//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal // representation of machine-dependent LLVM code to Intel-format // assembly language. This printer is the output mechanism used // by `llc' and `lli -print-machineinstrs' on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "Support/Statistic.h" #include "Support/StringExtras.h" #include "Support/CommandLine.h" namespace llvm { namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); // FIXME: This should be automatically picked up by autoconf from the C // frontend cl::opt EmitCygwin("enable-cygwin-compatible-output", cl::Hidden, cl::desc("Emit X86 assembly code suitable for consumption by cygwin")); struct Printer : public MachineFunctionPass { /// Output stream on which we're printing assembly code. /// std::ostream &O; /// Target machine description which we query for reg. names, data /// layout, etc. /// TargetMachine &TM; /// Name-mangler for global names. /// Mangler *Mang; Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } /// We name each basic block in a Function with a unique number, so /// that we can consistently refer to them later. This is cleared /// at the beginning of each call to runOnMachineFunction(). /// typedef std::map ValueMapTy; ValueMapTy NumberForBB; /// Cache of mangled name for current function. This is /// recalculated at the beginning of each call to /// runOnMachineFunction(). /// std::string CurrentFnName; virtual const char *getPassName() const { return "X86 Assembly Printer"; } void checkImplUses (const TargetInstrDescriptor &Desc); void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); void printMemReference(const MachineInstr *MI, unsigned Op); void printConstantPool(MachineConstantPool *MCP); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void emitGlobalConstant(const Constant* CV); void emitConstantValueOnly(const Constant *CV); }; } // end of anonymous namespace /// createX86CodePrinterPass - Returns a pass that prints the X86 /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. /// FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ return new Printer(o, tm); } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// getAsCString - Return the specified array as a C compatible /// string, only if the predicate isStringCompatible is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { unsigned char C = cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void Printer::emitConstantValueOnly(const Constant *CV) { if (CV->isNullValue()) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const ConstantPointerRef *CPR = dyn_cast(CV)) // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value. O << Mang->getValueName(CPR->getValue()); else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData &TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { O << "("; emitConstantValueOnly(ptrVal); O << ") + " << Offset; } else { emitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only non-converting or widening casts for now, that is, ones // that do not involve a change in value. This assertion is really gross, // and may not even be a complete check. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Remember, kids, pointers on x86 can be losslessly converted back and // forth into 32-bit or wider integers, regardless of signedness. :-P assert(((isa(OpTy) && (Ty == Type::LongTy || Ty == Type::ULongTy || Ty == Type::IntTy || Ty == Type::UIntTy)) || (isa(Ty) && (OpTy == Type::LongTy || OpTy == Type::ULongTy || OpTy == Type::IntTy || OpTy == Type::UIntTy)) || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) && OpTy->isLosslesslyConvertibleTo(Ty)))) && "FIXME: Don't yet support this kind of constant cast expr"); O << "("; emitConstantValueOnly(Op); O << ")"; break; } case Instruction::Add: O << "("; emitConstantValueOnly(CE->getOperand(0)); O << ") + ("; emitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } // Print a constant value or values, with the appropriate storage class as a // prefix. void Printer::emitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (CV->isNullValue()) { O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { O << "\t.ascii\t"; printAsCString(O, CVA); O << "\n"; } else { // Not a string. Print the values in successive locations const std::vector &constValues = CVA->getValues(); for (unsigned i=0; i < constValues.size(); i++) emitGlobalConstant(cast(constValues[i].get())); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); const std::vector& constValues = CVS->getValues(); unsigned sizeSoFar = 0; for (unsigned i=0, N = constValues.size(); i < N; i++) { const Constant* field = cast(constValues[i].get()); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = TD.getTypeSize(field->getType()); unsigned padSize = ((i == N-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value emitGlobalConstant(field); // Insert the field padding unless it's zero bytes... if (padSize) O << "\t.zero\t " << padSize << "\n"; } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); switch (CFP->getType()->getPrimitiveID()) { default: assert(0 && "Unknown floating point type!"); case Type::FloatTyID: { union FU { // Abide by C TBAA rules float FVal; unsigned UVal; } U; U.FVal = Val; O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; return; } case Type::DoubleTyID: { union DU { // Abide by C TBAA rules double FVal; uint64_t UVal; } U; U.FVal = Val; O << ".quad\t" << U.UVal << "\t# double " << Val << "\n"; return; } } } const Type *type = CV->getType(); O << "\t"; switch (type->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: O << ".byte"; break; case Type::UShortTyID: case Type::ShortTyID: O << ".word"; break; case Type::FloatTyID: case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: O << ".long"; break; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: O << ".quad"; break; default: assert (0 && "Can't handle printing this type of thing"); break; } O << "\t"; emitConstantValueOnly(CV); O << "\n"; } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void Printer::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.section .rodata\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool Printer::runOnMachineFunction(MachineFunction &MF) { // BBNumber is used here so that a given Printer will never give two // BBs the same name. (If you have a better way, please let me know!) static unsigned BBNumber = 0; O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; O << "\t.align 16\n"; O << "\t.globl\t" << CurrentFnName << "\n"; if (!EmitCygwin) O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Number each basic block so that we can consistently refer to them // in PC-relative references. NumberForBB.clear(); for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { NumberForBB[I->getBasicBlock()] = BBNumber++; } // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } static bool isScale(const MachineOperand &MO) { return MO.isImmediate() && (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || MO.getImmedValue() == 4 || MO.getImmedValue() == 8); } static bool isMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFrameIndex()) return true; if (MI->getOperand(Op).isConstantPoolIndex()) return true; return Op+4 <= MI->getNumOperands() && MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); } void Printer::printOp(const MachineOperand &MO, bool elideOffsetKeyword /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_PCRelativeDisp: { ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue()); assert (i != NumberForBB.end() && "Could not find a BB in the NumberForBB map!"); O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName(); return; } case MachineOperand::MO_GlobalAddress: if (!elideOffsetKeyword) O << "OFFSET "; O << Mang->getValueName(MO.getGlobal()); return; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; default: O << ""; return; } } static const std::string sizePtr(const TargetInstrDescriptor &Desc) { switch (Desc.TSFlags & X86II::ArgMask) { default: assert(0 && "Unknown arg size!"); case X86II::Arg8: return "BYTE PTR"; case X86II::Arg16: return "WORD PTR"; case X86II::Arg32: return "DWORD PTR"; case X86II::Arg64: return "QWORD PTR"; case X86II::ArgF32: return "DWORD PTR"; case X86II::ArgF64: return "QWORD PTR"; case X86II::ArgF80: return "XWORD PTR"; } } void Printer::printMemReference(const MachineInstr *MI, unsigned Op) { assert(isMem(MI, Op) && "Invalid memory reference!"); if (MI->getOperand(Op).isFrameIndex()) { O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } else if (MI->getOperand(Op).isConstantPoolIndex()) { O << "[.CPI" << CurrentFnName << "_" << MI->getOperand(Op).getConstantPoolIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); int DispVal = MI->getOperand(Op+3).getImmedValue(); O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(BaseReg); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(IndexReg); NeedPlus = true; } if (DispVal) { if (NeedPlus) if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } O << DispVal; } O << "]"; } /// checkImplUses - Emit the implicit-use registers for the /// instruction described by DESC, if its PrintImplUses flag is set. /// void Printer::checkImplUses (const TargetInstrDescriptor &Desc) { const MRegisterInfo &RI = *TM.getRegisterInfo(); if (Desc.TSFlags & X86II::PrintImplUses) { for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { // Bug Workaround: See note in Printer::doInitialization about %. O << ", %" << RI.get(*p).Name; } } } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void Printer::printMachineInstruction(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); const TargetInstrInfo &TII = TM.getInstrInfo(); const TargetInstrDescriptor &Desc = TII.get(Opcode); ++EmittedInsts; switch (Desc.TSFlags & X86II::FormMask) { case X86II::Pseudo: // Print pseudo-instructions as comments; either they should have been // turned into real instructions by now, or they don't need to be // seen by the assembler (e.g., IMPLICIT_USEs.) O << "# "; if (Opcode == X86::PHI) { printOp(MI->getOperand(0)); O << " = phi "; for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { if (i != 1) O << ", "; O << "["; printOp(MI->getOperand(i)); O << ", "; printOp(MI->getOperand(i+1)); O << "]"; } } else { unsigned i = 0; if (MI->getNumOperands() && MI->getOperand(0).isDef()) { printOp(MI->getOperand(0)); O << " = "; ++i; } O << TII.getName(MI->getOpcode()); for (unsigned e = MI->getNumOperands(); i != e; ++i) { O << " "; if (MI->getOperand(i).isDef()) O << "*"; printOp(MI->getOperand(i)); if (MI->getOperand(i).isDef()) O << "*"; } } O << "\n"; return; case X86II::RawFrm: // The accepted forms of Raw instructions are: // 1. nop - No operand required // 2. jmp foo - PC relative displacement operand // 3. call bar - GlobalAddress Operand or External Symbol Operand // assert(MI->getNumOperands() == 0 || (MI->getNumOperands() == 1 && (MI->getOperand(0).isPCRelativeDisp() || MI->getOperand(0).isGlobalAddress() || MI->getOperand(0).isExternalSymbol())) && "Illegal raw instruction!"); O << TII.getName(MI->getOpcode()) << " "; if (MI->getNumOperands() == 1) { printOp(MI->getOperand(0), true); // Don't print "OFFSET"... } O << "\n"; return; case X86II::AddRegFrm: { // There are currently two forms of acceptable AddRegFrm instructions. // Either the instruction JUST takes a single register (like inc, dec, etc), // or it takes a register and an immediate of the same size as the register // (move immediate f.e.). Note that this immediate value might be stored as // an LLVM value, to represent, for example, loading the address of a global // into a register. The initial register might be duplicated if this is a // M_2_ADDR_REG instruction // assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 1 || (MI->getNumOperands() == 2 && (MI->getOperand(1).getVRegValueOrNull() || MI->getOperand(1).isImmediate() || MI->getOperand(1).isRegister() || MI->getOperand(1).isGlobalAddress() || MI->getOperand(1).isExternalSymbol()))) && "Illegal form for AddRegFrm instruction!"); unsigned Reg = MI->getOperand(0).getReg(); O << TII.getName(MI->getOpcode()) << " "; printOp(MI->getOperand(0)); if (MI->getNumOperands() == 2 && (!MI->getOperand(1).isRegister() || MI->getOperand(1).getVRegValueOrNull() || MI->getOperand(1).isGlobalAddress() || MI->getOperand(1).isExternalSymbol())) { O << ", "; printOp(MI->getOperand(1)); } checkImplUses(Desc); O << "\n"; return; } case X86II::MRMDestReg: { // There are three forms of MRMDestReg instructions, those with 2 // or 3 operands: // // 2 Operands: this is for things like mov that do not read a // second input. // // 2 Operands: two address instructions which def&use the first // argument and use the second as input. // // 3 Operands: in this form, two address instructions are the same // as in 2 but have a constant argument as well. // bool isTwoAddr = TII.isTwoAddrInstr(Opcode); assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate())) && "Bad format for MRMDestReg!"); O << TII.getName(MI->getOpcode()) << " "; printOp(MI->getOperand(0)); O << ", "; printOp(MI->getOperand(1)); if (MI->getNumOperands() == 3) { O << ", "; printOp(MI->getOperand(2)); } O << "\n"; return; } case X86II::MRMDestMem: { // These instructions are the same as MRMDestReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!"); O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " "; printMemReference(MI, 0); O << ", "; printOp(MI->getOperand(4)); O << "\n"; return; } case X86II::MRMSrcReg: { // There are three forms that are acceptable for MRMSrcReg // instructions, those with 2 or 3 operands: // // 2 Operands: this is for things like mov that do not read a // second input. // // 2 Operands: in this form, the last register is the ModR/M // input. The first operand is a def&use. This is for things // like: add r32, r/m32 // // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used // for instructions like the IMULri instructions. // // assert(MI->getOperand(0).isRegister() && MI->getOperand(1).isRegister() && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && (MI->getOperand(2).isImmediate()))) && "Bad format for MRMSrcReg!"); O << TII.getName(MI->getOpcode()) << " "; printOp(MI->getOperand(0)); O << ", "; printOp(MI->getOperand(1)); if (MI->getNumOperands() == 3) { O << ", "; printOp(MI->getOperand(2)); } O << "\n"; return; } case X86II::MRMSrcMem: { // These instructions are the same as MRMSrcReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && isMem(MI, 2)) && "Bad format for MRMSrcMem!"); if (MI->getNumOperands() == 2+4 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << TII.getName(MI->getOpcode()) << " "; printOp(MI->getOperand(0)); O << ", " << sizePtr(Desc) << " "; printMemReference(MI, MI->getNumOperands()-4); O << "\n"; return; } case X86II::MRMS0r: case X86II::MRMS1r: case X86II::MRMS2r: case X86II::MRMS3r: case X86II::MRMS4r: case X86II::MRMS5r: case X86II::MRMS6r: case X86II::MRMS7r: { // In this form, the following are valid formats: // 1. sete r // 2. cmp reg, immediate // 2. shl rdest, rinput // 3. sbb rdest, rinput, immediate [rdest = rinput] // assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); assert((MI->getNumOperands() != 2 || MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& "Bad MRMSxR format!"); assert((MI->getNumOperands() < 3 || (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && "Bad MRMSxR format!"); if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << TII.getName(MI->getOpcode()) << " "; printOp(MI->getOperand(0)); if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { O << ", "; printOp(MI->getOperand(MI->getNumOperands()-1)); } checkImplUses(Desc); O << "\n"; return; } case X86II::MRMS0m: case X86II::MRMS1m: case X86II::MRMS2m: case X86II::MRMS3m: case X86II::MRMS4m: case X86II::MRMS5m: case X86II::MRMS6m: case X86II::MRMS7m: { // In this form, the following are valid formats: // 1. sete [m] // 2. cmp [m], immediate // 2. shl [m], rinput // 3. sbb [m], immediate // assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && isMem(MI, 0) && "Bad MRMSxM format!"); assert((MI->getNumOperands() != 5 || (MI->getOperand(4).isImmediate() || MI->getOperand(4).isGlobalAddress())) && "Bad MRMSxM format!"); const MachineOperand &Op3 = MI->getOperand(3); // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" // is misassembled by gas in intel_syntax mode as its 32-bit // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw // opcode bytes instead of the instruction. if (MI->getOpcode() == X86::FSTPr80) { if ((MI->getOperand(0).getReg() == X86::ESP) && (MI->getOperand(1).getImmedValue() == 1)) { if (Op3.isImmediate() && Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) { // 1 byte disp. O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; } else { O << ".byte 0xdb, 0xbc, 0x24\n\t"; O << ".long "; printOp(Op3); O << "\t# "; } } } // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is // misassembled by gas in intel_syntax mode as its 32-bit // equivalent "fld DWORD PTR [...]". Workaround: Output the raw // opcode bytes instead of the instruction. if (MI->getOpcode() == X86::FLDr80 && MI->getOperand(0).getReg() == X86::ESP && MI->getOperand(1).getImmedValue() == 1) { if (Op3.isImmediate() && Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) { // 1 byte displacement O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; } else { O << ".byte 0xdb, 0xac, 0x24\n\t"; O << ".long "; printOp(Op3); O << "\t# "; } } // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an // invalid opcode, saying "64 bit operations are only supported in // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR // [...]", which is wrong. Workaround: Output the raw opcode bytes // instead of the instruction. if (MI->getOpcode() == X86::FILDr64 && MI->getOperand(0).getReg() == X86::ESP && MI->getOperand(1).getImmedValue() == 1) { if (Op3.isImmediate() && Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) { // 1 byte displacement O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; } else { O << ".byte 0xdf, 0xac, 0x24\n\t"; O << ".long "; printOp(Op3); O << std::dec << "\t# "; } } // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as // an invalid opcode, saying "64 bit operations are only // supported in 64 bit modes." libopcodes disassembles it as // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output // "fistpll DWORD PTR " instead, which is what libopcodes is // expecting to see. if (MI->getOpcode() == X86::FISTPr64) { O << "fistpll DWORD PTR "; printMemReference(MI, 0); if (MI->getNumOperands() == 5) { O << ", "; printOp(MI->getOperand(4)); } O << "\t# "; } O << TII.getName(MI->getOpcode()) << " "; O << sizePtr(Desc) << " "; printMemReference(MI, 0); if (MI->getNumOperands() == 5) { O << ", "; printOp(MI->getOperand(4)); } O << "\n"; return; } default: O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break; } } bool Printer::doInitialization(Module &M) { // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. // // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an // instruction as a reference to the register named sp, and if you try to // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased // before being looked up in the symbol table. This creates spurious // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' // mode, and decorate all register names with percent signs. O << "\t.intel_syntax\n"; Mang = new Mangler(M, EmitCygwin); return false; // success } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t" << NewSection << "\n"; } } bool Printer::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignment(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << "\t.local " << name << "\n"; O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) << "," << (unsigned)TD.getTypeAlignment(C->getType()); O << "\t\t# "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: if (C->isNullValue()) SwitchSection(O, CurSection, ".bss"); else SwitchSection(O, CurSection, ".data"); break; } O << "\t.align " << Align << "\n"; O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\t\t\t\t# "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } delete Mang; return false; // success } } // End llvm namespace