//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ARMTargetTransformInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/CostTable.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/Casting.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "armtti" bool ARMTTIImpl::areInlineCompatible(const Function *Caller, const Function *Callee) const { const TargetMachine &TM = getTLI()->getTargetMachine(); const FeatureBitset &CallerBits = TM.getSubtargetImpl(*Caller)->getFeatureBits(); const FeatureBitset &CalleeBits = TM.getSubtargetImpl(*Callee)->getFeatureBits(); // To inline a callee, all features not in the whitelist must match exactly. bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == (CalleeBits & ~InlineFeatureWhitelist); // For features in the whitelist, the callee's features must be a subset of // the callers'. bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == (CalleeBits & InlineFeatureWhitelist); return MatchExact && MatchSubset; } int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned Bits = Ty->getPrimitiveSizeInBits(); if (Bits == 0 || Imm.getActiveBits() >= 64) return 4; int64_t SImmVal = Imm.getSExtValue(); uint64_t ZImmVal = Imm.getZExtValue(); if (!ST->isThumb()) { if ((SImmVal >= 0 && SImmVal < 65536) || (ARM_AM::getSOImmVal(ZImmVal) != -1) || (ARM_AM::getSOImmVal(~ZImmVal) != -1)) return 1; return ST->hasV6T2Ops() ? 2 : 3; } if (ST->isThumb2()) { if ((SImmVal >= 0 && SImmVal < 65536) || (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) return 1; return ST->hasV6T2Ops() ? 2 : 3; } // Thumb1, any i8 imm cost 1. if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) return 1; if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) return 2; // Load from constantpool. return 3; } // Constants smaller than 256 fit in the immediate field of // Thumb1 instructions so we return a zero cost and 1 otherwise. int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) return 0; return 1; } int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { // Division by a constant can be turned into multiplication, but only if we // know it's constant. So it's not so much that the immediate is cheap (it's // not), but that the alternative is worse. // FIXME: this is probably unneeded with GlobalISel. if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || Opcode == Instruction::SRem || Opcode == Instruction::URem) && Idx == 1) return 0; if (Opcode == Instruction::And) { // UXTB/UXTH if (Imm == 255 || Imm == 65535) return 0; // Conversion to BIC is free, and means we can use ~Imm instead. return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); } if (Opcode == Instruction::Add) // Conversion to SUB is free, and means we can use -Imm instead. return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); if (Opcode == Instruction::ICmp && Imm.isNegative() && Ty->getIntegerBitWidth() == 32) { int64_t NegImm = -Imm.getSExtValue(); if (ST->isThumb2() && NegImm < 1<<12) // icmp X, #-C -> cmn X, #C return 0; if (ST->isThumb() && NegImm < 1<<8) // icmp X, #-C -> adds X, #C return 0; } // xor a, -1 can always be folded to MVN if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) return 0; return getIntImmCost(Imm, Ty); } int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Single to/from double precision conversions. static const CostTblEntry NEONFltDblTbl[] = { // Vector fptrunc/fpext conversions. { ISD::FP_ROUND, MVT::v2f64, 2 }, { ISD::FP_EXTEND, MVT::v2f32, 2 }, { ISD::FP_EXTEND, MVT::v4f32, 4 } }; if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND)) { std::pair LT = TLI->getTypeLegalizationCost(DL, Src); if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) return LT.first * Entry->Cost; } EVT SrcTy = TLI->getValueType(DL, Src); EVT DstTy = TLI->getValueType(DL, Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return BaseT::getCastInstrCost(Opcode, Dst, Src); // Some arithmetic, load and store operations have specific instructions // to cast up/down their types automatically at no extra cost. // TODO: Get these tables to know at least what the related operations are. static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, // The number of vmovl instructions for the extension. { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, // Operations that we legalize using splitting. { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, // Vector float <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, // Vector double <-> i32 conversions. { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } }; if (SrcTy.isVector() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // Scalar float to integer conversions. static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } }; if (SrcTy.isFloatingPoint() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // Scalar integer to float conversions. static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } }; if (SrcTy.isInteger() && ST->hasNEON()) { if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } // Scalar integer conversion costs. static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { // i16 -> i64 requires two dependent operations. { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, // Truncates on i64 are assumed to be free. { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } }; if (SrcTy.isInteger()) { if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return Entry->Cost; } return BaseT::getCastInstrCost(Opcode, Dst, Src); } int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { // Penalize inserting into an D-subregister. We end up with a three times // lower estimated throughput on swift. if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) return 3; if ((Opcode == Instruction::InsertElement || Opcode == Instruction::ExtractElement)) { // Cross-class copies are expensive on many microarchitectures, // so assume they are expensive by default. if (ValTy->getVectorElementType()->isIntegerTy()) return 3; // Even if it's not a cross class copy, this likely leads to mixing // of NEON and VFP code and should be therefore penalized. if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); } return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); // On NEON a vector select gets lowered to vbsl. if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { // Lowering of some vector selects is currently far from perfect. static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } }; EVT SelCondTy = TLI->getValueType(DL, CondTy); EVT SelValTy = TLI->getValueType(DL, ValTy); if (SelCondTy.isSimple() && SelValTy.isSimple()) { if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, SelCondTy.getSimpleVT(), SelValTy.getSimpleVT())) return Entry->Cost; } std::pair LT = TLI->getTypeLegalizationCost(DL, ValTy); return LT.first; } return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); } int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; int MaxMergeDistance = 64; if (Ty->isVectorTy() && SE && !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) return NumVectorInstToHideOverhead; // In many cases the address computation is not merged into the instruction // addressing mode. return 1; } int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) { if (Kind == TTI::SK_Broadcast) { static const CostTblEntry NEONDupTbl[] = { // VDUP handles these cases. {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } if (Kind == TTI::SK_Reverse) { static const CostTblEntry NEONShuffleTbl[] = { // Reverse shuffle cost one instruction if we are shuffling within a // double word (vrev) or two if we shuffle a quad word (vrev, vext). {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } if (Kind == TTI::SK_Select) { static const CostTblEntry NEONSelShuffleTbl[] = { // Select shuffle cost table for ARM. Cost is the number of instructions // required to create the shuffled vector. {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; std::pair LT = TLI->getTypeLegalizationCost(DL, Tp); if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) return LT.first * Entry->Cost; return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } int ARMTTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef Args) { int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); std::pair LT = TLI->getTypeLegalizationCost(DL, Ty); const unsigned FunctionCallDivCost = 20; const unsigned ReciprocalDivCost = 10; static const CostTblEntry CostTbl[] = { // Division. // These costs are somewhat random. Choose a cost of 20 to indicate that // vectorizing devision (added function call) is going to be very expensive. // Double registers types. { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, // Quad register types. { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, // Multiplication. }; if (ST->hasNEON()) if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) return LT.first * Entry->Cost; int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); // This is somewhat of a hack. The problem that we are facing is that SROA // creates a sequence of shift, and, or instructions to construct values. // These sequences are recognized by the ISel and have zero-cost. Not so for // the vectorized code. Because we have support for v2i64 but not i64 those // sequences look particularly beneficial to vectorize. // To work around this we increase the cost of v2i64 operations to make them // seem less beneficial. if (LT.second == MVT::v2i64 && Op2Info == TargetTransformInfo::OK_UniformConstantValue) Cost += 4; return Cost; } int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I) { std::pair LT = TLI->getTypeLegalizationCost(DL, Src); if (Src->isVectorTy() && Alignment != 16 && Src->getVectorElementType()->isDoubleTy()) { // Unaligned loads/stores are extremely inefficient. // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. return LT.first * 4; } return LT.first; } int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, bool UseMaskForGaps) { assert(Factor >= 2 && "Invalid interleave factor"); assert(isa(VecTy) && "Expect a vector type"); // vldN/vstN doesn't support vector types of i64/f64 element. bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && !UseMaskForCond && !UseMaskForGaps) { unsigned NumElts = VecTy->getVectorNumElements(); auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); // vldN/vstN only support legal vector types of size 64 or 128 in bits. // Accesses having vector types that are a multiple of 128 bits can be // matched to more than one vldN/vstN instruction. if (NumElts % Factor == 0 && TLI->isLegalInterleavedAccessType(SubVecTy, DL)) return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); } return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, UseMaskForCond, UseMaskForGaps); } void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { // Only currently enable these preferences for M-Class cores. if (!ST->isMClass()) return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); // Disable loop unrolling for Oz and Os. UP.OptSizeThreshold = 0; UP.PartialOptSizeThreshold = 0; if (L->getHeader()->getParent()->optForSize()) return; // Only enable on Thumb-2 targets. if (!ST->isThumb2()) return; SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); LLVM_DEBUG(dbgs() << "Loop has:\n" << "Blocks: " << L->getNumBlocks() << "\n" << "Exit blocks: " << ExitingBlocks.size() << "\n"); // Only allow another exit other than the latch. This acts as an early exit // as it mirrors the profitability calculation of the runtime unroller. if (ExitingBlocks.size() > 2) return; // Limit the CFG of the loop body for targets with a branch predictor. // Allowing 4 blocks permits if-then-else diamonds in the body. if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) return; // Scan the loop: don't unroll loops with calls as this could prevent // inlining. unsigned Cost = 0; for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { if (isa(I) || isa(I)) { ImmutableCallSite CS(&I); if (const Function *F = CS.getCalledFunction()) { if (!isLoweredToCall(F)) continue; } return; } SmallVector Operands(I.value_op_begin(), I.value_op_end()); Cost += getUserCost(&I, Operands); } } LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); UP.Partial = true; UP.Runtime = true; UP.UnrollRemainder = true; UP.DefaultUnrollRuntimeCount = 4; UP.UnrollAndJam = true; UP.UnrollAndJamInnerLoopThreshold = 60; // Force unrolling small loops can be very useful because of the branch // taken cost of the backedge. if (Cost < 12) UP.Force = true; }