//===- DataStructure.cpp - Implement the core data structure analysis -----===// // // This file implements the core data structure functionality. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DSGraph.h" #include "llvm/Function.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/Target/TargetData.h" #include "Support/STLExtras.h" #include "Support/Statistic.h" #include #include using std::vector; namespace { Statistic<> NumFolds("dsnode", "Number of nodes completely folded"); }; namespace DataStructureAnalysis { // TODO: FIXME // isPointerType - Return true if this first class type is big enough to hold // a pointer. // bool isPointerType(const Type *Ty); extern TargetData TD; } using namespace DataStructureAnalysis; //===----------------------------------------------------------------------===// // DSNode Implementation //===----------------------------------------------------------------------===// DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(Type::VoidTy), Size(0), NodeType(NT) { // Add the type entry if it is specified... if (T) mergeTypeInfo(T, 0); } // DSNode copy constructor... do not copy over the referrers list! DSNode::DSNode(const DSNode &N) : Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size), NodeType(N.NodeType) { } void DSNode::removeReferrer(DSNodeHandle *H) { // Search backwards, because we depopulate the list from the back for // efficiency (because it's a vector). vector::reverse_iterator I = std::find(Referrers.rbegin(), Referrers.rend(), H); assert(I != Referrers.rend() && "Referrer not pointing to node!"); Referrers.erase(I.base()-1); } // addGlobal - Add an entry for a global value to the Globals list. This also // marks the node with the 'G' flag if it does not already have it. // void DSNode::addGlobal(GlobalValue *GV) { // Keep the list sorted. vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); if (I == Globals.end() || *I != GV) { //assert(GV->getType()->getElementType() == Ty); Globals.insert(I, GV); NodeType |= GlobalNode; } } /// foldNodeCompletely - If we determine that this node has some funny /// behavior happening to it that we cannot represent, we fold it down to a /// single, completely pessimistic, node. This node is represented as a /// single byte with a single TypeEntry of "void". /// void DSNode::foldNodeCompletely() { if (isNodeCompletelyFolded()) return; ++NumFolds; // We are no longer typed at all... Ty = DSTypeRec(Type::VoidTy, true); Size = 1; // Loop over all of our referrers, making them point to our zero bytes of // space. for (vector::iterator I = Referrers.begin(), E=Referrers.end(); I != E; ++I) (*I)->setOffset(0); // If we have links, merge all of our outgoing links together... for (unsigned i = 1, e = Links.size(); i < e; ++i) Links[0].mergeWith(Links[i]); Links.resize(1); } /// isNodeCompletelyFolded - Return true if this node has been completely /// folded down to something that can never be expanded, effectively losing /// all of the field sensitivity that may be present in the node. /// bool DSNode::isNodeCompletelyFolded() const { return getSize() == 1 && Ty.Ty == Type::VoidTy && Ty.isArray; } /// mergeTypeInfo - This method merges the specified type into the current node /// at the specified offset. This may update the current node's type record if /// this gives more information to the node, it may do nothing to the node if /// this information is already known, or it may merge the node completely (and /// return true) if the information is incompatible with what is already known. /// /// This method returns true if the node is completely folded, otherwise false. /// bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) { // Check to make sure the Size member is up-to-date. Size can be one of the // following: // Size = 0, Ty = Void: Nothing is known about this node. // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero // Size = 1, Ty = Void, Array = 1: The node is collapsed // Otherwise, sizeof(Ty) = Size // assert(((Size == 0 && Ty.Ty == Type::VoidTy && !Ty.isArray) || (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) || (Size == 1 && Ty.Ty == Type::VoidTy && Ty.isArray) || (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) || (TD.getTypeSize(Ty.Ty) == Size)) && "Size member of DSNode doesn't match the type structure!"); assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); if (Offset == 0 && NewTy == Ty.Ty) return false; // This should be a common case, handle it efficiently // Return true immediately if the node is completely folded. if (isNodeCompletelyFolded()) return true; // Figure out how big the new type we're merging in is... unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0; // Otherwise check to see if we can fold this type into the current node. If // we can't, we fold the node completely, if we can, we potentially update our // internal state. // if (Ty.Ty == Type::VoidTy) { // If this is the first type that this node has seen, just accept it without // question.... assert(Offset == 0 && "Cannot have an offset into a void node!"); assert(Ty.isArray == false && "This shouldn't happen!"); Ty.Ty = NewTy; Size = NewTySize; // Calculate the number of outgoing links from this node. Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); return false; } // Handle node expansion case here... if (Offset+NewTySize > Size) { // It is illegal to grow this node if we have treated it as an array of // objects... if (Ty.isArray) { foldNodeCompletely(); return true; } if (Offset) { // We could handle this case, but we don't for now... DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into " << "offset != 0: Collapsing!\n"); foldNodeCompletely(); return true; } // Okay, the situation is nice and simple, we are trying to merge a type in // at offset 0 that is bigger than our current type. Implement this by // switching to the new type and then merge in the smaller one, which should // hit the other code path here. If the other code path decides it's not // ok, it will collapse the node as appropriate. // const Type *OldTy = Ty.Ty; Ty.Ty = NewTy; Size = NewTySize; // Must grow links to be the appropriate size... Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); // Merge in the old type now... which is guaranteed to be smaller than the // "current" type. return mergeTypeInfo(OldTy, 0); } assert(Offset <= Size && "Cannot merge something into a part of our type that doesn't exist!"); // Find the section of Ty.Ty that NewTy overlaps with... first we find the // type that starts at offset Offset. // unsigned O = 0; const Type *SubType = Ty.Ty; while (O < Offset) { assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); switch (SubType->getPrimitiveID()) { case Type::StructTyID: { const StructType *STy = cast(SubType); const StructLayout &SL = *TD.getStructLayout(STy); unsigned i = 0, e = SL.MemberOffsets.size(); for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i) /* empty */; // The offset we are looking for must be in the i'th element... SubType = STy->getElementTypes()[i]; O += SL.MemberOffsets[i]; break; } case Type::ArrayTyID: { SubType = cast(SubType)->getElementType(); unsigned ElSize = TD.getTypeSize(SubType); unsigned Remainder = (Offset-O) % ElSize; O = Offset-Remainder; break; } default: assert(0 && "Unknown type!"); } } assert(O == Offset && "Could not achieve the correct offset!"); // If we found our type exactly, early exit if (SubType == NewTy) return false; // Okay, so we found the leader type at the offset requested. Search the list // of types that starts at this offset. If SubType is currently an array or // structure, the type desired may actually be the first element of the // composite type... // unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0; while (SubType != NewTy) { const Type *NextSubType = 0; unsigned NextSubTypeSize; switch (SubType->getPrimitiveID()) { case Type::StructTyID: NextSubType = cast(SubType)->getElementTypes()[0]; NextSubTypeSize = TD.getTypeSize(SubType); break; case Type::ArrayTyID: NextSubType = cast(SubType)->getElementType(); NextSubTypeSize = TD.getTypeSize(SubType); break; default: ; // fall out } if (NextSubType == 0) break; // In the default case, break out of the loop if (NextSubTypeSize < NewTySize) break; // Don't allow shrinking to a smaller type than NewTySize SubType = NextSubType; SubTypeSize = NextSubTypeSize; } // If we found the type exactly, return it... if (SubType == NewTy) return false; // Check to see if we have a compatible, but different type... if (NewTySize == SubTypeSize) { // Check to see if this type is obviously convertable... int -> uint f.e. if (NewTy->isLosslesslyConvertableTo(SubType)) return false; // Check to see if we have a pointer & integer mismatch going on here, // loading a pointer as a long, for example. // if (SubType->isInteger() && isa(NewTy) || NewTy->isInteger() && isa(SubType)) return false; } DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty.Ty << "\n due to:" << NewTy << " @ " << Offset << "!\n" << "SubType: " << SubType << "\n\n"); foldNodeCompletely(); return true; } // addEdgeTo - Add an edge from the current node to the specified node. This // can cause merging of nodes in the graph. // void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { if (NH.getNode() == 0) return; // Nothing to do DSNodeHandle &ExistingEdge = getLink(Offset); if (ExistingEdge.getNode()) { // Merge the two nodes... ExistingEdge.mergeWith(NH); } else { // No merging to perform... setLink(Offset, NH); // Just force a link in there... } } // MergeSortedVectors - Efficiently merge a vector into another vector where // duplicates are not allowed and both are sorted. This assumes that 'T's are // efficiently copyable and have sane comparison semantics. // template void MergeSortedVectors(vector &Dest, const vector &Src) { // By far, the most common cases will be the simple ones. In these cases, // avoid having to allocate a temporary vector... // if (Src.empty()) { // Nothing to merge in... return; } else if (Dest.empty()) { // Just copy the result in... Dest = Src; } else if (Src.size() == 1) { // Insert a single element... const T &V = Src[0]; typename vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), V); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else if (Dest.size() == 1) { T Tmp = Dest[0]; // Save value in temporary... Dest = Src; // Copy over list... typename vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(),Tmp); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else { // Make a copy to the side of Dest... vector Old(Dest); // Make space for all of the type entries now... Dest.resize(Dest.size()+Src.size()); // Merge the two sorted ranges together... into Dest. std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); // Now erase any duplicate entries that may have accumulated into the // vectors (because they were in both of the input sets) Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); } } // mergeWith - Merge this node and the specified node, moving all links to and // from the argument node into the current node, deleting the node argument. // Offset indicates what offset the specified node is to be merged into the // current node. // // The specified node may be a null pointer (in which case, nothing happens). // void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { DSNode *N = NH.getNode(); if (N == 0 || (N == this && NH.getOffset() == Offset)) return; // Noop if (N == this) { // We cannot merge two pieces of the same node together, collapse the node // completely. DEBUG(std::cerr << "Attempting to merge two chunks of" << " the same node together!\n"); foldNodeCompletely(); return; } // Merge the type entries of the two nodes together... if (N->Ty.Ty != Type::VoidTy) mergeTypeInfo(N->Ty.Ty, Offset); // If we are merging a node with a completely folded node, then both nodes are // now completely folded. // if (isNodeCompletelyFolded()) { if (!N->isNodeCompletelyFolded()) N->foldNodeCompletely(); } else if (N->isNodeCompletelyFolded()) { foldNodeCompletely(); Offset = 0; } N = NH.getNode(); if (this == N || N == 0) return; // If both nodes are not at offset 0, make sure that we are merging the node // at an later offset into the node with the zero offset. // if (Offset > NH.getOffset()) { N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { // If the offsets are the same, merge the smaller node into the bigger node N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } #if 0 std::cerr << "\n\nMerging:\n"; N->print(std::cerr, 0); std::cerr << " and:\n"; print(std::cerr, 0); #endif // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with // respect to NH.Offset) is now zero. // unsigned NOffset = NH.getOffset()-Offset; unsigned NSize = N->getSize(); // Remove all edges pointing at N, causing them to point to 'this' instead. // Make sure to adjust their offset, not just the node pointer. // while (!N->Referrers.empty()) { DSNodeHandle &Ref = *N->Referrers.back(); Ref = DSNodeHandle(this, NOffset+Ref.getOffset()); } // Make all of the outgoing links of N now be outgoing links of this. This // can cause recursive merging! // for (unsigned i = 0; i < NSize; i += DS::PointerSize) { DSNodeHandle &Link = N->getLink(i); if (Link.getNode()) { addEdgeTo((i+NOffset) % getSize(), Link); // It's possible that after adding the new edge that some recursive // merging just occured, causing THIS node to get merged into oblivion. // If that happens, we must not try to merge any more edges into it! // if (Size == 0) return; } } // Now that there are no outgoing edges, all of the Links are dead. N->Links.clear(); N->Size = 0; N->Ty.Ty = Type::VoidTy; N->Ty.isArray = false; // Merge the node types NodeType |= N->NodeType; N->NodeType = 0; // N is now a dead node. // Merge the globals list... if (!N->Globals.empty()) { MergeSortedVectors(Globals, N->Globals); // Delete the globals from the old node... N->Globals.clear(); } } //===----------------------------------------------------------------------===// // DSCallSite Implementation //===----------------------------------------------------------------------===// // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h Function &DSCallSite::getCaller() const { return *Inst->getParent()->getParent(); } //===----------------------------------------------------------------------===// // DSGraph Implementation //===----------------------------------------------------------------------===// DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) { std::map NodeMap; RetNode = cloneInto(G, ScalarMap, NodeMap); } DSGraph::DSGraph(const DSGraph &G, std::map &NodeMap) : Func(G.Func) { RetNode = cloneInto(G, ScalarMap, NodeMap); } DSGraph::~DSGraph() { FunctionCalls.clear(); ScalarMap.clear(); RetNode.setNode(0); #ifndef NDEBUG // Drop all intra-node references, so that assertions don't fail... std::for_each(Nodes.begin(), Nodes.end(), std::mem_fun(&DSNode::dropAllReferences)); #endif // Delete all of the nodes themselves... std::for_each(Nodes.begin(), Nodes.end(), deleter); } // dump - Allow inspection of graph in a debugger. void DSGraph::dump() const { print(std::cerr); } // Helper function used to clone a function list. // static void CopyFunctionCallsList(const vector& fromCalls, vector &toCalls, std::map &NodeMap) { unsigned FC = toCalls.size(); // FirstCall toCalls.reserve(FC+fromCalls.size()); for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) toCalls.push_back(DSCallSite(fromCalls[i], NodeMap)); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. /// void DSNode::remapLinks(std::map &OldNodeMap) { for (unsigned i = 0, e = Links.size(); i != e; ++i) Links[i].setNode(OldNodeMap[Links[i].getNode()]); } // cloneInto - Clone the specified DSGraph into the current graph, returning the // Return node of the graph. The translated ScalarMap for the old function is // filled into the OldValMap member. If StripAllocas is set to true, Alloca // markers are removed from the graph, as the graph is being cloned into a // calling function's graph. // DSNodeHandle DSGraph::cloneInto(const DSGraph &G, std::map &OldValMap, std::map &OldNodeMap, bool StripAllocas) { assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); unsigned FN = Nodes.size(); // First new node... // Duplicate all of the nodes, populating the node map... Nodes.reserve(FN+G.Nodes.size()); for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { DSNode *Old = G.Nodes[i]; DSNode *New = new DSNode(*Old); Nodes.push_back(New); OldNodeMap[Old] = New; } // Rewrite the links in the new nodes to point into the current graph now. for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->remapLinks(OldNodeMap); // Remove local markers as specified unsigned char StripBits = StripAllocas ? DSNode::AllocaNode : 0; if (StripBits) for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= ~StripBits; // Copy the value map... and merge all of the global nodes... for (std::map::const_iterator I = G.ScalarMap.begin(), E = G.ScalarMap.end(); I != E; ++I) { DSNodeHandle &H = OldValMap[I->first]; H.setNode(OldNodeMap[I->second.getNode()]); H.setOffset(I->second.getOffset()); if (isa(I->first)) { // Is this a global? std::map::iterator GVI = ScalarMap.find(I->first); if (GVI != ScalarMap.end()) { // Is the global value in this fn already? GVI->second.mergeWith(H); } else { ScalarMap[I->first] = H; // Add global pointer to this graph } } } // Copy the function calls list... CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap); // Return the returned node pointer... return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset()); } #if 0 // cloneGlobalInto - Clone the given global node and all its target links // (and all their llinks, recursively). // DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) { if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; // If a clone has already been created for GNode, return it. DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]]; if (ValMapEntry != 0) return ValMapEntry; // Clone the node and update the ValMap. DSNode* NewNode = new DSNode(*GNode); ValMapEntry = NewNode; // j=0 case of loop below! Nodes.push_back(NewNode); for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) ScalarMap[NewNode->getGlobals()[j]] = NewNode; // Rewrite the links in the new node to point into the current graph. for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); return NewNode; } #endif // markIncompleteNodes - Mark the specified node as having contents that are not // known with the current analysis we have performed. Because a node makes all // of the nodes it can reach imcomplete if the node itself is incomplete, we // must recursively traverse the data structure graph, marking all reachable // nodes as incomplete. // static void markIncompleteNode(DSNode *N) { // Stop recursion if no node, or if node already marked... if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; // Actually mark the node N->NodeType |= DSNode::Incomplete; // Recusively process children... for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) markIncompleteNode(DSN); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside the // scope of current analysis may have modified it), the 'Incomplete' flag is // added to the NodeType. // void DSGraph::markIncompleteNodes(bool markFormalArgs) { // Mark any incoming arguments as incomplete... if (markFormalArgs && Func) for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) markIncompleteNode(ScalarMap[I].getNode()); // Mark stuff passed into functions calls as being incomplete... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { DSCallSite &Call = FunctionCalls[i]; // Then the return value is certainly incomplete! markIncompleteNode(Call.getRetVal().getNode()); // All objects pointed to by function arguments are incomplete though! for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) markIncompleteNode(Call.getPtrArg(i).getNode()); } // Mark all of the nodes pointed to by global nodes as incomplete... for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & DSNode::GlobalNode) { DSNode *N = Nodes[i]; // FIXME: Make more efficient by looking over Links directly for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) markIncompleteNode(DSN); } } // removeRefsToGlobal - Helper function that removes globals from the // ScalarMap so that the referrer count will go down to zero. static void removeRefsToGlobal(DSNode* N, std::map &ScalarMap) { while (!N->getGlobals().empty()) { GlobalValue *GV = N->getGlobals().back(); N->getGlobals().pop_back(); ScalarMap.erase(GV); } } // isNodeDead - This method checks to see if a node is dead, and if it isn't, it // checks to see if there are simple transformations that it can do to make it // dead. // bool DSGraph::isNodeDead(DSNode *N) { // Is it a trivially dead shadow node... if (N->getReferrers().empty() && N->NodeType == 0) return true; // Is it a function node or some other trivially unused global? if ((N->NodeType & ~DSNode::GlobalNode) == 0 && N->getSize() == 0 && N->getReferrers().size() == N->getGlobals().size()) { // Remove the globals from the ScalarMap, so that the referrer count will go // down to zero. removeRefsToGlobal(N, ScalarMap); assert(N->getReferrers().empty() && "Referrers should all be gone now!"); return true; } return false; } static void removeIdenticalCalls(vector &Calls, const std::string &where) { // Remove trivially identical function calls unsigned NumFns = Calls.size(); std::sort(Calls.begin(), Calls.end()); Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); DEBUG(if (NumFns != Calls.size()) std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes in " << where << "\n";); } // removeTriviallyDeadNodes - After the graph has been constructed, this method // removes all unreachable nodes that are created because they got merged with // other nodes in the graph. These nodes will all be trivially unreachable, so // we don't have to perform any non-trivial analysis here. // void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) { for (unsigned i = 0; i != Nodes.size(); ++i) if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode)) if (isNodeDead(Nodes[i])) { // This node is dead! delete Nodes[i]; // Free memory... Nodes.erase(Nodes.begin()+i--); // Remove from node list... } removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : ""); } // markAlive - Simple graph walker that recursively traverses the graph, marking // stuff to be alive. // static void markAlive(DSNode *N, std::set &Alive) { if (N == 0) return; Alive.insert(N); for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) if (!Alive.count(DSN)) markAlive(DSN, Alive); } static bool checkGlobalAlive(DSNode *N, std::set &Alive, std::set &Visiting) { if (N == 0) return false; if (Visiting.count(N)) return false; // terminate recursion on a cycle Visiting.insert(N); // If any immediate successor is alive, N is alive for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) if (Alive.count(DSN)) { Visiting.erase(N); return true; } // Else if any successor reaches a live node, N is alive for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) if (checkGlobalAlive(DSN, Alive, Visiting)) { Visiting.erase(N); return true; } Visiting.erase(N); return false; } // markGlobalsIteration - Recursive helper function for markGlobalsAlive(). // This would be unnecessary if function calls were real nodes! In that case, // the simple iterative loop in the first few lines below suffice. // static void markGlobalsIteration(std::set& GlobalNodes, vector &Calls, std::set &Alive, bool FilterCalls) { // Iterate, marking globals or cast nodes alive until no new live nodes // are added to Alive std::set Visiting; // Used to identify cycles std::set::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); for (size_t liveCount = 0; liveCount < Alive.size(); ) { liveCount = Alive.size(); for ( ; I != E; ++I) if (Alive.count(*I) == 0) { Visiting.clear(); if (checkGlobalAlive(*I, Alive, Visiting)) markAlive(*I, Alive); } } // Find function calls with some dead and some live nodes. // Since all call nodes must be live if any one is live, we have to mark // all nodes of the call as live and continue the iteration (via recursion). if (FilterCalls) { bool Recurse = false; for (unsigned i = 0, ei = Calls.size(); i < ei; ++i) { bool CallIsDead = true, CallHasDeadArg = false; DSCallSite &CS = Calls[i]; for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) if (DSNode *N = CS.getPtrArg(j).getNode()) { bool ArgIsDead = !Alive.count(N); CallHasDeadArg |= ArgIsDead; CallIsDead &= ArgIsDead; } if (DSNode *N = CS.getRetVal().getNode()) { bool RetIsDead = !Alive.count(N); CallHasDeadArg |= RetIsDead; CallIsDead &= RetIsDead; } DSNode *N = CS.getCallee().getNode(); bool FnIsDead = !Alive.count(N); CallHasDeadArg |= FnIsDead; CallIsDead &= FnIsDead; if (!CallIsDead && CallHasDeadArg) { // Some node in this call is live and another is dead. // Mark all nodes of call as live and iterate once more. Recurse = true; for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) markAlive(CS.getPtrArg(j).getNode(), Alive); markAlive(CS.getRetVal().getNode(), Alive); markAlive(CS.getCallee().getNode(), Alive); } } if (Recurse) markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); } } // markGlobalsAlive - Mark global nodes and cast nodes alive if they // can reach any other live node. Since this can produce new live nodes, // we use a simple iterative algorithm. // static void markGlobalsAlive(DSGraph &G, std::set &Alive, bool FilterCalls) { // Add global and cast nodes to a set so we don't walk all nodes every time std::set GlobalNodes; for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) if (G.getNodes()[i]->NodeType & DSNode::GlobalNode) GlobalNodes.insert(G.getNodes()[i]); // Add all call nodes to the same set vector &Calls = G.getFunctionCalls(); if (FilterCalls) { for (unsigned i = 0, e = Calls.size(); i != e; ++i) { for (unsigned j = 0, e = Calls[i].getNumPtrArgs(); j != e; ++j) if (DSNode *N = Calls[i].getPtrArg(j).getNode()) GlobalNodes.insert(N); if (DSNode *N = Calls[i].getRetVal().getNode()) GlobalNodes.insert(N); if (DSNode *N = Calls[i].getCallee().getNode()) GlobalNodes.insert(N); } } // Iterate and recurse until no new live node are discovered. // This would be a simple iterative loop if function calls were real nodes! markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); // Free up references to dead globals from the ScalarMap std::set::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); for( ; I != E; ++I) if (Alive.count(*I) == 0) removeRefsToGlobal(*I, G.getScalarMap()); // Delete dead function calls if (FilterCalls) for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { bool CallIsDead = true; for (unsigned j = 0, ej = Calls[i].getNumPtrArgs(); CallIsDead && j != ej; ++j) CallIsDead = Alive.count(Calls[i].getPtrArg(j).getNode()) == 0; if (CallIsDead) Calls.erase(Calls.begin() + i); // remove the call entirely } } // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) { assert((!KeepAllGlobals || KeepCalls) && "KeepAllGlobals without KeepCalls is meaningless"); // Reduce the amount of work we have to do... removeTriviallyDeadNodes(KeepAllGlobals); // FIXME: Merge nontrivially identical call nodes... // Alive - a set that holds all nodes found to be reachable/alive. std::set Alive; // If KeepCalls, mark all nodes reachable by call nodes as alive... if (KeepCalls) for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { for (unsigned j = 0, e = FunctionCalls[i].getNumPtrArgs(); j != e; ++j) markAlive(FunctionCalls[i].getPtrArg(j).getNode(), Alive); markAlive(FunctionCalls[i].getRetVal().getNode(), Alive); markAlive(FunctionCalls[i].getCallee().getNode(), Alive); } // Mark all nodes reachable by scalar nodes as alive... for (std::map::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; ++I) markAlive(I->second.getNode(), Alive); #if 0 // Marge all nodes reachable by global nodes, as alive. Isn't this covered by // the ScalarMap? // if (KeepAllGlobals) for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & DSNode::GlobalNode) markAlive(Nodes[i], Alive); #endif // The return value is alive as well... markAlive(RetNode.getNode(), Alive); // Mark all globals or cast nodes that can reach a live node as alive. // This also marks all nodes reachable from such nodes as alive. // Of course, if KeepAllGlobals is specified, they would be live already. if (!KeepAllGlobals) markGlobalsAlive(*this, Alive, !KeepCalls); // Loop over all unreachable nodes, dropping their references... vector DeadNodes; DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. for (unsigned i = 0; i != Nodes.size(); ++i) if (!Alive.count(Nodes[i])) { DSNode *N = Nodes[i]; Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. DeadNodes.push_back(N); // Add node to our list of dead nodes N->dropAllReferences(); // Drop all outgoing edges } // Delete all dead nodes... std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter); } // maskNodeTypes - Apply a mask to all of the node types in the graph. This // is useful for clearing out markers like Scalar or Incomplete. // void DSGraph::maskNodeTypes(unsigned char Mask) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= Mask; } #if 0 //===----------------------------------------------------------------------===// // GlobalDSGraph Implementation //===----------------------------------------------------------------------===// GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) { } GlobalDSGraph::~GlobalDSGraph() { assert(Referrers.size() == 0 && "Deleting global graph while references from other graphs exist"); } void GlobalDSGraph::addReference(const DSGraph* referrer) { if (referrer != this) Referrers.insert(referrer); } void GlobalDSGraph::removeReference(const DSGraph* referrer) { if (referrer != this) { assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!"); Referrers.erase(referrer); if (Referrers.size() == 0) delete this; } } #if 0 // Bits used in the next function static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode; // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally // visible target links (and recursively their such links) into this graph. // NodeCache maps the node being cloned to its clone in the Globals graph, // in order to track cycles. // GlobalsAreFinal is a flag that says whether it is safe to assume that // an existing global node is complete. This is important to avoid // reinserting all globals when inserting Calls to functions. // This is a helper function for cloneGlobals and cloneCalls. // DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, std::map &NodeCache, bool GlobalsAreFinal) { if (OldNode == 0) return 0; // The caller should check this is an external node. Just more efficient... assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); // If a clone has already been created for OldNode, return it. DSNode*& CacheEntry = NodeCache[OldNode]; if (CacheEntry != 0) return CacheEntry; // The result value... DSNode* NewNode = 0; // If nodes already exist for any of the globals of OldNode, // merge all such nodes together since they are merged in OldNode. // If ValueCacheIsFinal==true, look for an existing node that has // an identical list of globals and return it if it exists. // for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j) if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) { if (NewNode == 0) { NewNode = PrevNode; // first existing node found if (GlobalsAreFinal && j == 0) if (OldNode->getGlobals() == PrevNode->getGlobals()) { CacheEntry = NewNode; return NewNode; } } else if (NewNode != PrevNode) { // found another, different from prev // update ValMap *before* merging PrevNode into NewNode for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) ScalarMap[PrevNode->getGlobals()[k]] = NewNode; NewNode->mergeWith(PrevNode); } } else if (NewNode != 0) { ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node } // If no existing node was found, clone the node and update the ValMap. if (NewNode == 0) { NewNode = new DSNode(*OldNode); Nodes.push_back(NewNode); for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, 0); for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) ScalarMap[NewNode->getGlobals()[j]] = NewNode; } else NewNode->NodeType |= OldNode->NodeType; // Markers may be different! // Add the entry to NodeCache CacheEntry = NewNode; // Rewrite the links in the new node to point into the current graph, // but only for links to external nodes. Set other links to NULL. for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { DSNode* OldTarget = OldNode->getLink(j); if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); if (NewNode->getLink(j)) NewNode->getLink(j)->mergeWith(NewLink); else NewNode->setLink(j, NewLink); } } // Remove all local markers NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); return NewNode; } // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally // visible target links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { std::map NodeCache; #if 0 for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); if (CloneCalls) GlobalsGraph->cloneCalls(Graph); GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); #endif } // GlobalDSGraph::cloneCalls - Clone function calls and their visible target // links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneCalls(DSGraph& Graph) { std::map NodeCache; vector& FromCalls =Graph.FunctionCalls; FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { DSCallSite& callCopy = FunctionCalls.back(); callCopy.reserve(FromCalls[i].size()); for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) callCopy.push_back ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) ? cloneNodeInto(FromCalls[i][j], NodeCache, true) : 0); } // remove trivially identical function calls removeIdenticalCalls(FunctionCalls, "Globals Graph"); } #endif #endif