//===- InstrumentationMap.cpp - XRay Instrumentation Map ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implementation of the InstrumentationMap type for XRay sleds. // //===----------------------------------------------------------------------===// #include "llvm/XRay/InstrumentationMap.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Object/Binary.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/YAMLTraits.h" #include #include #include #include #include using namespace llvm; using namespace xray; Optional InstrumentationMap::getFunctionId(uint64_t Addr) const { auto I = FunctionIds.find(Addr); if (I != FunctionIds.end()) return I->second; return None; } Optional InstrumentationMap::getFunctionAddr(int32_t FuncId) const { auto I = FunctionAddresses.find(FuncId); if (I != FunctionAddresses.end()) return I->second; return None; } using RelocMap = DenseMap; static Error loadObj(StringRef Filename, object::OwningBinary &ObjFile, InstrumentationMap::SledContainer &Sleds, InstrumentationMap::FunctionAddressMap &FunctionAddresses, InstrumentationMap::FunctionAddressReverseMap &FunctionIds) { InstrumentationMap Map; // Find the section named "xray_instr_map". if ((!ObjFile.getBinary()->isELF() && !ObjFile.getBinary()->isMachO()) || !(ObjFile.getBinary()->getArch() == Triple::x86_64 || ObjFile.getBinary()->getArch() == Triple::ppc64le)) return make_error( "File format not supported (only does ELF and Mach-O little endian 64-bit).", std::make_error_code(std::errc::not_supported)); StringRef Contents = ""; const auto &Sections = ObjFile.getBinary()->sections(); auto I = llvm::find_if(Sections, [&](object::SectionRef Section) { StringRef Name = ""; if (Section.getName(Name)) return false; return Name == "xray_instr_map"; }); if (I == Sections.end()) return make_error( "Failed to find XRay instrumentation map.", std::make_error_code(std::errc::executable_format_error)); if (I->getContents(Contents)) return errorCodeToError( std::make_error_code(std::errc::executable_format_error)); RelocMap Relocs; if (ObjFile.getBinary()->isELF()) { uint32_t RelativeRelocation = [](object::ObjectFile *ObjFile) { if (const auto *ELFObj = dyn_cast(ObjFile)) return ELFObj->getELFFile()->getRelativeRelocationType(); else if (const auto *ELFObj = dyn_cast(ObjFile)) return ELFObj->getELFFile()->getRelativeRelocationType(); else if (const auto *ELFObj = dyn_cast(ObjFile)) return ELFObj->getELFFile()->getRelativeRelocationType(); else if (const auto *ELFObj = dyn_cast(ObjFile)) return ELFObj->getELFFile()->getRelativeRelocationType(); else return static_cast(0); }(ObjFile.getBinary()); for (const object::SectionRef &Section : Sections) { for (const object::RelocationRef &Reloc : Section.relocations()) { if (Reloc.getType() != RelativeRelocation) continue; if (auto AddendOrErr = object::ELFRelocationRef(Reloc).getAddend()) Relocs.insert({Reloc.getOffset(), *AddendOrErr}); } } } // Copy the instrumentation map data into the Sleds data structure. auto C = Contents.bytes_begin(); static constexpr size_t ELF64SledEntrySize = 32; if ((C - Contents.bytes_end()) % ELF64SledEntrySize != 0) return make_error( Twine("Instrumentation map entries not evenly divisible by size of " "an XRay sled entry in ELF64."), std::make_error_code(std::errc::executable_format_error)); auto RelocateOrElse = [&](uint32_t Offset, uint64_t Address) { if (!Address) { uint64_t A = I->getAddress() + C - Contents.bytes_begin() + Offset; RelocMap::const_iterator R = Relocs.find(A); if (R != Relocs.end()) return R->second; } return Address; }; int32_t FuncId = 1; uint64_t CurFn = 0; for (; C != Contents.bytes_end(); C += ELF64SledEntrySize) { DataExtractor Extractor( StringRef(reinterpret_cast(C), ELF64SledEntrySize), true, 8); Sleds.push_back({}); auto &Entry = Sleds.back(); uint32_t OffsetPtr = 0; uint32_t AddrOff = OffsetPtr; Entry.Address = RelocateOrElse(AddrOff, Extractor.getU64(&OffsetPtr)); uint32_t FuncOff = OffsetPtr; Entry.Function = RelocateOrElse(FuncOff, Extractor.getU64(&OffsetPtr)); auto Kind = Extractor.getU8(&OffsetPtr); static constexpr SledEntry::FunctionKinds Kinds[] = { SledEntry::FunctionKinds::ENTRY, SledEntry::FunctionKinds::EXIT, SledEntry::FunctionKinds::TAIL, SledEntry::FunctionKinds::LOG_ARGS_ENTER, SledEntry::FunctionKinds::CUSTOM_EVENT}; if (Kind >= sizeof(Kinds)) return errorCodeToError( std::make_error_code(std::errc::executable_format_error)); Entry.Kind = Kinds[Kind]; Entry.AlwaysInstrument = Extractor.getU8(&OffsetPtr) != 0; // We do replicate the function id generation scheme implemented in the // XRay runtime. // FIXME: Figure out how to keep this consistent with the XRay runtime. if (CurFn == 0) { CurFn = Entry.Function; FunctionAddresses[FuncId] = Entry.Function; FunctionIds[Entry.Function] = FuncId; } if (Entry.Function != CurFn) { ++FuncId; CurFn = Entry.Function; FunctionAddresses[FuncId] = Entry.Function; FunctionIds[Entry.Function] = FuncId; } } return Error::success(); } static Error loadYAML(int Fd, size_t FileSize, StringRef Filename, InstrumentationMap::SledContainer &Sleds, InstrumentationMap::FunctionAddressMap &FunctionAddresses, InstrumentationMap::FunctionAddressReverseMap &FunctionIds) { std::error_code EC; sys::fs::mapped_file_region MappedFile( Fd, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0, EC); if (EC) return make_error( Twine("Failed memory-mapping file '") + Filename + "'.", EC); std::vector YAMLSleds; yaml::Input In(StringRef(MappedFile.data(), MappedFile.size())); In >> YAMLSleds; if (In.error()) return make_error( Twine("Failed loading YAML document from '") + Filename + "'.", In.error()); Sleds.reserve(YAMLSleds.size()); for (const auto &Y : YAMLSleds) { FunctionAddresses[Y.FuncId] = Y.Function; FunctionIds[Y.Function] = Y.FuncId; Sleds.push_back( SledEntry{Y.Address, Y.Function, Y.Kind, Y.AlwaysInstrument}); } return Error::success(); } // FIXME: Create error types that encapsulate a bit more information than what // StringError instances contain. Expected llvm::xray::loadInstrumentationMap(StringRef Filename) { // At this point we assume the file is an object file -- and if that doesn't // work, we treat it as YAML. // FIXME: Extend to support non-ELF and non-x86_64 binaries. InstrumentationMap Map; auto ObjectFileOrError = object::ObjectFile::createObjectFile(Filename); if (!ObjectFileOrError) { auto E = ObjectFileOrError.takeError(); // We try to load it as YAML if the ELF load didn't work. int Fd; if (sys::fs::openFileForRead(Filename, Fd)) return std::move(E); uint64_t FileSize; if (sys::fs::file_size(Filename, FileSize)) return std::move(E); // If the file is empty, we return the original error. if (FileSize == 0) return std::move(E); // From this point on the errors will be only for the YAML parts, so we // consume the errors at this point. consumeError(std::move(E)); if (auto E = loadYAML(Fd, FileSize, Filename, Map.Sleds, Map.FunctionAddresses, Map.FunctionIds)) return std::move(E); } else if (auto E = loadObj(Filename, *ObjectFileOrError, Map.Sleds, Map.FunctionAddresses, Map.FunctionIds)) { return std::move(E); } return Map; }