//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Perform peephole optimizations on the machine code: // // - Optimize Extensions // // Optimization of sign / zero extension instructions. It may be extended to // handle other instructions with similar properties. // // On some targets, some instructions, e.g. X86 sign / zero extension, may // leave the source value in the lower part of the result. This optimization // will replace some uses of the pre-extension value with uses of the // sub-register of the results. // // - Optimize Comparisons // // Optimization of comparison instructions. For instance, in this code: // // sub r1, 1 // cmp r1, 0 // bz L1 // // If the "sub" instruction all ready sets (or could be modified to set) the // same flag that the "cmp" instruction sets and that "bz" uses, then we can // eliminate the "cmp" instruction. // // Another instance, in this code: // // sub r1, r3 | sub r1, imm // cmp r3, r1 or cmp r1, r3 | cmp r1, imm // bge L1 // // If the branch instruction can use flag from "sub", then we can replace // "sub" with "subs" and eliminate the "cmp" instruction. // // - Optimize Loads: // // Loads that can be folded into a later instruction. A load is foldable // if it loads to virtual registers and the virtual register defined has // a single use. // // - Optimize Copies and Bitcast: // // Rewrite copies and bitcasts to avoid cross register bank copies // when possible. // E.g., Consider the following example, where capital and lower // letters denote different register file: // b = copy A <-- cross-bank copy // C = copy b <-- cross-bank copy // => // b = copy A <-- cross-bank copy // C = copy A <-- same-bank copy // // E.g., for bitcast: // b = bitcast A <-- cross-bank copy // C = bitcast b <-- cross-bank copy // => // b = bitcast A <-- cross-bank copy // C = copy A <-- same-bank copy //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "peephole-opt" // Optimize Extensions static cl::opt Aggressive("aggressive-ext-opt", cl::Hidden, cl::desc("Aggressive extension optimization")); static cl::opt DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), cl::desc("Disable the peephole optimizer")); static cl::opt DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(true), cl::desc("Disable advanced copy optimization")); STATISTIC(NumReuse, "Number of extension results reused"); STATISTIC(NumCmps, "Number of compares eliminated"); STATISTIC(NumImmFold, "Number of move immediate folded"); STATISTIC(NumLoadFold, "Number of loads folded"); STATISTIC(NumSelects, "Number of selects optimized"); STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized"); namespace { class PeepholeOptimizer : public MachineFunctionPass { const TargetMachine *TM; const TargetInstrInfo *TII; MachineRegisterInfo *MRI; MachineDominatorTree *DT; // Machine dominator tree public: static char ID; // Pass identification PeepholeOptimizer() : MachineFunctionPass(ID) { initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); if (Aggressive) { AU.addRequired(); AU.addPreserved(); } } private: bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSetImpl &LocalMIs); bool optimizeSelect(MachineInstr *MI); bool optimizeCopyOrBitcast(MachineInstr *MI); bool isMoveImmediate(MachineInstr *MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs); bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs); bool isLoadFoldable(MachineInstr *MI, SmallSet &FoldAsLoadDefCandidates); }; /// \brief Helper class to track the possible sources of a value defined by /// a (chain of) copy related instructions. /// Given a definition (instruction and definition index), this class /// follows the use-def chain to find successive suitable sources. /// The given source can be used to rewrite the definition into /// def = COPY src. /// /// For instance, let us consider the following snippet: /// v0 = /// v2 = INSERT_SUBREG v1, v0, sub0 /// def = COPY v2.sub0 /// /// Using a ValueTracker for def = COPY v2.sub0 will give the following /// suitable sources: /// v2.sub0 and v0. /// Then, def can be rewritten into def = COPY v0. class ValueTracker { private: /// The current point into the use-def chain. const MachineInstr *Def; /// The index of the definition in Def. unsigned DefIdx; /// The sub register index of the definition. unsigned DefSubReg; /// The register where the value can be found. unsigned Reg; /// Specifiy whether or not the value tracking looks through /// complex instructions. When this is false, the value tracker /// bails on everything that is not a copy or a bitcast. /// /// Note: This could have been implemented as a specialized version of /// the ValueTracker class but that would have complicated the code of /// the users of this class. bool UseAdvancedTracking; /// Optional MachineRegisterInfo used to perform some complex /// tracking. const MachineRegisterInfo *MRI; /// \brief Dispatcher to the right underlying implementation of /// getNextSource. bool getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for Copy instructions. bool getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for Bitcast instructions. bool getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for RegSequence /// instructions. bool getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for InsertSubreg /// instructions. bool getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for ExtractSubreg /// instructions. bool getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Specialized version of getNextSource for SubregToReg /// instructions. bool getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg); public: /// \brief Create a ValueTracker instance for the value defines by \p MI /// at the operand index \p DefIdx. /// \p DefSubReg represents the sub register index the value tracker will /// track. It does not need to match the sub register index used in \p MI. /// \p UseAdvancedTracking specifies whether or not the value tracker looks /// through complex instructions. By default (false), it handles only copy /// and bitcast instructions. /// \p MRI useful to perform some complex checks. ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, bool UseAdvancedTracking = false, const MachineRegisterInfo *MRI = nullptr) : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), UseAdvancedTracking(UseAdvancedTracking), MRI(MRI) { assert(Def->getOperand(DefIdx).isDef() && Def->getOperand(DefIdx).isReg() && "Definition does not match machine instruction"); // Initially the value is in the defined register. Reg = Def->getOperand(DefIdx).getReg(); } /// \brief Following the use-def chain, get the next available source /// for the tracked value. /// When the returned value is not nullptr, getReg() gives the register /// that contain the tracked value. /// \note The sub register index returned in \p SrcSubReg must be used /// on that getReg() to access the actual value. /// \return Unless the returned value is nullptr (i.e., no source found), /// \p SrcIdx gives the index of the next source in the returned /// instruction and \p SrcSubReg the index to be used on that source to /// get the tracked value. When nullptr is returned, no alternative source /// has been found. const MachineInstr *getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg); /// \brief Get the last register where the initial value can be found. /// Initially this is the register of the definition. /// Then, after each successful call to getNextSource, this is the /// register of the last source. unsigned getReg() const { return Reg; } }; } char PeepholeOptimizer::ID = 0; char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", "Peephole Optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", "Peephole Optimizations", false, false) /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads /// a single register and writes a single register and it does not modify the /// source, and if the source value is preserved as a sub-register of the /// result, then replace all reachable uses of the source with the subreg of the /// result. /// /// Do not generate an EXTRACT that is used only in a debug use, as this changes /// the code. Since this code does not currently share EXTRACTs, just ignore all /// debug uses. bool PeepholeOptimizer:: optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSetImpl &LocalMIs) { unsigned SrcReg, DstReg, SubIdx; if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) return false; if (TargetRegisterInfo::isPhysicalRegister(DstReg) || TargetRegisterInfo::isPhysicalRegister(SrcReg)) return false; if (MRI->hasOneNonDBGUse(SrcReg)) // No other uses. return false; // Ensure DstReg can get a register class that actually supports // sub-registers. Don't change the class until we commit. const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); DstRC = TM->getSubtargetImpl()->getRegisterInfo()->getSubClassWithSubReg( DstRC, SubIdx); if (!DstRC) return false; // The ext instr may be operating on a sub-register of SrcReg as well. // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit // register. // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of // SrcReg:SubIdx should be replaced. bool UseSrcSubIdx = TM->getSubtargetImpl()->getRegisterInfo()->getSubClassWithSubReg( MRI->getRegClass(SrcReg), SubIdx) != nullptr; // The source has other uses. See if we can replace the other uses with use of // the result of the extension. SmallPtrSet ReachedBBs; for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) ReachedBBs.insert(UI.getParent()); // Uses that are in the same BB of uses of the result of the instruction. SmallVector Uses; // Uses that the result of the instruction can reach. SmallVector ExtendedUses; bool ExtendLife = true; for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { MachineInstr *UseMI = UseMO.getParent(); if (UseMI == MI) continue; if (UseMI->isPHI()) { ExtendLife = false; continue; } // Only accept uses of SrcReg:SubIdx. if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) continue; // It's an error to translate this: // // %reg1025 = %reg1024 // ... // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 // // into this: // // %reg1025 = %reg1024 // ... // %reg1027 = COPY %reg1025:4 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 // // The problem here is that SUBREG_TO_REG is there to assert that an // implicit zext occurs. It doesn't insert a zext instruction. If we allow // the COPY here, it will give us the value after the , not the // original value of %reg1024 before . if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) continue; MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == MBB) { // Local uses that come after the extension. if (!LocalMIs.count(UseMI)) Uses.push_back(&UseMO); } else if (ReachedBBs.count(UseMBB)) { // Non-local uses where the result of the extension is used. Always // replace these unless it's a PHI. Uses.push_back(&UseMO); } else if (Aggressive && DT->dominates(MBB, UseMBB)) { // We may want to extend the live range of the extension result in order // to replace these uses. ExtendedUses.push_back(&UseMO); } else { // Both will be live out of the def MBB anyway. Don't extend live range of // the extension result. ExtendLife = false; break; } } if (ExtendLife && !ExtendedUses.empty()) // Extend the liveness of the extension result. std::copy(ExtendedUses.begin(), ExtendedUses.end(), std::back_inserter(Uses)); // Now replace all uses. bool Changed = false; if (!Uses.empty()) { SmallPtrSet PHIBBs; // Look for PHI uses of the extended result, we don't want to extend the // liveness of a PHI input. It breaks all kinds of assumptions down // stream. A PHI use is expected to be the kill of its source values. for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) if (UI.isPHI()) PHIBBs.insert(UI.getParent()); const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); for (unsigned i = 0, e = Uses.size(); i != e; ++i) { MachineOperand *UseMO = Uses[i]; MachineInstr *UseMI = UseMO->getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); if (PHIBBs.count(UseMBB)) continue; // About to add uses of DstReg, clear DstReg's kill flags. if (!Changed) { MRI->clearKillFlags(DstReg); MRI->constrainRegClass(DstReg, DstRC); } unsigned NewVR = MRI->createVirtualRegister(RC); MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(DstReg, 0, SubIdx); // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. if (UseSrcSubIdx) { Copy->getOperand(0).setSubReg(SubIdx); Copy->getOperand(0).setIsUndef(); } UseMO->setReg(NewVR); ++NumReuse; Changed = true; } } return Changed; } /// optimizeCmpInstr - If the instruction is a compare and the previous /// instruction it's comparing against all ready sets (or could be modified to /// set) the same flag as the compare, then we can remove the comparison and use /// the flag from the previous instruction. bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB) { // If this instruction is a comparison against zero and isn't comparing a // physical register, we can try to optimize it. unsigned SrcReg, SrcReg2; int CmpMask, CmpValue; if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || TargetRegisterInfo::isPhysicalRegister(SrcReg) || (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) return false; // Attempt to optimize the comparison instruction. if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { ++NumCmps; return true; } return false; } /// Optimize a select instruction. bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) { unsigned TrueOp = 0; unsigned FalseOp = 0; bool Optimizable = false; SmallVector Cond; if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) return false; if (!Optimizable) return false; if (!TII->optimizeSelect(MI)) return false; MI->eraseFromParent(); ++NumSelects; return true; } /// \brief Check if the registers defined by the pair (RegisterClass, SubReg) /// share the same register file. static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) { // Same register class. if (DefRC == SrcRC) return true; // Both operands are sub registers. Check if they share a register class. unsigned SrcIdx, DefIdx; if (SrcSubReg && DefSubReg) return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, SrcIdx, DefIdx) != nullptr; // At most one of the register is a sub register, make it Src to avoid // duplicating the test. if (!SrcSubReg) { std::swap(DefSubReg, SrcSubReg); std::swap(DefRC, SrcRC); } // One of the register is a sub register, check if we can get a superclass. if (SrcSubReg) return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; // Plain copy. return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; } /// \brief Get the index of the definition and source for \p Copy /// instruction. /// \pre Copy.isCopy() or Copy.isBitcast(). /// \return True if the Copy instruction has only one register source /// and one register definition. Otherwise, \p DefIdx and \p SrcIdx /// are invalid. static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy, unsigned &DefIdx, unsigned &SrcIdx) { assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type."); if (Copy.isCopy()) { // Copy instruction are supposed to be: Def = Src. if (Copy.getDesc().getNumOperands() != 2) return false; DefIdx = 0; SrcIdx = 1; assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!"); return true; } // Bitcast case. // Bitcasts with more than one def are not supported. if (Copy.getDesc().getNumDefs() != 1) return false; // Initialize SrcIdx to an undefined operand. SrcIdx = Copy.getDesc().getNumOperands(); for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) { const MachineOperand &MO = Copy.getOperand(OpIdx); if (!MO.isReg() || !MO.getReg()) continue; if (MO.isDef()) DefIdx = OpIdx; else if (SrcIdx != EndOpIdx) // Multiple sources? return false; SrcIdx = OpIdx; } return true; } /// \brief Optimize a copy or bitcast instruction to avoid cross /// register bank copy. The optimization looks through a chain of /// copies and try to find a source that has a compatible register /// class. /// Two register classes are considered to be compatible if they share /// the same register bank. /// New copies issued by this optimization are register allocator /// friendly. This optimization does not remove any copy as it may /// overconstraint the register allocator, but replaces some when /// possible. /// \pre \p MI is a Copy (MI->isCopy() is true) /// \return True, when \p MI has been optimized. In that case, \p MI has /// been removed from its parent. bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) { unsigned DefIdx, SrcIdx; if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx)) return false; const MachineOperand &MODef = MI->getOperand(DefIdx); assert(MODef.isReg() && "Copies must be between registers."); unsigned Def = MODef.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Def)) return false; const TargetRegisterClass *DefRC = MRI->getRegClass(Def); unsigned DefSubReg = MODef.getSubReg(); unsigned Src; unsigned SrcSubReg; bool ShouldRewrite = false; const TargetRegisterInfo &TRI = *TM->getSubtargetImpl()->getRegisterInfo(); // Follow the chain of copies until we reach the top of the use-def chain // or find a more suitable source. ValueTracker ValTracker(*MI, DefIdx, DefSubReg, !DisableAdvCopyOpt, MRI); do { unsigned CopySrcIdx, CopySrcSubReg; if (!ValTracker.getNextSource(CopySrcIdx, CopySrcSubReg)) break; Src = ValTracker.getReg(); SrcSubReg = CopySrcSubReg; // Do not extend the live-ranges of physical registers as they add // constraints to the register allocator. // Moreover, if we want to extend the live-range of a physical register, // unlike SSA virtual register, we will have to check that they are not // redefine before the related use. if (TargetRegisterInfo::isPhysicalRegister(Src)) break; const TargetRegisterClass *SrcRC = MRI->getRegClass(Src); // If this source does not incur a cross register bank copy, use it. ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC, SrcSubReg); } while (!ShouldRewrite); // If we did not find a more suitable source, there is nothing to optimize. if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg()) return false; // Rewrite the copy to avoid a cross register bank penalty. unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def : MRI->createVirtualRegister(DefRC); MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(Src, 0, SrcSubReg); NewCopy->getOperand(0).setSubReg(DefSubReg); MRI->replaceRegWith(Def, NewVR); MRI->clearKillFlags(NewVR); // We extended the lifetime of Src. // Clear the kill flags to account for that. MRI->clearKillFlags(Src); MI->eraseFromParent(); ++NumCopiesBitcasts; return true; } /// isLoadFoldable - Check whether MI is a candidate for folding into a later /// instruction. We only fold loads to virtual registers and the virtual /// register defined has a single use. bool PeepholeOptimizer::isLoadFoldable( MachineInstr *MI, SmallSet &FoldAsLoadDefCandidates) { if (!MI->canFoldAsLoad() || !MI->mayLoad()) return false; const MCInstrDesc &MCID = MI->getDesc(); if (MCID.getNumDefs() != 1) return false; unsigned Reg = MI->getOperand(0).getReg(); // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting // loads. It should be checked when processing uses of the load, since // uses can be removed during peephole. if (!MI->getOperand(0).getSubReg() && TargetRegisterInfo::isVirtualRegister(Reg) && MRI->hasOneNonDBGUse(Reg)) { FoldAsLoadDefCandidates.insert(Reg); return true; } return false; } bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs) { const MCInstrDesc &MCID = MI->getDesc(); if (!MI->isMoveImmediate()) return false; if (MCID.getNumDefs() != 1) return false; unsigned Reg = MI->getOperand(0).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { ImmDefMIs.insert(std::make_pair(Reg, MI)); ImmDefRegs.insert(Reg); return true; } return false; } /// foldImmediate - Try folding register operands that are defined by move /// immediate instructions, i.e. a trivial constant folding optimization, if /// and only if the def and use are in the same BB. bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs) { for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (ImmDefRegs.count(Reg) == 0) continue; DenseMap::iterator II = ImmDefMIs.find(Reg); assert(II != ImmDefMIs.end()); if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { ++NumImmFold; return true; } } return false; } bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { if (skipOptnoneFunction(*MF.getFunction())) return false; DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); if (DisablePeephole) return false; TM = &MF.getTarget(); TII = TM->getSubtargetImpl()->getInstrInfo(); MRI = &MF.getRegInfo(); DT = Aggressive ? &getAnalysis() : nullptr; bool Changed = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = &*I; bool SeenMoveImm = false; SmallPtrSet LocalMIs; SmallSet ImmDefRegs; DenseMap ImmDefMIs; SmallSet FoldAsLoadDefCandidates; for (MachineBasicBlock::iterator MII = I->begin(), MIE = I->end(); MII != MIE; ) { MachineInstr *MI = &*MII; // We may be erasing MI below, increment MII now. ++MII; LocalMIs.insert(MI); // Skip debug values. They should not affect this peephole optimization. if (MI->isDebugValue()) continue; // If there exists an instruction which belongs to the following // categories, we will discard the load candidates. if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { FoldAsLoadDefCandidates.clear(); continue; } if (MI->mayStore() || MI->isCall()) FoldAsLoadDefCandidates.clear(); if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) || (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || (MI->isSelect() && optimizeSelect(MI))) { // MI is deleted. LocalMIs.erase(MI); Changed = true; continue; } if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { SeenMoveImm = true; } else { Changed |= optimizeExtInstr(MI, MBB, LocalMIs); // optimizeExtInstr might have created new instructions after MI // and before the already incremented MII. Adjust MII so that the // next iteration sees the new instructions. MII = MI; ++MII; if (SeenMoveImm) Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); } // Check whether MI is a load candidate for folding into a later // instruction. If MI is not a candidate, check whether we can fold an // earlier load into MI. if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && !FoldAsLoadDefCandidates.empty()) { const MCInstrDesc &MIDesc = MI->getDesc(); for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); ++i) { const MachineOperand &MOp = MI->getOperand(i); if (!MOp.isReg()) continue; unsigned FoldAsLoadDefReg = MOp.getReg(); if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { // We need to fold load after optimizeCmpInstr, since // optimizeCmpInstr can enable folding by converting SUB to CMP. // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and // we need it for markUsesInDebugValueAsUndef(). unsigned FoldedReg = FoldAsLoadDefReg; MachineInstr *DefMI = nullptr; MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, FoldAsLoadDefReg, DefMI); if (FoldMI) { // Update LocalMIs since we replaced MI with FoldMI and deleted // DefMI. DEBUG(dbgs() << "Replacing: " << *MI); DEBUG(dbgs() << " With: " << *FoldMI); LocalMIs.erase(MI); LocalMIs.erase(DefMI); LocalMIs.insert(FoldMI); MI->eraseFromParent(); DefMI->eraseFromParent(); MRI->markUsesInDebugValueAsUndef(FoldedReg); FoldAsLoadDefCandidates.erase(FoldedReg); ++NumLoadFold; // MI is replaced with FoldMI. Changed = true; break; } } } } } } return Changed; } bool ValueTracker::getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isCopy() && "Invalid definition"); // Copy instruction are supposed to be: Def = Src. // If someone breaks this assumption, bad things will happen everywhere. assert(Def->getDesc().getNumOperands() == 2 && "Invalid number of operands"); if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of src. // Bails as we do not support composing subreg yet. return false; // Otherwise, we want the whole source. SrcIdx = 1; SrcSubReg = Def->getOperand(SrcIdx).getSubReg(); return true; } bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isBitcast() && "Invalid definition"); // Bail if there are effects that a plain copy will not expose. if (Def->hasUnmodeledSideEffects()) return false; // Bitcasts with more than one def are not supported. if (Def->getDesc().getNumDefs() != 1) return false; if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of the src. // Bails as we do not support composing subreg yet. return false; SrcIdx = Def->getDesc().getNumOperands(); for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) { const MachineOperand &MO = Def->getOperand(OpIdx); if (!MO.isReg() || !MO.getReg()) continue; assert(!MO.isDef() && "We should have skipped all the definitions by now"); if (SrcIdx != EndOpIdx) // Multiple sources? return false; SrcIdx = OpIdx; } SrcSubReg = Def->getOperand(SrcIdx).getSubReg(); return true; } bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isRegSequence() && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subreg, bails out. // The case we are checking is Def. = REG_SEQUENCE. // This should almost never happen as the SSA property is tracked at // the register level (as opposed to the subreg level). // I.e., // Def.sub0 = // Def.sub1 = // is a valid SSA representation for Def.sub0 and Def.sub1, but not for // Def. Thus, it must not be generated. // However, some code could theoretically generates a single // Def.sub0 (i.e, not defining the other subregs) and we would // have this case. // If we can ascertain (or force) that this never happens, we could // turn that into an assertion. return false; // We are looking at: // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... // Check if one of the operand defines the subreg we are interested in. for (unsigned OpIdx = DefIdx + 1, EndOpIdx = Def->getNumOperands(); OpIdx != EndOpIdx; OpIdx += 2) { const MachineOperand &MOSubIdx = Def->getOperand(OpIdx + 1); assert(MOSubIdx.isImm() && "One of the subindex of the reg_sequence is not an immediate"); if (MOSubIdx.getImm() == DefSubReg) { assert(Def->getOperand(OpIdx).isReg() && "One of the source of the reg_sequence is not a register"); SrcIdx = OpIdx; SrcSubReg = Def->getOperand(SrcIdx).getSubReg(); return true; } } // If the subreg we are tracking is super-defined by another subreg, // we could follow this value. However, this would require to compose // the subreg and we do not do that for now. return false; } bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isInsertSubreg() && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subreg, bails out. // Same remark as getNextSourceFromRegSequence. // I.e., this may be turned into an assert. return false; // We are looking at: // Def = INSERT_SUBREG v0, v1, sub1 // There are two cases: // 1. DefSubReg == sub1, get v1. // 2. DefSubReg != sub1, the value may be available through v0. // #1 Check if the inserted register matches the require sub index. unsigned InsertedSubReg = Def->getOperand(3).getImm(); if (InsertedSubReg == DefSubReg) { SrcIdx = 2; SrcSubReg = Def->getOperand(SrcIdx).getSubReg(); return true; } // #2 Otherwise, if the sub register we are looking for is not partial // defined by the inserted element, we can look through the main // register (v0). // To check the overlapping we need a MRI and a TRI. if (!MRI) return false; const MachineOperand &MODef = Def->getOperand(DefIdx); const MachineOperand &MOBase = Def->getOperand(1); // If the result register (Def) and the base register (v0) do not // have the same register class or if we have to compose // subregisters, bails out. if (MRI->getRegClass(MODef.getReg()) != MRI->getRegClass(MOBase.getReg()) || MOBase.getSubReg()) return false; // Get the TRI and check if inserted sub register overlaps with the // sub register we are tracking. const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); if (!TRI || (TRI->getSubRegIndexLaneMask(DefSubReg) & TRI->getSubRegIndexLaneMask(InsertedSubReg)) != 0) return false; // At this point, the value is available in v0 via the same subreg // we used for Def. SrcIdx = 1; SrcSubReg = DefSubReg; return true; } bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isExtractSubreg() && "Invalid definition"); // We are looking at: // Def = EXTRACT_SUBREG v0, sub0 // Bails if we have to compose sub registers. // Indeed, if DefSubReg != 0, we would have to compose it with sub0. if (DefSubReg) return false; // Bails if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. if (Def->getOperand(1).getSubReg()) return false; // Otherwise, the value is available in the v0.sub0. SrcIdx = 1; SrcSubReg = Def->getOperand(2).getImm(); return true; } bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def->isSubregToReg() && "Invalid definition"); // We are looking at: // Def = SUBREG_TO_REG Imm, v0, sub0 // Bails if we have to compose sub registers. // If DefSubReg != sub0, we would have to check that all the bits // we track are included in sub0 and if yes, we would have to // determine the right subreg in v0. if (DefSubReg != Def->getOperand(3).getImm()) return false; // Bails if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose it with sub0. if (Def->getOperand(2).getSubReg()) return false; SrcIdx = 2; SrcSubReg = Def->getOperand(3).getImm(); return true; } bool ValueTracker::getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg) { assert(Def && "This method needs a valid definition"); assert( (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); if (Def->isCopy()) return getNextSourceFromCopy(SrcIdx, SrcSubReg); if (Def->isBitcast()) return getNextSourceFromBitcast(SrcIdx, SrcSubReg); // All the remaining cases involve "complex" instructions. // Bails if we did not ask for the advanced tracking. if (!UseAdvancedTracking) return false; if (Def->isRegSequence()) return getNextSourceFromRegSequence(SrcIdx, SrcSubReg); if (Def->isInsertSubreg()) return getNextSourceFromInsertSubreg(SrcIdx, SrcSubReg); if (Def->isExtractSubreg()) return getNextSourceFromExtractSubreg(SrcIdx, SrcSubReg); if (Def->isSubregToReg()) return getNextSourceFromSubregToReg(SrcIdx, SrcSubReg); return false; } const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg) { // If we reach a point where we cannot move up in the use-def chain, // there is nothing we can get. if (!Def) return nullptr; const MachineInstr *PrevDef = nullptr; // Try to find the next source. if (getNextSourceImpl(SrcIdx, SrcSubReg)) { // Update definition, definition index, and subregister for the // next call of getNextSource. const MachineOperand &MO = Def->getOperand(SrcIdx); assert(MO.isReg() && !MO.isDef() && "Source is invalid"); // Update the current register. Reg = MO.getReg(); // Update the return value before moving up in the use-def chain. PrevDef = Def; // If we can still move up in the use-def chain, move to the next // defintion. if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { Def = MRI->getVRegDef(Reg); DefIdx = MRI->def_begin(Reg).getOperandNo(); DefSubReg = SrcSubReg; return PrevDef; } } // If we end up here, this means we will not be able to find another source // for the next iteration. // Make sure any new call to getNextSource bails out early by cutting the // use-def chain. Def = nullptr; return PrevDef; }