emplaced) {} template explicit Emplaceable(A0Ty &&A0) : A0(std::forward(A0)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1) : A0(std::forward(A0)), A1(std::forward(A1)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2) : A0(std::forward(A0)), A1(std::forward(A1)), A2(std::forward(A2)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2, A3Ty &&A3) : A0(std::forward(A0)), A1(std::forward(A1)), A2(std::forward(A2)), A3(std::forward(A3)), State(ES_Emplaced) {} Emplaceable(Emplaceable &&) : State(ES_Moved) {} Emplaceable &operator=(Emplaceable &&) { State = ES_Moved; return *this; } private: Emplaceable(const Emplaceable &) = delete; Emplaceable &operator=(const Emplaceable &) = delete; }; TEST(SmallVectorTest, EmplaceBack) { EmplaceableArg<0> A0(true); EmplaceableArg<1> A1(true); EmplaceableArg<2> A2(true); EmplaceableArg<3> A3(true); { SmallVector V; Emplaceable &back = V.emplace_back(); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_Defaulted); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0)); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(A0); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_LValue); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(A0, A1); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_LValue); EXPECT_TRUE(back.A1.State == EAS_LValue); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0), std::move(A1)); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_RValue); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0), A1, std::move(A2), A3); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_LValue); EXPECT_TRUE(back.A2.State == EAS_RValue); EXPECT_TRUE(back.A3.State == EAS_LValue); } { SmallVector V; V.emplace_back(); V.emplace_back(42); EXPECT_EQ(2U, V.size()); EXPECT_EQ(0, V[0]); EXPECT_EQ(42, V[1]); } } TEST(SmallVectorTest, DefaultInlinedElements) { SmallVector V; EXPECT_TRUE(V.empty()); V.push_back(7); EXPECT_EQ(V[0], 7); // Check that at least a couple layers of nested SmallVector's are allowed // by the default inline elements policy. This pattern happens in practice // with some frequency, and it seems fairly harmless even though each layer of // SmallVector's will grow the total sizeof by a vector header beyond the // "preferred" maximum sizeof. SmallVector>> NestedV; NestedV.emplace_back().emplace_back().emplace_back(42); EXPECT_EQ(NestedV[0][0][0], 42); } TEST(SmallVectorTest, InitializerList) { SmallVector V1 = {}; EXPECT_TRUE(V1.empty()); V1 = {0, 0}; EXPECT_TRUE(makeArrayRef(V1).equals({0, 0})); V1 = {-1, -1}; EXPECT_TRUE(makeArrayRef(V1).equals({-1, -1})); SmallVector V2 = {1, 2, 3, 4}; EXPECT_TRUE(makeArrayRef(V2).equals({1, 2, 3, 4})); V2.assign({4}); EXPECT_TRUE(makeArrayRef(V2).equals({4})); V2.append({3, 2}); EXPECT_TRUE(makeArrayRef(V2).equals({4, 3, 2})); V2.insert(V2.begin() + 1, 5); EXPECT_TRUE(makeArrayRef(V2).equals({4, 5, 3, 2})); } template class SmallVectorReferenceInvalidationTest : public SmallVectorTestBase { protected: const char *AssertionMessage = "Attempting to reference an element of the vector in an operation \" " "\"that invalidates it"; VectorT V; template static unsigned NumBuiltinElts(const SmallVector &) { return N; } template static bool isValueType() { return std::is_same::value; } void SetUp() override { SmallVectorTestBase::SetUp(); // Fill up the small size so that insertions move the elements. for (int I = 0, E = NumBuiltinElts(V); I != E; ++I) V.emplace_back(I + 1); } }; // Test one type that's trivially copyable (int) and one that isn't // (Constructable) since reference invalidation may be fixed differently for // each. using SmallVectorReferenceInvalidationTestTypes = ::testing::Types, SmallVector>; TYPED_TEST_SUITE(SmallVectorReferenceInvalidationTest, SmallVectorReferenceInvalidationTestTypes, ); TYPED_TEST(SmallVectorReferenceInvalidationTest, PushBack) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; int N = this->NumBuiltinElts(V); // Push back a reference to last element when growing from small storage. V.push_back(V.back()); EXPECT_EQ(N, V.back()); // Check that the old value is still there (not moved away). EXPECT_EQ(N, V[V.size() - 2]); // Fill storage again. V.back() = V.size(); while (V.size() < V.capacity()) V.push_back(V.size() + 1); // Push back a reference to last element when growing from large storage. V.push_back(V.back()); EXPECT_EQ(int(V.size()) - 1, V.back()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, PushBackMoved) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; int N = this->NumBuiltinElts(V); // Push back a reference to last element when growing from small storage. V.push_back(std::move(V.back())); EXPECT_EQ(N, V.back()); if (this->template isValueType()) { // Check that the value was moved (not copied). EXPECT_EQ(0, V[V.size() - 2]); } // Fill storage again. V.back() = V.size(); while (V.size() < V.capacity()) V.push_back(V.size() + 1); // Push back a reference to last element when growing from large storage. V.push_back(std::move(V.back())); // Check the values. EXPECT_EQ(int(V.size()) - 1, V.back()); if (this->template isValueType()) { // Check the value got moved out. EXPECT_EQ(0, V[V.size() - 2]); } } TYPED_TEST(SmallVectorReferenceInvalidationTest, Resize) { auto &V = this->V; (void)V; int N = this->NumBuiltinElts(V); V.resize(N + 1, V.back()); EXPECT_EQ(N, V.back()); // Resize to add enough elements that V will grow again. If reference // invalidation breaks in the future, sanitizers should be able to catch a // use-after-free here. V.resize(V.capacity() + 1, V.front()); EXPECT_EQ(1, V.back()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, Append) { auto &V = this->V; (void)V; V.append(1, V.back()); int N = this->NumBuiltinElts(V); EXPECT_EQ(N, V[N - 1]); // Append enough more elements that V will grow again. This tests growing // when already in large mode. // // If reference invalidation breaks in the future, sanitizers should be able // to catch a use-after-free here. V.append(V.capacity() - V.size() + 1, V.front()); EXPECT_EQ(1, V.back()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, AppendRange) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.append(V.begin(), V.begin() + 1), this->AssertionMessage); ASSERT_EQ(3u, this->NumBuiltinElts(V)); ASSERT_EQ(3u, V.size()); V.pop_back(); ASSERT_EQ(2u, V.size()); // Confirm this checks for growth when there's more than one element // appended. EXPECT_DEATH(V.append(V.begin(), V.end()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, Assign) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; (void)V; int N = this->NumBuiltinElts(V); ASSERT_EQ(unsigned(N), V.size()); ASSERT_EQ(unsigned(N), V.capacity()); // Check assign that shrinks in small mode. V.assign(1, V.back()); EXPECT_EQ(1u, V.size()); EXPECT_EQ(N, V[0]); // Check assign that grows within small mode. ASSERT_LT(V.size(), V.capacity()); V.assign(V.capacity(), V.back()); for (int I = 0, E = V.size(); I != E; ++I) { EXPECT_EQ(N, V[I]); // Reset to [1, 2, ...]. V[I] = I + 1; } // Check assign that grows to large mode. ASSERT_EQ(2, V[1]); V.assign(V.capacity() + 1, V[1]); for (int I = 0, E = V.size(); I != E; ++I) { EXPECT_EQ(2, V[I]); // Reset to [1, 2, ...]. V[I] = I + 1; } // Check assign that shrinks in large mode. V.assign(1, V[1]); EXPECT_EQ(2, V[0]); } TYPED_TEST(SmallVectorReferenceInvalidationTest, AssignRange) { auto &V = this->V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.assign(V.begin(), V.end()), this->AssertionMessage); EXPECT_DEATH(V.assign(V.begin(), V.end() - 1), this->AssertionMessage); #endif V.assign(V.begin(), V.begin()); EXPECT_TRUE(V.empty()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, Insert) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; (void)V; // Insert a reference to the back (not at end() or else insert delegates to // push_back()), growing out of small mode. Confirm the value was copied out // (moving out Constructable sets it to 0). V.insert(V.begin(), V.back()); EXPECT_EQ(int(V.size() - 1), V.front()); EXPECT_EQ(int(V.size() - 1), V.back()); // Fill up the vector again. while (V.size() < V.capacity()) V.push_back(V.size() + 1); // Grow again from large storage to large storage. V.insert(V.begin(), V.back()); EXPECT_EQ(int(V.size() - 1), V.front()); EXPECT_EQ(int(V.size() - 1), V.back()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertMoved) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; (void)V; // Insert a reference to the back (not at end() or else insert delegates to // push_back()), growing out of small mode. Confirm the value was copied out // (moving out Constructable sets it to 0). V.insert(V.begin(), std::move(V.back())); EXPECT_EQ(int(V.size() - 1), V.front()); if (this->template isValueType()) { // Check the value got moved out. EXPECT_EQ(0, V.back()); } // Fill up the vector again. while (V.size() < V.capacity()) V.push_back(V.size() + 1); // Grow again from large storage to large storage. V.insert(V.begin(), std::move(V.back())); EXPECT_EQ(int(V.size() - 1), V.front()); if (this->template isValueType()) { // Check the value got moved out. EXPECT_EQ(0, V.back()); } } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertN) { auto &V = this->V; (void)V; // Cover NumToInsert <= this->end() - I. V.insert(V.begin() + 1, 1, V.back()); int N = this->NumBuiltinElts(V); EXPECT_EQ(N, V[1]); // Cover NumToInsert > this->end() - I, inserting enough elements that V will // also grow again; V.capacity() will be more elements than necessary but // it's a simple way to cover both conditions. // // If reference invalidation breaks in the future, sanitizers should be able // to catch a use-after-free here. V.insert(V.begin(), V.capacity(), V.front()); EXPECT_EQ(1, V.front()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertRange) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.insert(V.begin(), V.begin(), V.begin() + 1), this->AssertionMessage); ASSERT_EQ(3u, this->NumBuiltinElts(V)); ASSERT_EQ(3u, V.size()); V.pop_back(); ASSERT_EQ(2u, V.size()); // Confirm this checks for growth when there's more than one element // inserted. EXPECT_DEATH(V.insert(V.begin(), V.begin(), V.end()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, EmplaceBack) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; int N = this->NumBuiltinElts(V); // Push back a reference to last element when growing from small storage. V.emplace_back(V.back()); EXPECT_EQ(N, V.back()); // Check that the old value is still there (not moved away). EXPECT_EQ(N, V[V.size() - 2]); // Fill storage again. V.back() = V.size(); while (V.size() < V.capacity()) V.push_back(V.size() + 1); // Push back a reference to last element when growing from large storage. V.emplace_back(V.back()); EXPECT_EQ(int(V.size()) - 1, V.back()); } template class SmallVectorInternalReferenceInvalidationTest : public SmallVectorTestBase { protected: const char *AssertionMessage = "Attempting to reference an element of the vector in an operation \" " "\"that invalidates it"; VectorT V; template static unsigned NumBuiltinElts(const SmallVector &) { return N; } void SetUp() override { SmallVectorTestBase::SetUp(); // Fill up the small size so that insertions move the elements. for (int I = 0, E = NumBuiltinElts(V); I != E; ++I) V.emplace_back(I + 1, I + 1); } }; // Test pairs of the same types from SmallVectorReferenceInvalidationTestTypes. using SmallVectorInternalReferenceInvalidationTestTypes = ::testing::Types, 3>, SmallVector, 3>>; TYPED_TEST_SUITE(SmallVectorInternalReferenceInvalidationTest, SmallVectorInternalReferenceInvalidationTestTypes, ); TYPED_TEST(SmallVectorInternalReferenceInvalidationTest, EmplaceBack) { // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; int N = this->NumBuiltinElts(V); // Push back a reference to last element when growing from small storage. V.emplace_back(V.back().first, V.back().second); EXPECT_EQ(N, V.back().first); EXPECT_EQ(N, V.back().second); // Check that the old value is still there (not moved away). EXPECT_EQ(N, V[V.size() - 2].first); EXPECT_EQ(N, V[V.size() - 2].second); // Fill storage again. V.back().first = V.back().second = V.size(); while (V.size() < V.capacity()) V.emplace_back(V.size() + 1, V.size() + 1); // Push back a reference to last element when growing from large storage. V.emplace_back(V.back().first, V.back().second); EXPECT_EQ(int(V.size()) - 1, V.back().first); EXPECT_EQ(int(V.size()) - 1, V.back().second); } } // end namespace